• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of Tunable Devices at Terahertz Frequencies Based on Quasi-Photonic Crystals Incorporated with Graphene

    2019-11-07 03:55:50RezaGhayoorandAlirezaKeshavarz
    Communications in Theoretical Physics 2019年10期

    Reza Ghayoor and Alireza Keshavarz

    Department of Physics,Shiraz University of Technology,Shiraz,Iran

    Abstract In this study,we present a new theoretical model including Thue-Morse and double-period sequences as quasi-photonic crystals are incorporation with graphene and investigate the transmission properties of the THz waves in both structures using a straightforward computational method.We also consider properties of nonlinear conductivity in addition to surface linear conductivity for graphene.We observe the sharp peaks and proper forbidden bands are created in the range of 0.3 THz to 30 THz.In addition,we find that by considering the nonlinear term of graphene and engineering the structural parameters such as the chemical potential of graphene,number of layers and the incidence wave angle,transmission levels of peaks enhance scientifically and quality factor improve considerably.These results show that it would be possible to design of high-Q tunable filters with multi-stop bands in the THz regime which can reduce the noise associated with THz frequency peaks and increase the number of sharp frequency peaks.

    Key words: graphene,nonlinear conductivity,terahertz filters,transfer matrix,transmission spectrum

    1 Introduction

    Periodic structures such as photonic crystals are used in a wide range of applications such as waveguides,[1?2]filters,[3?5]optical modulators,[6]and sensors.[7]In recent years,a new kind of photonic crystals which is called quasi-photonic crystals have been emerged.These types of photonic crystals are generated according to determine rules containing the Fibonacci and Thue-Morse(ThM)sequences and are formed from dielectric stacks like photonic crystals.Examples of these quasi-photonic crystals are Fibonacci,[8?9]Thue-Morse,[10]and double-period[11]structures.Quasi-photonic crystals have a large photonic band gap and unique properties in transmitting and guiding of waves[12]and exhibit various applications such as designing filters.[13]

    Filters play an important role in various applications such as telecommunications,[14?15]medical and chemical sensors,and biosensors.[16?17]Wide efforts are done to develop and design of the high-pass filters and tunable filters.These filters are usually based on photonic crystals and liquid photonic crystals.[18]Results have shown that filters based on quasi-photonic crystals have high transmission efficiency and narrow bandwidth.In other words,these filters have the ability to suppress redundant subpeaks and lower sideband transmittance while increasing the transmission level.[19]In this way,Hsuehet al.studied a double-period structure,using the transmission spectrum and gap map method.They have also studied the relation between the transmission spectrum and the generation order of a double-period structure.[20]Zhanget al.investigated theoretically the photonic band gap (PBG)near the infrared region for quasi-photonic dielectric multilayer structures using Si and SiO2.Furthermore,acceptor modes properties and PBG of a 2D Thue-Morse under the THz waves are also investigated.[21]

    One-dimensional quasi-periodic crystals exhibit PBG corresponding to 100% of reflection similar to the periodic photonic systems.Compared to the periodic structures,these new classes of materials have band gaps with different widths,depending on the chosen quasi-periodic sequence.An attractive feature of quasi-photonic crystals is their ability to filtering wavelengths so that the transmission spectrum of these structures shows transmission peaks within the PBG that corresponding to localized modes of the light at some specific frequencies.These conditions were obtained when the defects were incorporated in quasi-photonic crystals.[22]

    In the THz to the far-infrared (FIR) spectral regime,graphene optical conductance-based systems attract many researchers’ interests.[23]Graphene,as a centrosymmetric material,exhibits non-linear phenomena such as four-wave mixing(FWM),[24?25]strong optical Kerr nonlinearity,[26]and so on,which allows us to employ graphene in active photonic devices with improved functionality.Heet al.investigated the tunable propagation properties of hybrid graphene-metal structure in the THz region.[27]These advantages require advances in theoretical models,experimental techniques,and numerical methods for modeling of graphene-based on devices.[28?29]In addition,graphene can be incorporated into different structures for the design of tunable devices.[30]There are not many reports of the use of graphene in quasi-photonic crystals,but we believe that the use of graphene with non-linear conductivity in quasi-photonic crystals create photonic band gaps with frequency peaks in the THz spectrum,which is very attractive for devices such as THz filters.

    In this paper,we study the transmission properties of THz waves in quasi-photonic crystals including graphene using the transfer matrix method.The attractive photonic crystals considered in this paper are Thue-Morse and double-period structures.

    2 Theoretical Model

    In this study,two quasi-photonic crystals that are constructed of two sequences Thue-Morse and double-period based on mathematical principles are used.The stacked layers vary with the generation number ofmas 2min both of these structures.Thin graphene layers that have linear and nonlinear conductivity among the materials of these quasi-photonic crystals are used.

    2.1 Thue-Morse Sequence

    Thue-Morse (ThM) sequence is one of the most wellknown quasi-photonic crystals.The ThM sequence can be grown by juxtaposing the two building blocksHandLand can be produced by repeating the substitution ruleH →HLandL →LH.For example,the first few generationsSmof ThM sequence are as follows:S0={H}(1 layer),S1={HL}(2 layer),S2={HLLH}(4 layers),S3={HLLHLHHL}(8 layers) and so on.[31]The ThM sequence with graphene thin layers is schematically shown in Fig.1 whereHandLcorrespond to the high and low refractive indexes materials with refractive indicesnHandnL,respectively andGis graphene thin layer that placed among them.

    2.2 Double-Period Sequence

    A one-dimensional double-period(DP)quasi-photonic crystal is also composed of two layers ofHandL.The layers ofHandLconstitute DP quasi-photonic crystal that follows the iteration rule:H →HLandL →HH.According to this iteration rule,the structureSmof DP sequence is as follows:S0={H}(1 layer)S1={HL}(2 layer)S2={HLHH}(4 layer)S3={HLHHHLHL}(8 layer)and so on.[20]Figure 2 shows the DP sequence with graphene thin layers.The layers ofHandLrepresent materials with high and low refractive index,respectively andGis graphene thin layers that placed among them.

    2.3 Computational Method

    The transfer matrix is a method which can be used for calculating the reflection and transmission coefficients at the interface of graphene-dielectric.The main idea of the transfer matrix is to link the electric and magnetic fields of different places to each other.Here,we examine the wave propagation in the interface graphene layers.The graphene-dielectric interface matrix will be considered asM,which can link the field of the layernto the layern+1:[32]

    where the parametersξ,κn,andunare defined as follows:

    whereη0is the impedance of free space,k0=2π/λandθis the angle of the incident beam to the structure.

    Without considering the external magnetic field and under the random-phase approximation,the isotropic surface conductivityσof graphene in the THz frequencies is dominated by the THz transitions.In the limitωτ ?1,the linear part of the surface conductivity can be expressed as:[33]

    This model is applicable in the low-temperature limit(KBT ?μc) and in the low-frequency range (≤μc).In case of strong field condition,the nonlinear part of the conductivity must be considered as:[34?35]

    and the total conductivity of graphene reads whereEτis the tangential component of the electric field andσNLdenotes nonlinear conductivity,which can be acquired from Mikhailov and Ziegler for the THz regime:[36]

    whereνf=106(m/s) is the Fermi velocity of the electrons.

    If the structure of unit cell in Fig.1 or Fig.2 is repeated periodically for the number of periods,such asN,the entire matrix is considered as follows:

    The reflection and transmission coefficients can be obtained from the elements of the matrixUas:[30]

    Figures 3 and 4 show the structure of the unit cell of ThM and DP quasi-photonic crystals,using a thin film of graphene with a total conductivity (total linear and nonlinear conductivity).

    Fig.1 (Color online) Schematic representation of the Thue-Morse sequence-built structure as stacking of dielectric layers incorporating graphene.The sequence generation number (m) varies from 0 to 2. H and L denote the high and low refractive index material,respectively and G represents the graphene thin layer.

    Fig.2 (Color online) Schematic representation of the double-period sequence-built structure as stacking of dielectric layers incorporating graphene.The sequence generation number (m) varies from 0 to 2. H and L denote the high and low refractive index material,respectively and G represents the graphene thin layer.

    Fig.3 (Color online) One-dimensional unit cell structure of the Thue-Morse sequence-built structure as stacking of dielectric layers incorporating graphene under wave radiation with incident angle θ. H and L denote the high and low refractive index material,respectively and G represents the graphene thin layer with conductivity of σg.

    Fig.4 (Color online)One-dimensional unit cell structure of the double-period sequence-built structure as stacking of dielectric layers incorporating graphene under wave radiation with incident angle θ. H and L denote the high and low refractive index material,respectively and G represents the graphene thin layer with conductivity of σg.

    3 Results and Discussion

    In this section,the effect of different factors on the transmission spectrum of ThM and DP structures containing graphene with nonlinear conductivity is investigated.These two structures are consisted of the materials with refractive indexs ofnH=3.45 (Si) andnL=1.97(SiO2)[37]with the thicknesses ofdHanddL,respectively.ThedHanddLare selected according to the Bragg condition:nHdH=nLdL=λ0/4,which will be equal to 2.18μm and 3.8μm,respectively with the reference wavelength ofλ0=30μm.Here the impact of different factors in the presence of a THz field is investigated.The amplitude of the incident wave is chosen asE0=109(V/m).

    The band gaps in the transmission spectrum of ThM and DP structures in the range of 0.3 THz to 30 THz are examined.We focus on two band gaps in the results,which are labeled as PBG1 and PBG2 so that PBG1 starts at about 20 THz and PBG2 starts at about 24 THz.After considering the different conditions and simulation calculations,the exact position of these two bands,as well as passing bands,will be discussed.

    3.1 The Graphene Chemical Potential Effects

    Graphene chemical potential is one of the most important factors which can affect the transmission spectrum.The chemical potential is very important because it is directly related to the changes in the graphene nonlinear effects.Figure 5 shows the variation of the transmission spectrum of both ThM and DP structures for two different values ofμc.

    As shown in Figs.5(a)and 5(b),related to ThM structure,there are two band gaps in the spectra that should be located before 22 THz and after 24 THz.Results of simulation show that by increasing the chemical potential of graphene from 0.26 eV to 0.28 eV,the band gaps width increase in this structure.This situation is identical in DP structure and asμcis increased,band gaps are increased too.Another point to be noted here is that,under the same conditions,the DP structure shows a smaller band gap in comparison to the ThM structure.On the other hand,changes in the chemical potential of graphene also affect the peaks.In ThM structure,by increasing chemical potential,frequency peaks move to higher frequencies,but it can be seen that the transmission level of the peak located before the PBG1 is reduced.On the other hand,as the chemical potential increases,PBG1 width increases in both structures.The structural band gaps are tunable by the gate voltage and the bandwidth of ThM and DP structures can be adjusted via tuning of the chemical potential.These phenomena can be the result of a direct change of linear and nonlinear conductivity of graphene,which is achieved by changing the chemical potential of graphene.It can be stated that the increase in chemical potential,the linear term of conductivity increases and the nonlinear term of conductivity decreases.On the other hand,increasing the amplitude of the incident wave field increases the nonlinear term contribution,and thus the total conductivity decreases.Therefore,the reduction in total conductivity causes an increase ofξ,which increases the resonant frequency off0.

    Fig.5 (Color online) The transmission spectrum of Figs.3 and 4,due to changes in the chemical potential of graphene with values of N =2, θ =43.2?and τ?1 =0.5 THz (a) Transmission spectrum of ThM structure with μc =0.26 eV (b)Transmission spectrum of ThM structure withμc =0.28 eV(c)Transmission spectrum of DP structure withμc =0.26 eV(d) Transmission spectrum of DP structure with μc =0.28 eV.

    The chemical potential of graphene can be realized by tuning the density of the charge carriers through the external electrical gating field and/or chemical doping.Applying the FWHM,we can calculate the corresponding quality factors.Table 1 provides concluding information from Fig.5.As Table 1 shows for peaks after PBG2,with increasing chemical potential the Q factor for both structures has decreased.In addition,it can be seen that the ThM structure has sharper peaks than the DP structure.

    3.2 The Incidence Wave Angle Effects

    Changing the angle of incidence wave is another factor that affects the transmission spectrum.Figure 6 shows the variation of the transmission spectrum for the two angles of 36?and 39.6?for ThM and DP structures.

    In ThM structure,an increase in the angle of incidence wave leads to an increase in the PBG1 and PBG2 and both bandgaps are shifted toward higher frequencies.The location and width of bandgaps are highly depending on the interference condition that change with incident angle.This situation also occurs in the DP structure.On the other hand,as the comparison of Fig.6(a) with Fig.6(b) show,with increasing the wave angle from 39?to 39.6?,the transmission amount of frequency peaks increases and peaks are shifted to higher frequencies.In the DP structure,the frequency peaks also shift to higher frequencies,but the amount of their transmission remains fixed.In fact,an increase inθcauses thekzincreases and thus the resonance frequency off0moves toward higher frequencies.The reason for these changes is the changes in the angle of the incident wave affect both the wave vector and the incident field ofEτ.Therefore,at high incident angle,the frequency region in which THz waves are transmitted is reduced.Table 2 describes the position of band gaps and frequency peaks along with the exact amount of transmission of each peak.

    Table 1 Conclusion information from Fig.5.

    Fig.6 (Color online) The transmission spectrum of Figs.3 and 4,due to changes in the angle of the incident wave with values of N =2, μc =0.26 eV and τ?1 =0.5 THz (a) Transmission spectrum of ThM structure with θ =36?(b) Transmission spectrum of ThM structure with θ =39.6?(c) Transmission spectrum of DP structure with θ =36?(d) Transmission spectrum of DP structure with θ =39.6?.

    Table 2 Conclusion information from Fig.6.

    3.3 The Structures Periodic Number Effects

    In what follows,we consider the ThM and DP structures as periodic of orderm=2 in a period ofN.The periodic parameterNis very important when changes in the angle or the chemical potential of graphene are difficult.Figure 7 shows the variation of the transmission spectrum for the two different number ofN.

    In this section,we setNas 3 and 4,which lead to the total layers of 12 and 16 layers,respectively.The results show that in ThM and DP structures,the width of PBG1 increases with the increase ofN.What happens unexpectedly is that,unlike the previous cases in which increase of the incident wave angle or the chemical potential led to an increase in the PBG2 width,here,we will encounter a decrease in the PBG2 width with increasingN.

    Another good occurrence in this section is that in the ThM and DP structures withN=4 three frequency peaks are observed after the PBG2 width which can be considered as a good feature for designing THz filters.Table 3 provides some information derived from Fig.7.

    In addition,it is observed that as the number of layers in each structure increases,the frequency peaks move toward lower frequencies.The reason for this shift is that as the number of layers increases,the thickness of the total layers ofdalso increases.The increase indleads to the decrease ofkzand in fact,the resonance frequency off0decreases and the peaks positions are moved to lower frequencies.Note that these peaks will become much sharper asNdecreases.For a high-quality device,sharpness is an inevitable characteristic,since even small changes in the environment can be detectable if we have this sharpness.Clearly,the Q factors for ThM structure are improved remarkably when theNchanges from 3 to 4.

    4 Conclusion

    Fig.7 The transmission spectrum of Figs.3 and 4,due to changes in the number of periods with values of μc=0.26 eV,θ=43.2?and τ?1=0.5 THz (a) Transmission spectrum of ThM structure with N=3 (b) Transmission spectrum of ThM structure with N=4 (c) Transmission spectrum of DP structure with N=3 (d) Transmission spectrum of DP structure with N =4.

    Table 3 Conclusion information from Fig.7.

    The tunable propagation properties of Thue-Morse and double-period quasi-photonic crystals incorporating graphene thin layer have been investigated.We present theoretical models including graphene for designing novel tunable devices in the terahertz region ((0.3?30)THz).The graphene was used with a nonlinear term.Due to the tunability of linear and nonlinear conductivity of graphene,an extra controlled degree of free is provided to the design of tunable THz devices.The results manifest that several photonic band gaps appear in the transmission spectra of proposed structures,which are separated by narrow and sharp modes.In addition,the Thue-Morse structure exhibits a wider photonic band gap in comparison to the double-period structure.We found firstly,the transmission properties above structures can be tuned with the assistance of varying the structural parameters such as the periodic number and the angle of incidence wave.By engineering the structural parameters,we obtained the high transmission levels in several frequencies.Secondly,the maximum Q factor (2803)is obtained by increasing periodic numberNof graphene embedded Thue-Morse structure.In addition,results showed by adjusting the chemical potential of graphene from 0.26 eV to 0.28 eV,the double-period structure can be used as a high-Q monochromatic THz filter.The whole results clearly suggest that the quasi-periodic photonic structures studied in this research can provide the possibility of designing different devices such as kinds of filters(monochromatic,bichromatic and polychromatic),modulators and splitters that can have promising features such as high-Q,high transmission level,and selectable resonant frequency position.

    精品少妇久久久久久888优播| 一级a爱视频在线免费观看| 色老头精品视频在线观看| 国产欧美日韩一区二区三区在线| 亚洲男人天堂网一区| 国产伦人伦偷精品视频| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 侵犯人妻中文字幕一二三四区| 国产男靠女视频免费网站| 岛国毛片在线播放| 无人区码免费观看不卡 | 露出奶头的视频| 如日韩欧美国产精品一区二区三区| 十分钟在线观看高清视频www| 久久 成人 亚洲| 国产成人欧美| 国产精品九九99| tocl精华| 国产精品电影一区二区三区 | 午夜福利,免费看| 久久精品国产亚洲av高清一级| 国产色视频综合| 丰满人妻熟妇乱又伦精品不卡| 99久久99久久久精品蜜桃| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 亚洲人成伊人成综合网2020| 高清欧美精品videossex| 国产男靠女视频免费网站| 色94色欧美一区二区| 99香蕉大伊视频| 精品少妇久久久久久888优播| 另类精品久久| 亚洲精品美女久久久久99蜜臀| 欧美亚洲 丝袜 人妻 在线| 午夜激情久久久久久久| 一二三四在线观看免费中文在| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| av一本久久久久| 欧美日韩精品网址| 亚洲第一青青草原| 国产精品成人在线| 亚洲 欧美一区二区三区| 欧美日韩黄片免| 亚洲av美国av| 99热国产这里只有精品6| 免费在线观看日本一区| av线在线观看网站| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 水蜜桃什么品种好| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| av一本久久久久| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 黄片播放在线免费| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 亚洲五月婷婷丁香| 少妇猛男粗大的猛烈进出视频| 好男人电影高清在线观看| 国产三级黄色录像| 少妇的丰满在线观看| 一本久久精品| 久久久欧美国产精品| 又大又爽又粗| 久久人人爽av亚洲精品天堂| 12—13女人毛片做爰片一| 啦啦啦 在线观看视频| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人妻福利社区极品人妻图片| 午夜久久久在线观看| 老司机在亚洲福利影院| 天堂动漫精品| 在线av久久热| 一级a爱视频在线免费观看| 亚洲精品一二三| 国产色视频综合| 国产精品电影一区二区三区 | 男女午夜视频在线观看| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 婷婷成人精品国产| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说| 国产高清激情床上av| 亚洲精品自拍成人| 久久 成人 亚洲| 亚洲精品在线观看二区| 男女下面插进去视频免费观看| 精品午夜福利视频在线观看一区 | 丝袜美腿诱惑在线| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影| 欧美变态另类bdsm刘玥| 青草久久国产| 天天躁日日躁夜夜躁夜夜| 国产精品麻豆人妻色哟哟久久| 亚洲七黄色美女视频| 亚洲国产中文字幕在线视频| 麻豆成人av在线观看| 欧美黄色片欧美黄色片| 久久久久久亚洲精品国产蜜桃av| 我要看黄色一级片免费的| 日本欧美视频一区| 欧美乱妇无乱码| 黄色毛片三级朝国网站| 美女午夜性视频免费| 日韩人妻精品一区2区三区| 欧美精品av麻豆av| 久久精品国产a三级三级三级| 亚洲精品国产精品久久久不卡| 亚洲七黄色美女视频| 国产成人一区二区三区免费视频网站| av不卡在线播放| 国产主播在线观看一区二区| 一进一出抽搐动态| 下体分泌物呈黄色| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 国产一区二区三区在线臀色熟女 | 欧美在线一区亚洲| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 51午夜福利影视在线观看| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 精品乱码久久久久久99久播| 18禁裸乳无遮挡动漫免费视频| 精品福利观看| 成人免费观看视频高清| 国产亚洲午夜精品一区二区久久| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 久久99热这里只频精品6学生| av线在线观看网站| 视频在线观看一区二区三区| 咕卡用的链子| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 国产精品成人在线| 欧美性长视频在线观看| 精品人妻熟女毛片av久久网站| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一区中文字幕在线| 99精品欧美一区二区三区四区| 国产麻豆69| 女性被躁到高潮视频| a级片在线免费高清观看视频| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 亚洲av美国av| 成人三级做爰电影| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av | 悠悠久久av| 日韩视频一区二区在线观看| 国产日韩一区二区三区精品不卡| videos熟女内射| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 日韩视频在线欧美| 国产极品粉嫩免费观看在线| 一边摸一边抽搐一进一出视频| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 热re99久久精品国产66热6| 国产成人精品在线电影| av天堂久久9| 亚洲av成人不卡在线观看播放网| a在线观看视频网站| 在线观看免费高清a一片| 欧美在线黄色| 国产欧美日韩一区二区精品| 精品福利观看| 俄罗斯特黄特色一大片| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 99热网站在线观看| 999精品在线视频| 男女之事视频高清在线观看| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 18禁黄网站禁片午夜丰满| 色老头精品视频在线观看| 精品乱码久久久久久99久播| 99热网站在线观看| 丝袜美足系列| 国产一卡二卡三卡精品| 两性夫妻黄色片| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 成年人黄色毛片网站| 欧美 亚洲 国产 日韩一| 99re6热这里在线精品视频| 少妇的丰满在线观看| 999久久久精品免费观看国产| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| avwww免费| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 黑丝袜美女国产一区| 欧美大码av| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| av不卡在线播放| 国产一区二区三区综合在线观看| 黄色丝袜av网址大全| 精品人妻1区二区| 黄片大片在线免费观看| 97人妻天天添夜夜摸| videosex国产| 日本av手机在线免费观看| 亚洲国产看品久久| 亚洲免费av在线视频| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 久久国产精品人妻蜜桃| 成年动漫av网址| 精品一区二区三区四区五区乱码| 蜜桃国产av成人99| 免费看十八禁软件| 久久久久网色| 精品国产一区二区三区久久久樱花| 国产aⅴ精品一区二区三区波| 日本五十路高清| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看www视频免费| 一夜夜www| 窝窝影院91人妻| 一区二区日韩欧美中文字幕| 在线av久久热| 97在线人人人人妻| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看| 国产欧美亚洲国产| 国产片内射在线| 丁香六月天网| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 丝袜美足系列| 女人久久www免费人成看片| 免费av中文字幕在线| 在线观看人妻少妇| 日本vs欧美在线观看视频| 日本黄色视频三级网站网址 | 亚洲免费av在线视频| 国产一区二区三区视频了| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 国产精品一区二区在线观看99| 正在播放国产对白刺激| 日韩视频在线欧美| 亚洲第一欧美日韩一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 日日摸夜夜添夜夜添小说| h视频一区二区三区| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 成人手机av| 手机成人av网站| 精品久久久久久久毛片微露脸| 亚洲欧美日韩高清在线视频 | 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲| 99热国产这里只有精品6| 亚洲欧美激情在线| 色精品久久人妻99蜜桃| 一本大道久久a久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽 | 久久久精品94久久精品| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 麻豆乱淫一区二区| 十八禁人妻一区二区| 在线十欧美十亚洲十日本专区| 国产午夜精品久久久久久| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 亚洲国产av影院在线观看| 一级黄色大片毛片| 大型av网站在线播放| 国产亚洲精品一区二区www | 亚洲成国产人片在线观看| 少妇粗大呻吟视频| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| 黑人欧美特级aaaaaa片| 国产91精品成人一区二区三区 | 大香蕉久久网| 天堂8中文在线网| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 成人国产av品久久久| 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 视频在线观看一区二区三区| 一二三四在线观看免费中文在| 久久久久久久精品吃奶| 国产精品国产高清国产av | av又黄又爽大尺度在线免费看| 乱人伦中国视频| 日本一区二区免费在线视频| 日韩免费av在线播放| 国产熟女午夜一区二区三区| 亚洲国产成人一精品久久久| 国产精品成人在线| 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| 五月天丁香电影| 少妇裸体淫交视频免费看高清 | av片东京热男人的天堂| 免费看a级黄色片| 国产麻豆69| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 99精品久久久久人妻精品| 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 老汉色∧v一级毛片| 免费人妻精品一区二区三区视频| 精品国产超薄肉色丝袜足j| 免费人妻精品一区二区三区视频| 另类精品久久| 最黄视频免费看| 12—13女人毛片做爰片一| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 日本wwww免费看| 18禁观看日本| 日本wwww免费看| 老熟女久久久| 亚洲成a人片在线一区二区| 精品人妻1区二区| 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播| 精品国产一区二区久久| 91成人精品电影| 日韩大片免费观看网站| 99re在线观看精品视频| www.熟女人妻精品国产| 亚洲av美国av| 黄色毛片三级朝国网站| 黄色视频,在线免费观看| 在线观看免费高清a一片| 视频区欧美日本亚洲| 亚洲av片天天在线观看| 欧美日韩亚洲综合一区二区三区_| 女人爽到高潮嗷嗷叫在线视频| 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 最近最新中文字幕大全免费视频| av免费在线观看网站| 中国美女看黄片| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 成年人黄色毛片网站| 999精品在线视频| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区| 国产精品影院久久| 可以免费在线观看a视频的电影网站| 亚洲欧美色中文字幕在线| 欧美成人免费av一区二区三区 | 亚洲久久久国产精品| 天堂8中文在线网| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 91成年电影在线观看| 丝袜美足系列| 日本a在线网址| 一边摸一边抽搐一进一出视频| 老鸭窝网址在线观看| 亚洲精品成人av观看孕妇| 国产精品成人在线| 大型黄色视频在线免费观看| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 久久影院123| 深夜精品福利| 美女福利国产在线| 香蕉丝袜av| 免费日韩欧美在线观看| 久久久久国内视频| 亚洲精品中文字幕在线视频| 一进一出抽搐动态| 欧美精品高潮呻吟av久久| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 欧美精品av麻豆av| 黄色视频不卡| 亚洲欧美一区二区三区久久| 人成视频在线观看免费观看| 麻豆乱淫一区二区| 免费在线观看黄色视频的| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 国产日韩欧美在线精品| 搡老乐熟女国产| 捣出白浆h1v1| 亚洲午夜理论影院| 亚洲av日韩在线播放| 久热爱精品视频在线9| 国产色视频综合| 亚洲全国av大片| 两人在一起打扑克的视频| 国产野战对白在线观看| 国产精品 欧美亚洲| 久久天堂一区二区三区四区| 看免费av毛片| 岛国毛片在线播放| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 欧美成狂野欧美在线观看| 午夜精品国产一区二区电影| 国产区一区二久久| 在线永久观看黄色视频| 精品国产乱子伦一区二区三区| 午夜福利免费观看在线| 欧美日韩国产mv在线观看视频| 精品一区二区三区av网在线观看 | 老熟妇乱子伦视频在线观看| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 桃花免费在线播放| av在线播放免费不卡| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密| 一本久久精品| 免费看十八禁软件| 999久久久国产精品视频| 一本—道久久a久久精品蜜桃钙片| h视频一区二区三区| 国产精品一区二区免费欧美| 国产精品自产拍在线观看55亚洲 | 美女午夜性视频免费| 91大片在线观看| 啦啦啦 在线观看视频| 一本久久精品| 麻豆av在线久日| 老汉色∧v一级毛片| e午夜精品久久久久久久| 精品视频人人做人人爽| 两个人看的免费小视频| 久久精品人人爽人人爽视色| 国产精品国产高清国产av | 免费在线观看日本一区| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 两性夫妻黄色片| 极品少妇高潮喷水抽搐| 伦理电影免费视频| 午夜福利免费观看在线| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 少妇精品久久久久久久| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 9热在线视频观看99| 成人黄色视频免费在线看| videos熟女内射| 黄色丝袜av网址大全| 国产三级黄色录像| 老熟妇乱子伦视频在线观看| 最黄视频免费看| 天天影视国产精品| 我的亚洲天堂| 久久人妻福利社区极品人妻图片| 日韩一区二区三区影片| 久久这里只有精品19| 精品一品国产午夜福利视频| 精品国内亚洲2022精品成人 | 青草久久国产| 亚洲成人免费av在线播放| 国产精品 欧美亚洲| 国产在线免费精品| 曰老女人黄片| 99精品久久久久人妻精品| 国产又爽黄色视频| 黄色怎么调成土黄色| 国产亚洲精品久久久久5区| 中文亚洲av片在线观看爽 | 亚洲专区字幕在线| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 精品第一国产精品| 叶爱在线成人免费视频播放| 亚洲五月色婷婷综合| 日本wwww免费看| av视频免费观看在线观看| 精品高清国产在线一区| av网站免费在线观看视频| 国产高清视频在线播放一区| 熟女少妇亚洲综合色aaa.| 国产欧美亚洲国产| 老司机在亚洲福利影院| 人人妻人人澡人人看| 两个人免费观看高清视频| 成人精品一区二区免费| 视频在线观看一区二区三区| 国产精品影院久久| 欧美大码av| 国产有黄有色有爽视频| 妹子高潮喷水视频| 国产成人欧美在线观看 | 美女主播在线视频| 一区福利在线观看| 少妇猛男粗大的猛烈进出视频| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区| 法律面前人人平等表现在哪些方面| 美女高潮到喷水免费观看| 老熟妇乱子伦视频在线观看| 99久久国产精品久久久| 久久久欧美国产精品| 欧美日韩国产mv在线观看视频| a在线观看视频网站| 91成人精品电影| 天堂8中文在线网| 久久精品国产亚洲av高清一级| 亚洲国产欧美日韩在线播放| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 丁香欧美五月| 99精品在免费线老司机午夜| 一级片免费观看大全| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 亚洲九九香蕉| 国产精品久久久久久精品古装| 婷婷丁香在线五月| 成人免费观看视频高清| 国产亚洲av高清不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美精品.| 我要看黄色一级片免费的| 久9热在线精品视频| 国产主播在线观看一区二区| 黑人操中国人逼视频| 黄片大片在线免费观看| 国产日韩欧美在线精品| 免费一级毛片在线播放高清视频 | 国产深夜福利视频在线观看| av天堂久久9| 久久人妻熟女aⅴ| 老熟妇仑乱视频hdxx| 夫妻午夜视频| 黄色视频,在线免费观看| 超碰97精品在线观看| 美女扒开内裤让男人捅视频| 露出奶头的视频| 动漫黄色视频在线观看| 成人三级做爰电影| 人人妻人人澡人人爽人人夜夜| 日韩中文字幕欧美一区二区| 老司机福利观看| 午夜福利免费观看在线| 国产亚洲一区二区精品| 欧美日韩亚洲国产一区二区在线观看 | av视频免费观看在线观看| 美国免费a级毛片| 别揉我奶头~嗯~啊~动态视频| 少妇被粗大的猛进出69影院| 天天躁日日躁夜夜躁夜夜| 亚洲天堂av无毛| 久久精品aⅴ一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 免费观看a级毛片全部| 欧美变态另类bdsm刘玥| 我要看黄色一级片免费的| 国产极品粉嫩免费观看在线| 欧美老熟妇乱子伦牲交| www日本在线高清视频| 别揉我奶头~嗯~啊~动态视频| 久久毛片免费看一区二区三区| 老司机深夜福利视频在线观看| 一进一出抽搐动态| 欧美黄色片欧美黄色片| 国产精品久久久久久精品电影小说| 亚洲伊人久久精品综合| 精品人妻熟女毛片av久久网站| 在线观看66精品国产| 久久精品国产99精品国产亚洲性色 |