• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravitational Deflection of Massive Particles by a Schwarzschild Black Hole in Radiation Gauge?

    2019-11-07 03:55:46ZongHaiLi李宗海XiaZhou周霞WeiJunLi李偉軍andGuanShengHe賀觀圣
    Communications in Theoretical Physics 2019年10期

    Zong-Hai Li (李宗海), Xia Zhou (周霞), Wei-Jun Li (李偉軍), and Guan-Sheng He (賀觀圣)

    1School of Physical Science and Technology,Southwest Jiaotong University,Chengdu 610031,China

    2Physics and Space Science College,China West Normal University,Nanchong 637009,China

    3School of Mathematics and Physics,University of South China,Hengyang 421001,China

    Abstract The exact metric of a Schwarzschild black hole in the true radiation gauge was recently reported.In this work,we base on this gravity and calculate the gravitational deflection of relativistic massive particles up to the fourth post-Minkowskian order.It is found that the result is consistent with the previous formulations for both the case of dropping the fourth-order contribution and the case of light deflection.Our result might be helpful for future high-accuracy observations.

    Key words: gravitational deflection,relativistic massive particles,radiation gauge,Schwarzschild black hole

    1 Introduction

    Gravitational lensing of light acts as one of the most powerful tools in astrophysics because of its extensive applications.Not to be forgotten,the deflection of light by the Sun provided one of the first tests of general relativity.[1?2]Not limited to light,the gravitational lensing of massive particles has attracted more and more attentions in recent years.[3?9]In 2002,Accioly and Ragusa[3]derived the Schwarzschild deflection angle of relativistic massive particles up to the third post-Minkowskian (PM) order,the second-order contribution of which was,however,different from the one proposed in Ref.[5].Recently,He and Lin[10]considered the gravitational deflection of relativistic massive particles and light caused by a moving Kerr-Newman source numerically,and found that the second-order Schwarzschild contribution was in agreement with the former.This consistency was further confirmed by the analytical calculation via an iterative technique.[11]There were also other investigations devoted to the deflection of massive particles in static and spherically symmetric spacetimes,[12?14]with their results matching with the Accioly and Ragusa’s proposal.

    In 2011,Chen and Zhu[15]proposed a true radiation gauge serving as coordinate conditions to solve the Einstein field equations and thus to investigate gravitational energy and radiation:

    Here and thereafter,Latin indices run from 1 to 3,and Greek indices run from 0 to 3.The exact metric of a Schwarzschild spacetime in this radiation gauge was later derived in Ref.[16].

    Since significant differences between the true radiation gauge and the harmonic gaugegμν=0[17]exist,which leads to the difference between the radiation-gauge solution[16]and the Schwarzschild metric in harmonic coordinates,it is interesting to study the classical tests of general relativity in the gravity reported in Ref.[16].In addition,with the consideration of the great progress achieved in astronomical observations,[18?21]it is necessary to investigate the high-order contributions to the observable relativistic effects.In this article,we calculate the gravitational deflection of relativistic test particles including light up to the 4PM order in this gravity,based on the iterative technique proposed in Ref.[11].Our discussions are constrained in the weak-field,small-angle,and thin-lens approximation.

    The structure of this article is as follows.In Sec.2,we give a brief review of the metric of a Schwarzschild black hole in radiation gauge and calculate the weak-field equations of motion of test particles.Section 3 presents the derivation for the gravitational deflection of relativistic massive particles up to the 4PM order,followed by a summary in Sec.4.

    Throughout the paper,metric signature(?,+,+,+)and natural units in whichG=c=1 are used.

    2 Weak-field Equations of Motion in Radiation Gauge

    2.1 The Metric for a Schwarzschild Black Hole in Radiation Gauge

    Let (e1,e2,e3) be the orthonormal basis of a threedimensional Cartesian coordinate system.The exact metric of a Schwarzschild black hole in the form of the coordinates (t,X,Y,Z) in radiation gauge reads:[16]

    whereMdenotes the rest mass of the black hole,X=(X,Y,Z),andX ·dX=XdX+XdX+ZdZ.?M/Rrepresents the Newtonian gravitational potential.Notice that the exact metric of a Schwarzschild black hole in harmonic coordinates(t,x,y,z) via the harmonic gauge can be comparatively written as follows:[17]

    whereandx·dx=xdx+ydy+zdz.We can see that the metric of a Schwarzschild black hole in harmonic coordinates is different in form from the one in radiation-gauge coordinates,due to the difference between the harmonic and radiation gauges.

    For calculating the gravitational deflection of relativistic massive particles up to the 4PM order,we only need the weak-field form of the radiation-gauge metric (i.e.,Eq.(2)),which can be expanded in the post-Minkowskian approximation[22]as follows:

    whereδijis the Kronecker symbol.The inverse metric up to the 3PM order is also needed:

    2.2 Geodesic Equations of Test Particles

    For simplicity,we consider the propagation of test particles which are confined to the equatorial plane (Z=?/?Z=0)of the gravitational source.Based on Eqs.(4)–(9),we can obtain the nonvanishing Christoffel symbols,which are given in Appendix A.Thus,we can get the explicit forms of the equations of motion of test particles up to the 4PM order as follows:

    where a dot denotes the derivative with respect to the parameterpwhich describes the trajectory,[4]andhas been assumed to be of the order~(M/R),as done in Ref.[10].Note that Eqs.(10)–(12) denote respectively thet,X,andY-components of geodesic equations and that the motion is restricted to the equatorial plane.In addition,it can be seen that the analytical forms of the equations of motion of test particles in radiation gauge(i.e.,Eqs.(10)?(12)) are different from that in harmonic coordinates[10]for the Schwarzschild case.Actually,one can also obtain Eqs.(10)?(12) via the Euler-Lagrange method,as shown in Appendix B.

    3 Fourth-order Schwarzschild Deflection of Relativistic Massive Particles in Radiation Gauge

    Let us consider the gravitational deflection of a massive particle caused by a Schwarzschild source in radiation gauge.The schematic diagram for the propagation of a test particle is given in Fig.1.As done in Ref.[11],we assume the spatial coordinates of the source (denoted byA) and the detector (denoted byB) to be (XA,YA,0)and (XB,YB,0) respectively,withXA ??b,XB ?b,andYA ≈?b.Here,bis the impact parameter.The red line denotes the path of a test particle propagating fromX → ?∞with a relativistic initial velocityw|X→?∞(≈w|X→XA) =we1(0

    Fig.1 (Color online) Schematic diagram for the gravitational deflection of a test particle due to a Schwarzschild source in radiation gauge.The gravitational deflection is greatly exaggerated to distinguish between the perturbed and unperturbed (dashed horizontal line) paths.

    The gravitational deflection angle of a test particle propagating from the source to the detector is defined as

    We assume the trajectory parameterpto have the dimension of length,[4]and adopt the iterative technique proposed in Ref.[11]to derive the gravitational deflection up to the 4PM order.

    First,Eqs.(10)–(12) up to the 0PM order yield

    where the boundary conditions,andhave been employed.Notice that Eqs.(14)-(16)represent respectively the unperturbed forms of,,andwithout the existence of gravitational fields.Equations(15)?(16)result in a 0PM parameter transformation and the 0PM form ofY:

    where the boundary conditionY|p→?∞=Y|X→?∞=?bhas been adopted.Note that Eq.(18) denotes the unperturbed form of theYcoordinate of the test particle when there is no gravity.Based on Eq.(17),we then substitute Eqs.(14)?(16) into Eqs.(10)?(12) and integrate the latter equations overpto obtain

    With the help of Eqs.(17) and (18),we integrate Eq.(21) overpand have

    Equations (19)?(22) indicate that the first-order perturbations of the gravitational field on the analytical forms ofandYhave been considered.In addition,Eq.(20) yields the 1PM form of the parameter transformation

    where the first-order perturbation of the gravitational field has been included.

    Repeating the similar procedures,we take the second and third-order perturbations of the gravitational field into account,and thus obtain the explicit forms up to the 3PM order forand the parameter transformation as follows:

    We finally substitute Eqs.(24)?(28) into the integration of Eq.(12) overpand get the explicit form ofup to the 4PM order

    Hence,the 4PM gravitational deflection angle of a relativistic massive particle due to a Schwarzschild black hole in radiation gauge can be achieved by substituting Eqs.(25) and (29) into Eq.(13) as follows:

    where the conditionsXA ??bandXB ?bhave been used.

    It is found that when the fourth-order contribution is dropped,Eq.(30) matches well with the result for the Schwarzschild deflection angle of a relativistic massive particle given in Ref.[3],which is

    Up to the 2PM order,Eq.(30) is also consistent with the results presented in Refs.[11?14] in the framework of general relativity.Moreover,for the case ofw=c=1,Eq.(30) can be simplified to the 4PM deflection angle of light:[23]

    Finally,it should be pointed out that the equations of motion and detailed processes for calculating the Schwarzschild deflection of test particles including light in radiation gauge are different from that in harmonic gauge[11]in form.However,we can see that the gravitational deflection angle of a relativistic test particle caused by a Schwarzschild black hole is independent on the concrete gauges used in the derivation,such as the radiation gauge here or the harmonic gauge in Ref.[11].Since different gauge leads to different coordinates for a given geometry,we actually verify further that the gravitational deflection angle of a test particle is independent on concrete coordinates,including the radiationgauge coordinates.[15?16]

    4 Summary

    In this work,we have applied an iterative technique to deriving the equatorial deflection of a relativistic massive particle up to the fourth post-Minkowskian order caused by a Schwarzschild black hole in radiation gauge.The fourth-order contribution to the Schwarzschild deflection angle of the massive particle is obtained for the first time.The resulting bending angle is consistent with that in Ref.[3] when the fourth-order contribution is dropped,and that in Ref.[23] for the case of light.Our result might be helpful for future high-accuracy observations.

    Appendix A Nonvanishing Components of Christoffel Symbols

    The nonvanishing components of the Christoffel symbol can be derived directly as follows:

    Appendix B 4PM Geodesic Equations Based on the Euler-Lagrange Method

    The Lagrangian function is defined as:[4]

    which satisfies the Euler-Lagrange equation

    where a dot denotes the derivative with respect top.

    For test particles propagating in the equational plane,considering Eqs.(4)?(6) and substituting Eq.(A11) into Eq.(A12),we can derive the nonzero components of the geodesic equations up to the 4PM order as follows:

    Now we adopt an iterative technique to calculate the explicit forms up to the 3PM order forandin Eqs.(A14)?(A15),respectively.First,Eqs.(A14) and (A15) up to the 1PM order yield respectively

    We then substitute Eqs.(A17) and (A16) into Eqs.(A14) and (A15),respectively,and get the explicit forms ofandup to the 2PM order

    Similarly,by plugging Eqs.(A19) and (A18) into Eqs.(A14) and (A15) respectively,we obtain

    Finally,the explicit forms of theX- andY-components of the geodesic equations up to the 4PM order can be computed on the basis of Eqs.(A21) and (A20) respectively as follows:

    It can be seen that Eqs.(A13),(A22) and (A23) are the same as Eqs.(10)?(12) given above.

    少妇丰满av| 亚洲 欧美 日韩 在线 免费| 黄色配什么色好看| 99久久九九国产精品国产免费| 欧美激情久久久久久爽电影| 麻豆成人av在线观看| 18+在线观看网站| 一本综合久久免费| 亚洲av二区三区四区| 永久网站在线| 大型黄色视频在线免费观看| 日本与韩国留学比较| 亚洲精品日韩av片在线观看| 久久婷婷人人爽人人干人人爱| 久久久成人免费电影| 亚洲av免费在线观看| 最近视频中文字幕2019在线8| а√天堂www在线а√下载| 亚洲性夜色夜夜综合| 久久久久久国产a免费观看| 国产精品女同一区二区软件 | 日本免费一区二区三区高清不卡| 午夜福利在线观看免费完整高清在 | 精品久久久久久成人av| 国产 一区 欧美 日韩| 看片在线看免费视频| 国产精品不卡视频一区二区 | 国产黄色小视频在线观看| 欧美黑人巨大hd| 久9热在线精品视频| 国产麻豆成人av免费视频| 国产亚洲av嫩草精品影院| 国产精品美女特级片免费视频播放器| 欧美中文日本在线观看视频| 别揉我奶头 嗯啊视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美一级a爱片免费观看看| 免费av观看视频| 人妻制服诱惑在线中文字幕| 精品不卡国产一区二区三区| 午夜福利高清视频| eeuss影院久久| 精品乱码久久久久久99久播| 亚洲熟妇中文字幕五十中出| 久久久久久大精品| 女人十人毛片免费观看3o分钟| 久久九九热精品免费| 欧美色视频一区免费| 简卡轻食公司| 老司机午夜福利在线观看视频| 精品熟女少妇八av免费久了| 99久久成人亚洲精品观看| 国产精品亚洲美女久久久| 欧美不卡视频在线免费观看| 亚洲激情在线av| 成人无遮挡网站| 亚洲美女搞黄在线观看 | 可以在线观看毛片的网站| 国产精品久久久久久久电影| 亚洲,欧美精品.| 国产精华一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 久99久视频精品免费| 国产av麻豆久久久久久久| 91久久精品电影网| 国产欧美日韩精品亚洲av| 亚洲av电影在线进入| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品 | www.www免费av| x7x7x7水蜜桃| 老师上课跳d突然被开到最大视频| 大陆偷拍与自拍| 日韩大片免费观看网站| 乱系列少妇在线播放| 可以在线观看毛片的网站| 国产乱人视频| 丰满乱子伦码专区| 如何舔出高潮| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 人妻 亚洲 视频| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 国产视频内射| 久久久久久久久久成人| 日韩伦理黄色片| 亚洲精品影视一区二区三区av| 欧美成人午夜免费资源| 午夜福利网站1000一区二区三区| 一级毛片电影观看| a级毛色黄片| 国产探花极品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 最近最新中文字幕大全电影3| 全区人妻精品视频| 国产亚洲最大av| 亚洲欧美日韩另类电影网站 | 国产精品.久久久| 26uuu在线亚洲综合色| 亚洲高清免费不卡视频| 在线观看一区二区三区激情| 婷婷色麻豆天堂久久| 综合色av麻豆| 亚洲不卡免费看| 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久 | 九九在线视频观看精品| 观看美女的网站| 干丝袜人妻中文字幕| 久久精品国产亚洲av涩爱| 成人毛片a级毛片在线播放| 免费观看a级毛片全部| 一级片'在线观看视频| 中国国产av一级| 2021少妇久久久久久久久久久| 午夜精品国产一区二区电影 | 男人舔奶头视频| 国产精品一及| 久久精品久久精品一区二区三区| 国产精品99久久99久久久不卡 | av在线app专区| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 中国国产av一级| 国产视频内射| 老司机影院毛片| av又黄又爽大尺度在线免费看| 下体分泌物呈黄色| 国产探花极品一区二区| 一级片'在线观看视频| 99热6这里只有精品| 国产毛片在线视频| 国产精品秋霞免费鲁丝片| 亚洲四区av| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 午夜免费鲁丝| 日本三级黄在线观看| 精品熟女少妇av免费看| 国产精品女同一区二区软件| 日本一本二区三区精品| 午夜福利网站1000一区二区三区| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| 亚洲天堂国产精品一区在线| 亚洲精品,欧美精品| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 久久精品国产自在天天线| 一区二区三区免费毛片| 欧美日本视频| 国产精品一及| 免费黄色在线免费观看| 老司机影院毛片| 国产黄a三级三级三级人| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 国国产精品蜜臀av免费| 久久久久久久大尺度免费视频| 大陆偷拍与自拍| 久久久久久国产a免费观看| 美女视频免费永久观看网站| 两个人的视频大全免费| 天美传媒精品一区二区| 婷婷色av中文字幕| 国产毛片在线视频| 自拍偷自拍亚洲精品老妇| 精品午夜福利在线看| 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 亚洲欧美一区二区三区黑人 | 成人国产av品久久久| 免费在线观看成人毛片| 香蕉精品网在线| 91狼人影院| 日韩av在线免费看完整版不卡| 高清av免费在线| 99久国产av精品国产电影| 内地一区二区视频在线| 91精品一卡2卡3卡4卡| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 在线观看免费高清a一片| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 国产黄a三级三级三级人| 色婷婷久久久亚洲欧美| 国产综合懂色| 熟女电影av网| av免费在线看不卡| 亚洲高清免费不卡视频| 欧美高清性xxxxhd video| 看免费成人av毛片| 黄片wwwwww| 欧美激情在线99| 熟妇人妻不卡中文字幕| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 日韩成人av中文字幕在线观看| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 亚洲婷婷狠狠爱综合网| 日韩国内少妇激情av| 亚洲精品乱久久久久久| 干丝袜人妻中文字幕| 免费观看在线日韩| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 免费观看a级毛片全部| 五月天丁香电影| 国产探花极品一区二区| 狂野欧美激情性xxxx在线观看| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区| 午夜激情久久久久久久| 99久久人妻综合| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 欧美日韩亚洲高清精品| 亚洲一区二区三区欧美精品 | 搞女人的毛片| 欧美日韩精品成人综合77777| 久久久色成人| av福利片在线观看| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 你懂的网址亚洲精品在线观看| 爱豆传媒免费全集在线观看| 亚洲成人久久爱视频| 91狼人影院| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 性色avwww在线观看| 成人综合一区亚洲| 国产黄频视频在线观看| 一区二区三区免费毛片| 中文字幕人妻熟人妻熟丝袜美| 精品国产露脸久久av麻豆| 少妇的逼好多水| 亚洲不卡免费看| 只有这里有精品99| 久久精品夜色国产| 熟女电影av网| 成人无遮挡网站| 日本熟妇午夜| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 高清毛片免费看| 中文欧美无线码| 国产片特级美女逼逼视频| 黄色日韩在线| 国产综合精华液| 男人添女人高潮全过程视频| 亚洲av免费在线观看| 99热这里只有精品一区| 久久国产乱子免费精品| 国产精品国产三级国产专区5o| 三级国产精品欧美在线观看| 精品久久久精品久久久| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 免费看光身美女| 国产男女内射视频| 在线观看一区二区三区激情| 中国三级夫妇交换| 亚洲天堂国产精品一区在线| 久久久成人免费电影| 91精品国产九色| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃 | 国产午夜福利久久久久久| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 久久精品国产自在天天线| 麻豆乱淫一区二区| 日日啪夜夜撸| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 国产精品一区www在线观看| av.在线天堂| 美女内射精品一级片tv| 免费大片黄手机在线观看| 搡老乐熟女国产| 成人欧美大片| 国产亚洲午夜精品一区二区久久 | 日韩不卡一区二区三区视频在线| 成年人午夜在线观看视频| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 在现免费观看毛片| 欧美人与善性xxx| 久久久久久国产a免费观看| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 日韩中字成人| 天堂俺去俺来也www色官网| 午夜福利高清视频| 国产精品一区www在线观看| 国产午夜福利久久久久久| 久久午夜福利片| 欧美激情久久久久久爽电影| 欧美zozozo另类| 搞女人的毛片| 69人妻影院| 亚洲欧美成人精品一区二区| 听说在线观看完整版免费高清| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 又黄又爽又刺激的免费视频.| 久久久久精品久久久久真实原创| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 美女主播在线视频| 国产91av在线免费观看| 搡女人真爽免费视频火全软件| 极品教师在线视频| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区| 国产av码专区亚洲av| 久久午夜福利片| h日本视频在线播放| 嫩草影院新地址| 欧美日本视频| 欧美性猛交╳xxx乱大交人| 人妻 亚洲 视频| 国产成人精品婷婷| 日韩一区二区视频免费看| 精品午夜福利在线看| 男女那种视频在线观看| 一区二区av电影网| 一级黄片播放器| 欧美区成人在线视频| 69av精品久久久久久| 人妻 亚洲 视频| 精品久久久久久电影网| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 国产乱来视频区| 国产极品天堂在线| 51国产日韩欧美| 在线观看av片永久免费下载| 久久人人爽人人片av| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站 | 国产精品成人在线| 如何舔出高潮| 亚洲怡红院男人天堂| 亚洲av在线观看美女高潮| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产a三级三级三级| 日韩伦理黄色片| 国产爽快片一区二区三区| 视频区图区小说| 内地一区二区视频在线| 高清日韩中文字幕在线| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91 | 熟妇人妻不卡中文字幕| 久久久久久久久大av| 老师上课跳d突然被开到最大视频| av免费在线看不卡| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| av专区在线播放| 久久久久久国产a免费观看| 国产在线男女| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 狂野欧美激情性xxxx在线观看| 91精品一卡2卡3卡4卡| 欧美性感艳星| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 亚洲成色77777| 亚洲婷婷狠狠爱综合网| 制服丝袜香蕉在线| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 久久久久国产精品人妻一区二区| 黄片无遮挡物在线观看| 熟妇人妻不卡中文字幕| 丰满人妻一区二区三区视频av| 最近最新中文字幕大全电影3| xxx大片免费视频| 欧美97在线视频| 少妇的逼好多水| 波多野结衣巨乳人妻| 精品一区在线观看国产| 国产成人freesex在线| 一区二区三区四区激情视频| 在线a可以看的网站| 美女cb高潮喷水在线观看| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产| 精品久久国产蜜桃| 亚洲无线观看免费| av在线播放精品| 一个人看的www免费观看视频| 精品久久久久久久末码| 国产午夜福利久久久久久| 下体分泌物呈黄色| 日本与韩国留学比较| 嘟嘟电影网在线观看| 精品国产乱码久久久久久小说| 成年av动漫网址| 久久99热这里只有精品18| 极品少妇高潮喷水抽搐| 亚洲av免费在线观看| av专区在线播放| 久久影院123| 亚洲在久久综合| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 禁无遮挡网站| 男女边摸边吃奶| 欧美3d第一页| 精品一区二区免费观看| 亚洲av成人精品一区久久| 国国产精品蜜臀av免费| 国产探花极品一区二区| 午夜老司机福利剧场| 午夜福利在线观看免费完整高清在| 熟女人妻精品中文字幕| 哪个播放器可以免费观看大片| 高清毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 午夜免费观看性视频| 欧美性感艳星| 国产精品一区二区在线观看99| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 亚洲人成网站在线播| 22中文网久久字幕| 色视频www国产| 久久精品久久久久久噜噜老黄| 亚洲人成网站在线播| 亚洲精品乱久久久久久| 欧美高清成人免费视频www| av在线播放精品| 插逼视频在线观看| 人妻少妇偷人精品九色| 国产午夜精品久久久久久一区二区三区| 中文字幕免费在线视频6| 一本色道久久久久久精品综合| 精品视频人人做人人爽| 一级毛片久久久久久久久女| 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 亚洲成人精品中文字幕电影| 别揉我奶头 嗯啊视频| 又粗又硬又长又爽又黄的视频| 熟女av电影| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久电影| 久久人人爽人人片av| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 亚洲精品国产成人久久av| 亚洲国产日韩一区二区| 亚洲av免费高清在线观看| 午夜福利在线在线| 亚洲图色成人| 九色成人免费人妻av| 国产成人一区二区在线| 能在线免费看毛片的网站| 精品人妻偷拍中文字幕| 亚洲精品国产av蜜桃| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 丰满少妇做爰视频| 国产黄色免费在线视频| 99久久人妻综合| 麻豆国产97在线/欧美| 不卡视频在线观看欧美| 国内精品宾馆在线| 中文欧美无线码| videos熟女内射| 丰满乱子伦码专区| 亚洲成色77777| 午夜爱爱视频在线播放| 日韩伦理黄色片| 精品一区二区三卡| 免费观看性生交大片5| 成年女人看的毛片在线观看| 色视频www国产| 国产精品一及| 中国美白少妇内射xxxbb| 91精品伊人久久大香线蕉| 永久免费av网站大全| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站| 精品一区二区三区视频在线| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 色网站视频免费| 能在线免费看毛片的网站| 插逼视频在线观看| 午夜老司机福利剧场| 大陆偷拍与自拍| 一区二区三区免费毛片| 老司机影院毛片| 97热精品久久久久久| 一个人看的www免费观看视频| 在线观看免费高清a一片| 色综合色国产| 久久99热这里只频精品6学生| 欧美人与善性xxx| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 久久影院123| 久久亚洲国产成人精品v| 舔av片在线| 尾随美女入室| 青春草亚洲视频在线观看| 亚洲最大成人中文| 国精品久久久久久国模美| 成人亚洲精品一区在线观看 | 国产精品三级大全| 成年版毛片免费区| 午夜爱爱视频在线播放| 亚洲欧美成人综合另类久久久| a级一级毛片免费在线观看| 天天躁日日操中文字幕| 日韩一本色道免费dvd| 久久精品国产a三级三级三级| 综合色av麻豆| 插逼视频在线观看| 又爽又黄无遮挡网站| 精品午夜福利在线看| 看免费成人av毛片| 熟女人妻精品中文字幕| 99久久精品热视频| 日日摸夜夜添夜夜添av毛片| 国产亚洲精品久久久com| 欧美日韩视频精品一区| 男女无遮挡免费网站观看| 91久久精品国产一区二区成人| 日韩av不卡免费在线播放| 高清在线视频一区二区三区| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在| 香蕉精品网在线| 色哟哟·www| av福利片在线观看| 色视频www国产| 777米奇影视久久| 99久久九九国产精品国产免费| 最近的中文字幕免费完整| 亚洲av.av天堂| 内射极品少妇av片p| 国产精品久久久久久精品电影小说 | 一区二区av电影网| kizo精华| 高清欧美精品videossex| 精华霜和精华液先用哪个| 99久久精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品专区久久| 一级爰片在线观看| 一区二区三区四区激情视频| 91午夜精品亚洲一区二区三区| 国产亚洲av片在线观看秒播厂| 久久99热这里只频精品6学生| 久久热精品热| 国产大屁股一区二区在线视频| 亚洲精品久久午夜乱码| 在线观看av片永久免费下载| 乱码一卡2卡4卡精品| 日韩成人av中文字幕在线观看| 亚洲av欧美aⅴ国产| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 边亲边吃奶的免费视频| 伊人久久国产一区二区| av在线天堂中文字幕| 成人毛片60女人毛片免费| 亚洲图色成人| 色视频在线一区二区三区| av.在线天堂| 成年av动漫网址| 18禁在线播放成人免费| 交换朋友夫妻互换小说| 尤物成人国产欧美一区二区三区| 国产综合精华液| 国产乱人视频| 国产一区有黄有色的免费视频| 国精品久久久久久国模美|