• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topology-optimization of Lens Contact Support Structures: PV Value as An Optimization Objective

    2019-11-06 07:54:42LIYimangZHOUZiyunLIUYongming
    發(fā)光學(xué)報(bào) 2019年10期

    LI Yi-mang, ZHOU Zi-yun, LIU Yong-ming

    (1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; 2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China)

    Abstract: The contact position, contact area, contact stress and flexibility of single lens support structure in an optical system are important influencing factors of the system’s imaging quality. Topology optimization of the single-lens contact support structure is carried out using the aberration index PV value as the optimization objective to reduce geometric aberration aberration in the single mirror caused by gravitational force. We first establish the contact topology optimization model, then use a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify the model. The aberration index PV value of the lens is described as a function of lens deformation; thus, the value serves as a functional objective of the topology optimization model. We use the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. The optimal solution of the topology optimization model can be solved via MMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements is defined by the optimal solution of the design variables. We found that the PV value of the lens can be reduced by 14% and the lens surface RMS value by 13.8% after applying the proposed method. We also tested the lens PV value and RMS value on an experimental platform supported by the optimal contact support structure. The surface of the plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values by 74.3% and 38.9%. To this effect, the optimal contact support structure effectively improves the precision of the single lens support and demonstrates significant potential for practical application.

    Key words: topology optimization; optomechanics; mirrors analysis; optical machanical structure

    1 Introduction

    Optics is a classic discipline as well as a very popular modern research subject[1-3]. Optics helps us to better understand the environment of outer space and explore our own world down to the nanometer level. Advancements in optical technology have brought about increasingly stringent requirements for the precision of single lenses[4]. For example, consider the 193 nm lithography projector which has objective accuracy of 1-2 nm RMS; its components must be engineered with remarkable precision to achieve such accuracy[5-6].

    The precision single lens and its supporting technology play an important role in the optical system. However, a general lack of effective support structure designs yet hinders the further development of precision single lenses. The purpose of structural design is to select those design variables which most effectively optimize the performance of the structure, so the structural design problem can be attributed to an optimization problem[7-9]. Commonly used structural optimization techniques include size optimization, shape optimization, free size optimization, free shape optimization, topographical optimization, and topological optimization. Topological optimization is conducted to identify the optimal topology of the structure at the conceptual design stage; it is significantly more efficient than the traditional shape or size optimization processes[10-13].

    Topology optimization design was the focus of the present study. We first established a contact topology optimization model, then used a linear elastic structure in unilateral contact with a rigid support as-modeled by Signorini’s contact conditions as an example to verify its correctness. Based on the model, the aberration index PV value of the lens can be described as a function of the lens deformation. We also used the SIMP method to describe the topology optimization design variables, and the augmented Lagrange multiplier method to solve the contact condition. We obtained the optimal solution to the topology optimization modelviaMMA optimization algorithm. The optimal topological configuration of supporting structures that satisfy geometric aberration requirements can be defined by the optimal solution of topological optimization design variables. We analyzed the topological optimization results in detail, then established an experimental platform for the sake of further assessment. The lens PV value and RMS value were tested as-supported by the optimal contact support structure[22-27].

    This paper is organized as follows. The precision single lens and relevant supporting technology are discussed in Section 2. In Section 3, the contact topology optimization model and PV minimum topology optimization model are established. Section 4 presents our simulation results. Section 5 describes our experimental setup for precision single lens support and the results of our model verification.

    2 Precision Single Lens and Supporting Technology

    The objective lens of a 193 nm mask alignment system is shown in Fig.1. It is mainly composed of a lithography mask, silicon wafer, and projection lithography lenses. A light beam is irradiated onto the silicon wafer through the projection lithography lenses.

    The increasing integration of integrated circuit devices and device operating speed have created increasingly stringent requirements for manufacturing lithography projector projection objective lens resolution. Current projection lithography projection objectives include not only the application of large numerical apertures and short wavelength technologies, but also the use of improved lithography resolution wavefront engineering technology to ultimately enhance the lithography resolution. Aberration in the lithographic projection lens markedly influences the quality of the lithography. By design, the entire objective lens from 20 to 30 lenses has system wavefront requirements less than 10 nm. After tolerance distribution is established to meet the design accuracy requirements (lens surface of 1-2 nm), there are very high demands for optical components of the processing and objective lens support.

    Fig.1 Objective lens of 193 nm mask alignment system

    3 Optimization Mode Topology

    Different boundary conditions correspond to different topologies and thus different topology optimization processes. Structural topological optimization must align with the actual physical boundary conditions. In a typical light machine, the metal support structure contacts the optical components which are fixed in the mirror. The characteristics of contact problems in this design include unequal inequality constraints with strong nonlinearity. It is difficult to solve contacting nonlinear topology optimization problems. To this effect, the topological optimization problem of contact nonlinear coupling structures and the design of optical machines is very significant in terms of practical application.

    The equilibrium equation of the contact nonlinear finite element discrete form based on the Lagrange multiplier method can be written as follows:

    (1)

    [Kcλ]=[KcU]T,

    (2)

    (3)

    (4)

    whereNcis the interpolation of basis functions and the unit vector matrix,θis the overall coordinates to the local coordinate transformation matrix, [Kcλ] is the equivalent node contact force corresponding to the stiffness matrix, [KcU] is the displacement constraint stiffness matrix,Uis the displacement solution vector,PNis the Lagrange multiplier,Ris the equivalent node load, andgcis the contact gap.

    (5)

    You can read more about the history of the Christmas Tree, which was in use during Andersen s lifetime, on the Christmas Tree Farm Network and The Christmas Archives.

    A contact topology optimization model with optical aberration PV value as the target is as follows:

    (6)

    (7)

    (8)

    (9)

    Fig.2 Program flow chart

    We established the interpolation model using the improved SIMP method, the advantages of which include simple modeling, convenient solution, high computational efficiency, versatility, and portability. The interpolation model is as follows:

    (10)

    Here, we use the Lagrange multiplier method to construct the constrained optimization model. The Lagrange function is:

    (11)

    The derivative of the Lagrange function for optimizing the design variables is:

    (12)

    by Newton-Ranhson iteration, the following expression holds when the structural balance reaches convergence:

    (13)

    The tangent stiffness matrix of the solution can be rewritten as:

    (14)

    The derivative of the Lagrange function for optimizing the design variables is reduced to:

    (15)

    There is numerical instability inherent to the model above, but processing for sensitivity, density, and filtering method can effectively prevent it.

    4 Simulation and Results

    We next conducted a series of simulations to validate the model established above. First, we built a two-dimensional nonlinear topological optimization model with static strain energy as shown in Fig.3, where white areas are the optimization area and black areas are the rigid support section. The design area was optimized with boundary 1 as the contact boundary, rolling support at the lower left end, vertical downward force at the lower right end, size of 10 000 N, and the fixed area is marked in black. The Young’s modulus 2.1 e5 MPa and Poisson’s ratio is 0.3. The objective function is the minimum static strain energy.

    In Fig.4, the red area represents the entity,the blue area has no structure, the intermediate transition area is the false material, and the material is processed. It was optimized using a quadrilateral mesh with 10 501 grids. The results gathered using this model are consistent with the results of a smooth contact conditions model taken from the literature [14]; the results are shown in Fig.4(a) and Fig.4(b). The proposed non-smooth inequality contact condition model is indeed correct and reliable.

    Fig.3 Design area and boundary conditions

    Fig.4 (a) Topological optimization results based on non-smooth inequality contact conditions. (b) Topological optimization results based on smooth equation contact conditions.

    We next took the plane mirror model shown in Fig.5 as an example to establish the contact topology optimization model. In the figure, the red area is the optimized design area, boundary 1 is fixed, and the mirror is affected by gravity. The objective function is the minimum absolute value of thez-direction of the center point of the plane mirror. We analyzed the initial structure to obtain the negativez-direction of the center point of the plane mirror with the smallest possible objective function,Vmin=0.7,p=4. We used a hexahedral mesh and 131 100 triangular prism grids.

    Fig.5 Topology optimization model of optical coupling force with nonlinear contacted for plane mirror

    The initial value of the objective function was 35.3 nm; after optimization, it was 16.9 nm. The objective function, the absolute value of thez-direction of the center of the plane mirror, was reduced by 52.12% and presented significant optimization effect. The iterative process graph is shown in Fig.6.

    The absolute value of thez-direction displacement of the center point of the planar mirror was reduced by 62.57%, the PV value was reduced by 14%, and the RMS value of the face was reduced by 13.8% in our experiment. After the optimization process and the accompanying change in volume fraction, we found that a larger volume fraction yields a smaller objective function, PV value, and RMS value.

    Fig.6 Iterative process graph

    5 Experiments and Results

    5.1 Experiment Setup

    The experiment system for the precision single lens support is designed as Fig.7. A laser beam (650 nm wavelength, continuous irradiance mode semiconductor) propagates through a standard mirror, the designed precision single lens, reflector lens, and then is reflected and focused on the detector of interferometer(Zygo Corporation, diameter 102 mm, system resolution 1 024×1 024). The precision single lens is placed on the designed support structure. This experimental setup can be measured to optimize the design of the support structure after the precision single lens accuracy.

    Fig.7 Experiment setup for the precision single lens support

    5.2 Results and Analysis

    The results of theN-step rotation averaging method are shown in Fig.8. Fig.8(a) and Fig.8(c) are the results after structural optimization while Fig.8(b) and Fig.8(d) are the results before optimization. The plane mirror surface PV values before optimization were 32.685 nm and 34.964 nm, and the RMS values were 4.976 nm and 6.015 nm, respectively. The suplane mirror surface PV values after optimization were 12.958 nm and 19.794 nm, and the RMS values were 1.279 nm and 3.676 nm, respectively. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9%. The detailed measurement results are listed in Tab.1.

    Fig.8 Interferometer measurement results for precision single lens

    Tab.1 Before and after structural optimization: result analysis

    6 Conclusion

    This paper presented a novel topology optimization design for precision single lens support. A contact topology optimization model with optical aberration PV value as target was established, then used to design and optimize a high precision single lens. An experimental platform was set up and used to further analyze the effectiveness of the proposed model. The plane mirror surface PV value and RMS value were obtained after applying the proposed supporting structure. The plane mirror surface PV values decreased by 60.4% and 42.9%, and the RMS values decreased by 74.3% and 38.9% after structural optimization. These results suggest that the proposed method has very strong potential for practical application.

    Acknowledgments: The authors would like to thank Tao Wang for the assistance rendered with the mechanical adjustment stage and appreciate useful discussions with Hai Yu of CIOMP.

    啦啦啦韩国在线观看视频| 深爱激情五月婷婷| 欧美三级亚洲精品| 少妇高潮的动态图| 久久久久国产精品人妻aⅴ院| 日韩大尺度精品在线看网址| 亚洲国产精品国产精品| 午夜精品国产一区二区电影 | 国产精品爽爽va在线观看网站| 色哟哟·www| 久久中文看片网| 亚洲自偷自拍三级| 亚洲18禁久久av| 亚州av有码| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影| 最新中文字幕久久久久| 色噜噜av男人的天堂激情| 成人三级黄色视频| 精品久久久久久久久亚洲| www日本黄色视频网| 一区福利在线观看| 一区福利在线观看| 成人国产麻豆网| 久久久久久伊人网av| 婷婷六月久久综合丁香| 日韩欧美精品v在线| 久久久午夜欧美精品| 亚洲欧美日韩高清在线视频| av黄色大香蕉| 午夜久久久久精精品| 最近最新中文字幕大全电影3| 国产综合懂色| 欧美一级a爱片免费观看看| 国产av麻豆久久久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲在线自拍视频| 亚洲精华国产精华液的使用体验 | 国产伦在线观看视频一区| 国产午夜精品论理片| 中文资源天堂在线| 久久鲁丝午夜福利片| 一级黄色大片毛片| 亚洲第一区二区三区不卡| 中文字幕av成人在线电影| 国产亚洲精品av在线| 久久亚洲国产成人精品v| 亚洲欧美成人精品一区二区| 久久鲁丝午夜福利片| 国产视频一区二区在线看| 亚洲成人av在线免费| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 日韩欧美 国产精品| 国产精品久久久久久亚洲av鲁大| 国产av在哪里看| 搡女人真爽免费视频火全软件 | videossex国产| 美女cb高潮喷水在线观看| 国产片特级美女逼逼视频| 国产欧美日韩一区二区精品| av天堂在线播放| 一区二区三区免费毛片| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 国产精品亚洲一级av第二区| 国产探花在线观看一区二区| 亚洲人成网站高清观看| 国产伦精品一区二区三区四那| 国产亚洲精品综合一区在线观看| 免费看光身美女| 九九在线视频观看精品| 中文字幕av成人在线电影| av在线观看视频网站免费| 国产高清激情床上av| 亚洲熟妇中文字幕五十中出| 69人妻影院| 久久九九热精品免费| 熟女人妻精品中文字幕| 中出人妻视频一区二区| av黄色大香蕉| 看黄色毛片网站| 一个人看的www免费观看视频| 寂寞人妻少妇视频99o| av天堂在线播放| 免费av毛片视频| or卡值多少钱| 嫩草影院入口| 国产亚洲精品久久久com| av卡一久久| 男女边吃奶边做爰视频| 国产高清激情床上av| 午夜福利18| 精品不卡国产一区二区三区| 亚洲三级黄色毛片| 国产69精品久久久久777片| av视频在线观看入口| 日日撸夜夜添| 蜜臀久久99精品久久宅男| 亚洲经典国产精华液单| 国产亚洲精品综合一区在线观看| 国内久久婷婷六月综合欲色啪| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久精品电影| 国产精品综合久久久久久久免费| 国产免费男女视频| 国产乱人偷精品视频| 在现免费观看毛片| 久久6这里有精品| 97超视频在线观看视频| 18禁黄网站禁片免费观看直播| 国产精品一及| 亚洲精品国产成人久久av| 成人午夜高清在线视频| 亚洲国产精品成人久久小说 | 午夜激情福利司机影院| 精品日产1卡2卡| 观看免费一级毛片| 午夜日韩欧美国产| 国产精品1区2区在线观看.| 日韩人妻高清精品专区| 亚洲欧美日韩无卡精品| 成人鲁丝片一二三区免费| 男人狂女人下面高潮的视频| 男女那种视频在线观看| 不卡视频在线观看欧美| 亚洲欧美精品自产自拍| 2021天堂中文幕一二区在线观| 免费av毛片视频| 我要搜黄色片| 一本一本综合久久| 91精品国产九色| 午夜精品一区二区三区免费看| 午夜视频国产福利| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕 | 久久久久久久久大av| 综合色av麻豆| 99久久精品国产国产毛片| 国产亚洲欧美98| 国产av一区在线观看免费| 人人妻人人看人人澡| 欧美区成人在线视频| 欧美日韩在线观看h| 深夜精品福利| 国产黄色小视频在线观看| 久久九九热精品免费| 国产精品伦人一区二区| 99久久成人亚洲精品观看| 中文字幕久久专区| 不卡视频在线观看欧美| 精品熟女少妇av免费看| 深夜a级毛片| 99在线人妻在线中文字幕| 日日干狠狠操夜夜爽| 久99久视频精品免费| 一卡2卡三卡四卡精品乱码亚洲| 国产在线精品亚洲第一网站| 亚洲,欧美,日韩| 欧美日韩一区二区视频在线观看视频在线 | 国产日本99.免费观看| 亚洲不卡免费看| 中国美白少妇内射xxxbb| 日本黄色视频三级网站网址| 一级a爱片免费观看的视频| 日本精品一区二区三区蜜桃| 日日干狠狠操夜夜爽| 日韩 亚洲 欧美在线| 尤物成人国产欧美一区二区三区| 欧美日韩国产亚洲二区| 色综合色国产| 99久久久亚洲精品蜜臀av| 日韩精品有码人妻一区| 国产精品一及| 村上凉子中文字幕在线| 亚洲国产高清在线一区二区三| 日韩成人伦理影院| 亚洲精品乱码久久久v下载方式| 国产黄色视频一区二区在线观看 | 黄片wwwwww| av.在线天堂| 少妇熟女aⅴ在线视频| 国产色婷婷99| 亚洲图色成人| 亚洲欧美清纯卡通| 美女xxoo啪啪120秒动态图| 两个人视频免费观看高清| 久久国内精品自在自线图片| 久99久视频精品免费| 欧美另类亚洲清纯唯美| 99热这里只有是精品50| 特级一级黄色大片| 少妇高潮的动态图| 国内精品美女久久久久久| 国语自产精品视频在线第100页| 成人av一区二区三区在线看| av在线观看视频网站免费| 香蕉av资源在线| 女生性感内裤真人,穿戴方法视频| 一区二区三区四区激情视频 | 国产成人一区二区在线| 日韩欧美 国产精品| 国产精品一及| 久久综合国产亚洲精品| 一个人观看的视频www高清免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美另类亚洲清纯唯美| 国产激情偷乱视频一区二区| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 搡女人真爽免费视频火全软件 | 少妇人妻精品综合一区二区 | 非洲黑人性xxxx精品又粗又长| 精品久久久噜噜| 看十八女毛片水多多多| 一级a爱片免费观看的视频| 中文字幕熟女人妻在线| 麻豆乱淫一区二区| 人妻丰满熟妇av一区二区三区| 22中文网久久字幕| 成年女人永久免费观看视频| 麻豆国产av国片精品| 久久99热这里只有精品18| 男女边吃奶边做爰视频| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 亚洲欧美精品自产自拍| 国产成年人精品一区二区| 午夜免费激情av| 日本一本二区三区精品| 身体一侧抽搐| 亚洲熟妇中文字幕五十中出| 最近在线观看免费完整版| 亚洲人成网站高清观看| .国产精品久久| 3wmmmm亚洲av在线观看| 嫩草影院新地址| 免费看日本二区| 搞女人的毛片| 蜜臀久久99精品久久宅男| 美女xxoo啪啪120秒动态图| 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 婷婷精品国产亚洲av| 在线观看一区二区三区| 嫩草影院新地址| 久久精品国产99精品国产亚洲性色| 伦精品一区二区三区| 久久久久久九九精品二区国产| 亚洲av美国av| 美女cb高潮喷水在线观看| 尤物成人国产欧美一区二区三区| 变态另类成人亚洲欧美熟女| 草草在线视频免费看| 69av精品久久久久久| 亚洲美女搞黄在线观看 | 日韩成人av中文字幕在线观看 | 免费看a级黄色片| 激情 狠狠 欧美| 久久精品夜色国产| 久久久久久久久中文| 日本色播在线视频| 91在线精品国自产拍蜜月| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 青春草视频在线免费观看| 女同久久另类99精品国产91| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 午夜免费男女啪啪视频观看 | 麻豆精品久久久久久蜜桃| 搞女人的毛片| 日韩制服骚丝袜av| 亚洲va在线va天堂va国产| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 欧美极品一区二区三区四区| 国产白丝娇喘喷水9色精品| 免费高清视频大片| 麻豆国产av国片精品| 国产精品野战在线观看| 欧美中文日本在线观看视频| 最近手机中文字幕大全| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 一区二区三区高清视频在线| 色综合站精品国产| 亚洲精品国产av成人精品 | 大香蕉久久网| 色综合色国产| 成人国产麻豆网| 插阴视频在线观看视频| 日韩大尺度精品在线看网址| 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 51国产日韩欧美| 精品久久久久久久人妻蜜臀av| 日产精品乱码卡一卡2卡三| or卡值多少钱| 精品日产1卡2卡| 免费av不卡在线播放| 亚洲精品色激情综合| 国产真实乱freesex| 亚洲精华国产精华液的使用体验 | 成年女人看的毛片在线观看| 国产精品人妻久久久影院| 国产美女午夜福利| 亚洲成av人片在线播放无| www日本黄色视频网| 欧美zozozo另类| 亚洲不卡免费看| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 特大巨黑吊av在线直播| 免费无遮挡裸体视频| 免费电影在线观看免费观看| 亚洲av免费高清在线观看| 观看免费一级毛片| 国内精品美女久久久久久| 色哟哟·www| 老司机午夜福利在线观看视频| 国产毛片a区久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品电影一区二区三区| 最好的美女福利视频网| 国产精品久久久久久av不卡| 最近最新中文字幕大全电影3| 久久热精品热| 男女之事视频高清在线观看| 观看免费一级毛片| 嫩草影视91久久| 亚洲国产精品成人综合色| 日本一本二区三区精品| 久久久午夜欧美精品| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆 | 少妇的逼好多水| 桃色一区二区三区在线观看| 波野结衣二区三区在线| 国产成人福利小说| 成人鲁丝片一二三区免费| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 观看免费一级毛片| ponron亚洲| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 国产综合懂色| 神马国产精品三级电影在线观看| 久久韩国三级中文字幕| 国产精品电影一区二区三区| 亚洲美女黄片视频| 中国美女看黄片| av专区在线播放| 3wmmmm亚洲av在线观看| 男人和女人高潮做爰伦理| 在线播放无遮挡| 免费av毛片视频| 三级毛片av免费| 99久久九九国产精品国产免费| 国产精品人妻久久久影院| 成年免费大片在线观看| 小说图片视频综合网站| 国产一区二区亚洲精品在线观看| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 精品乱码久久久久久99久播| 亚洲人与动物交配视频| 大香蕉久久网| 亚洲av美国av| 国产欧美日韩一区二区精品| 国产成人一区二区在线| www.色视频.com| 亚洲成人久久爱视频| 网址你懂的国产日韩在线| 哪里可以看免费的av片| 又爽又黄无遮挡网站| .国产精品久久| 亚洲精品粉嫩美女一区| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看 | 亚洲美女视频黄频| 能在线免费观看的黄片| 两性午夜刺激爽爽歪歪视频在线观看| 国产私拍福利视频在线观看| 麻豆乱淫一区二区| 99视频精品全部免费 在线| 国产精品爽爽va在线观看网站| 久久久久久久久久久丰满| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 国产美女午夜福利| 亚洲国产精品合色在线| 亚洲国产欧洲综合997久久,| 一级黄片播放器| 国产熟女欧美一区二区| 日韩欧美免费精品| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 国内精品宾馆在线| 亚洲色图av天堂| 国产高清激情床上av| 午夜激情欧美在线| 九九在线视频观看精品| 免费大片18禁| 午夜久久久久精精品| 免费看a级黄色片| 99久国产av精品国产电影| 大香蕉久久网| 久久久久久大精品| 真实男女啪啪啪动态图| 97人妻精品一区二区三区麻豆| 国内精品宾馆在线| 亚洲国产日韩欧美精品在线观看| 亚洲美女视频黄频| 久久精品国产亚洲网站| 国产精品国产高清国产av| 国产成人福利小说| 在线播放国产精品三级| 亚洲精品日韩在线中文字幕 | 99久国产av精品国产电影| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美| 在线播放国产精品三级| 免费看a级黄色片| 亚洲四区av| 网址你懂的国产日韩在线| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 少妇熟女欧美另类| 亚洲成人久久性| 欧美日韩乱码在线| 国产亚洲欧美98| 97碰自拍视频| 国产精品女同一区二区软件| 国产人妻一区二区三区在| 免费观看人在逋| 麻豆成人午夜福利视频| 女人十人毛片免费观看3o分钟| 69av精品久久久久久| 晚上一个人看的免费电影| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影| 国产片特级美女逼逼视频| 亚洲中文日韩欧美视频| 国产男人的电影天堂91| 亚洲国产精品成人久久小说 | 免费av毛片视频| 可以在线观看的亚洲视频| 日本黄大片高清| 久久人人爽人人爽人人片va| 亚洲av免费高清在线观看| 热99re8久久精品国产| 国产av一区在线观看免费| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 如何舔出高潮| 国产熟女欧美一区二区| 亚洲无线在线观看| 天堂影院成人在线观看| 国产三级中文精品| 一夜夜www| 大又大粗又爽又黄少妇毛片口| 国产av在哪里看| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 日本在线视频免费播放| 国产男靠女视频免费网站| 国内精品宾馆在线| 搞女人的毛片| 女生性感内裤真人,穿戴方法视频| 亚洲图色成人| 午夜影院日韩av| 日本一二三区视频观看| 搞女人的毛片| 久久久精品94久久精品| 国产色爽女视频免费观看| 嫩草影视91久久| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添av毛片| 国产av不卡久久| 午夜老司机福利剧场| 国产精品嫩草影院av在线观看| 看片在线看免费视频| 亚洲欧美精品综合久久99| 日本黄大片高清| 一本一本综合久久| 婷婷亚洲欧美| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产一区二区激情短视频| 晚上一个人看的免费电影| 两个人的视频大全免费| 天天躁日日操中文字幕| 久久人妻av系列| 国产一区二区在线观看日韩| 国产精品一区www在线观看| av福利片在线观看| 亚洲av第一区精品v没综合| 日韩一区二区视频免费看| 国产精品一及| 久久久久久久久久久丰满| 男女做爰动态图高潮gif福利片| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 午夜免费男女啪啪视频观看 | 欧美成人精品欧美一级黄| 99国产极品粉嫩在线观看| 国产真实乱freesex| 精品熟女少妇av免费看| 亚洲精品影视一区二区三区av| 欧美绝顶高潮抽搐喷水| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 人人妻人人看人人澡| 男女边吃奶边做爰视频| 99热精品在线国产| 精品久久国产蜜桃| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 久久久久久伊人网av| 久久久久精品国产欧美久久久| 亚洲美女视频黄频| 亚洲第一电影网av| 一进一出好大好爽视频| 国产乱人偷精品视频| 国产一区二区在线观看日韩| 人妻久久中文字幕网| 色噜噜av男人的天堂激情| 国产精品久久久久久久久免| 俄罗斯特黄特色一大片| 黄色欧美视频在线观看| 日韩精品有码人妻一区| 禁无遮挡网站| 午夜福利在线观看免费完整高清在 | 中文字幕免费在线视频6| 国产男靠女视频免费网站| 少妇熟女欧美另类| 三级男女做爰猛烈吃奶摸视频| 亚洲高清免费不卡视频| 日本熟妇午夜| 女人十人毛片免费观看3o分钟| 日韩,欧美,国产一区二区三区 | 九九在线视频观看精品| 一本久久中文字幕| 欧美三级亚洲精品| 在线免费十八禁| 成人毛片a级毛片在线播放| 亚洲精品国产av成人精品 | 欧美zozozo另类| 黄色欧美视频在线观看| 一a级毛片在线观看| 精品人妻一区二区三区麻豆 | 国产麻豆成人av免费视频| av在线观看视频网站免费| 免费黄网站久久成人精品| 色吧在线观看| 男女那种视频在线观看| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 久久精品综合一区二区三区| 国产av一区在线观看免费| 十八禁网站免费在线| 99热这里只有是精品50| 国国产精品蜜臀av免费| 91狼人影院| 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 1024手机看黄色片| 国产av在哪里看| 亚洲av电影不卡..在线观看| 婷婷色综合大香蕉| 亚洲欧美日韩高清专用| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 国产精品一区二区性色av| 人妻少妇偷人精品九色| 欧美一区二区精品小视频在线| 最近2019中文字幕mv第一页| 午夜影院日韩av| 午夜久久久久精精品| eeuss影院久久| 亚洲不卡免费看| 国产欧美日韩精品亚洲av| a级一级毛片免费在线观看| 日本免费a在线| .国产精品久久| 可以在线观看的亚洲视频| 黄片wwwwww| 国产aⅴ精品一区二区三区波|