• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有聚集誘導(dǎo)發(fā)光特性的新型鉑(ll)金屬配合物及其光激發(fā)的自敏化氧化反應(yīng)

    2019-11-04 08:42:20王士昭李維軍俞越劉進張誠
    物理化學(xué)學(xué)報 2019年11期
    關(guān)鍵詞:浙江工業(yè)大學(xué)敏化科技部

    王士昭,李維軍,俞越,劉進,張誠

    浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,綠色化學(xué)合成技術(shù)國家重點實驗室培育基地,科技部能源材料及應(yīng)用國際科技合作基地,杭州 310014

    1 lntroduction

    In recent years, transition-metal complexes with populated excited states upon excitation possess a rich range of photochemical and photophysical properties1–12, which have attracted much attention regarding their capability to exhibit intense phosphorescence in applications such as organic light emitting diodes (OLEDs)2–4, photocatalysis5–7, sensors8–10and a new application in photodynamic therapy (PDT)11,12. Among them, platinum(II) complexes represent an important class of compounds, owing to the heavy atom effect of platinum, the efficient generation of the intersystem crossing (ISC) efficiency makes the platinum(II) complexes a better phosphorescence emission performance.

    Singlet oxygen (1O2), one species of the reactive oxygen species (ROS)13, is the excited state of O2with high energy,which turn to be the new star in photodynamic therapy (PDT) in cancer treatment14and bacterial phagocytosis15. Singlet oxygen is usually generated through the energy transfer from the triplet excited state molecules photosensitizer (PS) to the ground state of triplet oxygen (3O2).

    Hence, the efficient generation of1O2is habitually related to the ISC efficiency of the sensitizer and concentration quenching of the excited state16–20. Nowadays, interposition of heavy atoms into molecular structures is one of the most widely used approaches to improve the ISC efficiency due to the enhanced spin–orbit coupling in the excited state, which can make more energy transfer from the T1state of the photosensitizer to the ground-state oxygen to generate the1O219. As such, to solve the concentration quenching of the excited state is another way to affect the efficiency of1O2generation. Since Tang team found the aggregation-induced emission (AIE), AIE materials have been widely applied in the preparation of efficient light-emitting devices and chemical biological sensors, due to their enhanced fluorescence and efficient photosensitizing characteristics21–23.Thus AIE might be an effective strategy to solve the concentration quenching of the excited state and enhance the efficiency of1O2 generation. It is obvious that the transitionmetal complexes with AIE property might simultaneously possess a high ISC efficiency and the non-concentration quenching, which is favourable to the generation of1O2.

    Herein, a new imidazole-based N^C^N Pt(II) metal complex PtP2IM was synthesized, expected to obtain a material with an AIE performance. It was founded to undergo a photo-oxidation reaction with the generation of a new asymmetry, red-emitted,imidazole/benzoylimino-based N^C^N Pt(II) metal complex under the visible light. More studies of the photo-oxidation reaction demonstrated that the photo-oxidation reaction observed in the case of PtP2IM belonged to the oxidation of singlet oxygen, which was generated from the photo sensitization of PtP2IM itself. When oxygen (3O2) was removed,an obvious AIE and an excellent photostability were observed for PtP2IM. The AIE property of PtP2IM was attributed to the RIR (restricted intramolecular rotation) effect of the peripheral flexible phenyl group linked to imidazole ring in solid state. In aggregation state, PtP2IM still demonstrated the photo-oxidation reaction by singlet oxygen.

    2 Experimental and computational section

    All of the reagents and solvents used for the syntheses purchased from Energy were used without further purification with a purity of above 98%. All of the reactions were performed under a dry-nitrogen atmosphere.1H (500 MHz) NMR spectra of the synthesized compounds were recorded on Bruker AVANCE III instrument (Bruker, Switzerland). Mass spectra(MALDI-TOF-MS) analysis was recorded using an AXIMACFRTM plus instrument (Kratos Analytical, England). The single crystal structure was carried out with an Agilent Geminie instrument. Photophysical properties were investigated by a Shimadzu UV-1800 spectrophotometer (Shimadzu, Japan) and a Perkin-Elmer LS-55 luminescence spectrophotometer(America). The fluorescence quantum yield was determined by a calibrated integrating sphere. The photo irradiation was carried in a ZF-20D ultraviolet analyzer (YUHUA, China) with a UV light (365 nm, 25 mW). All measurements were carried out at room temperature under ambient conditions. Density functional theory (DFT) was calculated using Gauss 0924.

    Fig. 1 The newly-obtained single-crystal structure of (a) PtP2IM(CCDC 1891478) and (b) PtPIMO (CCDC 1891487).

    3 Results and discussion

    3.1 Synthesis

    See the synthesis part in the Supporting Information for experimental details, as shown in Fig. S1 (Supporting Information).

    3.2 Crystal structure

    Through the solution growth method, single crystals of PtP2IM suitable for XRD analysis were obtained and their crystal structure was shown in Fig. 1a. An interesting thing was that some red crystalline solids were also observed as suspensions in the solution. After a careful analysis, we found that the suspended red crystalline solids was not attributed to a second crystal with strong Pt-Pt interaction but a new complex molecule different from PtP2IM, which indicated that PtP2IM underwent a chemical reaction to generate a new red compound in the given conditions. After accumulating large amounts of red solid, the single crystals suitable for XRD analysis were also obtained and the new crystal structure was shown in Fig. 1b.

    In Fig. 1a, the crystal structure of PtP2IM clearly showed the typical N^C^N Pt(II) metal complex structure and the imidazole structure as a five-member ring in the ligand part. While in Fig.1b, the new crystal structure showed a new molecule PtPIMO with a benzoylimino-benzamide structure verified by measured C―N and C=N bond lengths of 0.141 and 0.129 nm,respectively. From the contrast of crystal structures in Figs. 1a and 1b, it could be concluded that an oxidation reaction from PtP2IM to PtPIMO occurred, in which one of the two imidazole rings in PtP2IM was opened to generate a benzoyliminobenzamide structure. NMR spectra further confirmed the molecular structure of PtPIMO as shown in Fig. S2 (Supporting Information).

    3.3 Photo-oxidation reaction

    In order to further investigate this oxidation reaction from PtP2IM to PtPIMO, the in-situ UV-Vis absorption spectra were measured as shown in Fig. 2. PtP2IM displayed a strong absorption band between 365 and 420 nm with an absorption maximum peak at ~400 nm, which was much redshifted in comparison to that of pure ligand P2IM and might be attributed to the low-energy MLCT transition in PtP2IM. When the UV irradiation (365 nm, 25 mW) was applied on the PtP2IM solution, the MLCT absorption band around 400 nm began to descend in intensity and at the same time a new peak appeared around 450 nm, which just corresponded to that of PtPIMO with an absorption maximum peak at ~450 nm. As the UV irradiation time was prolonged, the peaks at 400 and 450 nm corresponding to PtP2IM and PtPIMO respectively kept to further descend and increase gradually. Thus it could be seen that PtP2IM underwent a chemical reaction to generate the PtPIMO under the UV irradiation condition.

    Fig. 2 The in-situ UV-Vis absorption spectra of PtP2IM under the UV irradiation.

    In order to further study this chemical reaction from PtP2IM to PtPIMO, we then took more steps to explore the condition that could initiate the reaction, as show in Fig. 3. Firstly, under dark condition without UV irradiation (Fig. 3a), PtP2IM dissolved in dichloromethane could keep stable in UV-Vis spectra after three days, with no new peaks corresponding to PtPIMO appeared. It indicated that the reaction from PtP2IM to PtPIMO belonged to a photo chemical reaction that occurred at the excited state and would not happen under the condition lack of light. Secondly,through a strict oxygen removal operation to achieve a N2atmosphere, the PtP2IM solution still kept stable after 30 min irradiation (Fig. 3b). It indicated that oxygen in air was another necessary condition for the observed photo-chemical reaction from PtP2IM to PtPIMO.

    Herein, a photochemical reaction could be finally concluded as shown in Fig. 4, in which the C=C double bond in either one of the two imidazole ring of the PtP2IM complex was attacked by oxygen to generate the benzoylimino and benzamide group and produce a new complex PtPIMO under the photo irradiation condition. Interesting was that the further oxidation reaction of the other imidazole ring in PtPIMO was tentatively not observed obviously in current experiments.

    As for the photo oxidation of imidazole, singlet oxygen was commonly regarded as the oxidation agent25,26. In order to further confirm the mechanism of this observed photo oxidation reaction in PtP2IM. The 2,2,6,6-tetramethyl piperidine (TEMP)was selected as the capture agent to character the signal of singlet oxygen by electron paramagnetic resonance (EPR). As shown in Fig. 5, the signals of nitroxide radicals TEMP-1O2adduct(TEMPO) corresponding to that of singlet oxygen was observed,indicated that the singlet oxygen was generated in PtP2IM solution. When large amounts of triethylenediamine (TEDA)27were added into PtP2IM solution as shown in Fig. S3(Supporting Information), the previously observed UV-Vis spectra change corresponding to the occurrence of photo oxidation reaction was not detected, which indicated the stop of photo oxidation reaction due to the quickly capture and quench of singlet oxygen in the presence of large amounts of TEDA. It also further demonstrated a fact that singlet oxygen played a key role in the observed photo oxidation reaction of PtP2IM. Thus it could be concluded that PtP2IM could produce1O2under light irradiation and further undergo the self-sensitized photo oxidation reaction to generate the PtPIMO complex via singlet oxygen.

    Fig. 3 The UV-Vis absorption spectra of PtP2IM under (a) dark condition in air for three days, (b) anaerobic environment with the reagent fully deoxygenated.

    Fig. 4 The photo-oxidation reaction equation from PtP2IM to PtPIMO.

    3.4 DFT calculations

    The electronic orbital of the metal complex PtP2IM was studied with the time-dependent density functional theory (TDDFT) methods as shown in Fig. 6. The frontier molecular orbitals was distributed on the Pt(II) center and the ligands. The electron cloud of LUMO is mainly located on the main ligand P2IM, while the electron cloud of HOMO and HOMO-1 was mainly distributed on the Pt(II) and chlorine atoms. Thus the S0–S1, S0–S2transition of complex consisted by HOMO→LUMO and HOMO-1→LUMO transition could be recognized as a MLCT transition, which could ensure that more energy could transfer from the T1state of the photosensitizer to the groundstate oxygen to generate the1O2with a high ISC efficiency due to the spin-orbit coupling of heavy atoms Pt.

    Fig. 5 EPR spectrum of the TEMP-1O2 radical during irradiation of Pt(P2IM) suspended in CH2Cl2 and TEMP.

    Fig. 6 Frontier molecular orbitals for complex PtP2IM calculated by TD-DFT at the B3LYP/6-31G(d,p)+/LanL2DZ level using the geometry of the S0 state.

    3.5 Photoluminescence properties

    It was obvious that PtP2IM could display a stable phosphorescent emission without the occurrence of photooxidation reaction if oxygen was removed. With the lack of oxygen, PtP2IM showed a green emission with λmaxat 500 nm in solution state as shown in Fig. 7. In solid state, PtP2IM also displayed a green emission with λmaxat 495 nm, which was a little blueshift in comparison to that in solution. Compared to PtP2IM, the photo-oxidation product PtPIMO had an orange-red emission with λmaxat about 560 nm in solution state, which could keep stable in the same condition. The redshifted PL spectra of PtPIMO could be attributed to a new lower-energy MLCT transition between the metal to the newly formed benzoyliminobenzamide part in ligand structure, which could be found in the UV-Vis spectra of PtPIMO at around 425 nm. In solid state,PtPIMO displayed a red emission with λmaxat about 610 nm. By using an integrating sphere photometer, the luminescent quantum efficiency of PtP2IM in solution and film were measured to be ~3% and ~20%, respectively. The higher quantum luminescence efficiency of PtP2IM in film than solution indicated the possible characteristics of aggregationinduced emission (AIE) effect28,29. We also measured the luminescent quantum efficiency of PtPIMO in solution and film to be only ~3(±2)% respectively. The relatively low luminescence quantum efficiencies of PtP2IM and PtPIMO might be ascribed to the large non-radiative transition rate derived from the vibration of multiple peripheral benzene rings linked to the imidazole rings.

    In order to further investigate the AIE properties of PtP2IM,their PL spectra in water/N,N-dimethylformamide (DMF)solvents with different water proportions (V/V) were measured.With the addition of more proportions of water (V/V) into the DMF solution of PtP2IM, an obvious AIE phenomenon of PtP2IM was observed with the PL intensity increasing and reaching the maximum at the water proportion of 90%, as shown in Fig. 8a. No obvious shifts were observed in PL spectra for PtP2IM in water/DMF solvents from lower water proportions to higher ones. From the packing structure in crystal as shown in Fig. S4 (Supporting Information), we could see that there were none strong intermolecular interactions like π–π or Pt–Pt interaction, and many intermolecular CH―π bonds between the two adjacent PtP2IM molecules were observed, which could effectively limit the rotation of the peripheral phenyl group linked to the imidazole ring. Thus, the RIR (restricted intramolecular rotation) effect was thought to be the main reason for the observed AIE property in PtP2IM, in which the vibration of multiple peripheral benzene rings linked to the imidazole structure were effectively suppressed in the solid state which decreased the non-radiative transition rate and induced the high luminescent quantum efficiency.

    Under the same experimental condition, with the addition of water into the DMF solution of PtPIMO, no obvious AIE phenomenon was observed in Fig. 8b. As the water content increased and reached the water proportion of 80%, the original PL intensity at 560 nm kept going down until disappearance, and resulted in the shoulder peak at ~600 nm at last which was consistent with the PL spectra of PtPIMO in solid state.Obviously, the photo-oxidation product PtPIMO showed none AIE properties.

    Considering the AIE effect in PtP2IM still might contribute to the yield of1O2, a controlled experiment of self-sensitization was carried as shown in Fig. S5 (Supporting Information). After 5 min irradiation in DCM, there was a decrease in the absorption of PtP2IM, which means the generation of1O2. However,contrasted with the sameconcentration of PtP2IM in DMF/H2O volume ratio = 1 : 9, the reduction of the absorbance was remarkable under the same light irradiation. Obviously PtP2IM demonstrated a non-concentration quenching in solid state based on the AIE effect.

    Fig. 7 The UV-Vis and PL spectra of PtP2IM and PtPIMO in DMF and solid state.

    Fig. 8 Plots of maximum PL peak intensity of PtP2IM (a) and PtPIMO (b) versus water fraction in the DMF/water mixtures(solution concentration: 7 × 10-6 mol·L-1, excitation wavelength:365 nm to PtP2IM and 400 nm to PtPIMO).

    4 Conclusions

    In summary, we have finally got a new Pt(II) metal complex PtP2IM with AIE property which can undergo a photo-oxidation reaction at photo-excitation state. PtP2IM undergoes a photooxidation reaction to generate a new metal complex PtPIMO with a benzoylimino-benzamide structure. Light irradiation and oxygen (air) are confirmed to be the two necessary conditions for the observed photo-chemical reaction from PtP2IM to PtPIMO. The photo-oxidation reaction observed in the case of PtP2IM belonged to the oxidation by singlet oxygen, which was also confirmed to be generated from the photo sensitization of PtP2IM itself. And a non-concentration quenching could be observed for PtP2IM in the solid state, due to the RIR effect which is favorable to the generation of1O2. It provides us with a promising way to design an efficient photosensitizer by using an AIE metal complex.

    Supporting lnformation:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    浙江工業(yè)大學(xué)敏化科技部
    浙江工業(yè)大學(xué)
    科技部等六部門:推動人工智能場景創(chuàng)新
    浙江工業(yè)大學(xué)
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻計量學(xué)分析
    浙江工業(yè)大學(xué)
    科技部關(guān)于促進新型研發(fā)機構(gòu)發(fā)展的指導(dǎo)意見
    石河子科技(2020年3期)2020-06-24 02:39:52
    浙江工業(yè)大學(xué)
    一圖看懂科技部“三定”方案
    2017 年新項目
    少妇粗大呻吟视频| e午夜精品久久久久久久| 久久久久国内视频| cao死你这个sao货| 午夜精品久久久久久毛片777| 国产成人一区二区三区免费视频网站| 久久草成人影院| 国产欧美日韩一区二区精品| 在线观看日韩欧美| 精品欧美一区二区三区在线| 天堂影院成人在线观看| 91精品国产国语对白视频| 国产欧美日韩一区二区精品| 嫩草影院精品99| 国产精品 国内视频| 在线看a的网站| 午夜福利免费观看在线| 久久久久久久久久久久大奶| 18禁裸乳无遮挡免费网站照片 | 国产精品野战在线观看 | 俄罗斯特黄特色一大片| 精品福利永久在线观看| 精品熟女少妇八av免费久了| 中文欧美无线码| 免费不卡黄色视频| 男人操女人黄网站| 免费在线观看亚洲国产| 国内久久婷婷六月综合欲色啪| 91精品国产国语对白视频| 又黄又爽又免费观看的视频| 国产精品1区2区在线观看.| 一区二区三区激情视频| 欧美日本亚洲视频在线播放| 国产成年人精品一区二区 | 在线十欧美十亚洲十日本专区| 老汉色∧v一级毛片| 一区福利在线观看| 黑丝袜美女国产一区| 极品教师在线免费播放| 91成年电影在线观看| 中国美女看黄片| 国产熟女午夜一区二区三区| 99久久国产精品久久久| 高潮久久久久久久久久久不卡| 亚洲国产精品合色在线| 老熟妇仑乱视频hdxx| 日韩成人在线观看一区二区三区| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 亚洲七黄色美女视频| 69精品国产乱码久久久| 亚洲avbb在线观看| 中文字幕高清在线视频| 搡老乐熟女国产| 久久 成人 亚洲| 亚洲av五月六月丁香网| 一边摸一边抽搐一进一出视频| 午夜免费成人在线视频| 99国产精品免费福利视频| 国产有黄有色有爽视频| 大香蕉久久成人网| 亚洲国产中文字幕在线视频| 亚洲精品久久午夜乱码| 老司机深夜福利视频在线观看| 黄频高清免费视频| 嫩草影院精品99| 18禁黄网站禁片午夜丰满| 午夜久久久在线观看| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 欧美一区二区精品小视频在线| 国产xxxxx性猛交| 91精品三级在线观看| 国产成人精品无人区| 三级毛片av免费| 最近最新中文字幕大全电影3 | 国产精品免费一区二区三区在线| 女性生殖器流出的白浆| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 久久国产精品人妻蜜桃| 无限看片的www在线观看| 日本黄色视频三级网站网址| 91成人精品电影| 亚洲精品美女久久av网站| 久久精品成人免费网站| 精品一区二区三区四区五区乱码| 亚洲avbb在线观看| 国产1区2区3区精品| av电影中文网址| 老汉色∧v一级毛片| av在线播放免费不卡| 日韩视频一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 91麻豆av在线| 在线国产一区二区在线| 妹子高潮喷水视频| 两个人免费观看高清视频| 久久人妻熟女aⅴ| 亚洲av第一区精品v没综合| 91国产中文字幕| 精品午夜福利视频在线观看一区| 搡老熟女国产l中国老女人| 身体一侧抽搐| 精品国产美女av久久久久小说| 日日干狠狠操夜夜爽| 丝袜人妻中文字幕| 多毛熟女@视频| 黄色毛片三级朝国网站| av免费在线观看网站| 欧美av亚洲av综合av国产av| 成在线人永久免费视频| 成人黄色视频免费在线看| 可以免费在线观看a视频的电影网站| 多毛熟女@视频| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区激情视频| 国产免费av片在线观看野外av| 日本免费a在线| 又大又爽又粗| 国产成人欧美在线观看| 一级毛片精品| 亚洲精品在线美女| 1024香蕉在线观看| 天堂中文最新版在线下载| 99在线视频只有这里精品首页| 精品午夜福利视频在线观看一区| 久久 成人 亚洲| 日韩免费av在线播放| 日本精品一区二区三区蜜桃| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 成人18禁在线播放| 热re99久久国产66热| 亚洲专区国产一区二区| av在线播放免费不卡| 成在线人永久免费视频| 国产精品偷伦视频观看了| 性少妇av在线| 人人妻人人添人人爽欧美一区卜| 成人永久免费在线观看视频| 99久久人妻综合| videosex国产| 波多野结衣一区麻豆| 精品午夜福利视频在线观看一区| 午夜日韩欧美国产| 国产视频一区二区在线看| 精品一区二区三卡| 欧美激情高清一区二区三区| 欧美丝袜亚洲另类 | 丝袜美足系列| 999久久久国产精品视频| 精品人妻在线不人妻| 久久99一区二区三区| 视频区图区小说| 怎么达到女性高潮| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 亚洲精品中文字幕一二三四区| 男人操女人黄网站| 久久人妻av系列| 老司机深夜福利视频在线观看| 国产野战对白在线观看| 久久久久久久午夜电影 | 亚洲熟女毛片儿| 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 国产深夜福利视频在线观看| 久久久久久久午夜电影 | 欧美日韩精品网址| 婷婷精品国产亚洲av在线| 一进一出好大好爽视频| av网站在线播放免费| 不卡av一区二区三区| 天天影视国产精品| 亚洲一码二码三码区别大吗| 一区二区三区精品91| 天堂影院成人在线观看| 激情在线观看视频在线高清| 午夜a级毛片| 国产精品久久视频播放| 日韩欧美在线二视频| 国产亚洲av高清不卡| 1024香蕉在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区精品视频观看| 亚洲第一av免费看| 久久久久久久精品吃奶| 首页视频小说图片口味搜索| 国产亚洲精品一区二区www| 99久久久亚洲精品蜜臀av| 91精品三级在线观看| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 色哟哟哟哟哟哟| 99热只有精品国产| 交换朋友夫妻互换小说| 精品无人区乱码1区二区| 日韩国内少妇激情av| 精品国产一区二区三区四区第35| 免费人成视频x8x8入口观看| 成熟少妇高潮喷水视频| 亚洲午夜理论影院| 不卡一级毛片| 国产三级黄色录像| av片东京热男人的天堂| 国产精品野战在线观看 | 亚洲自拍偷在线| 国产免费av片在线观看野外av| 久热这里只有精品99| 国产伦人伦偷精品视频| 99香蕉大伊视频| 99国产精品99久久久久| 97碰自拍视频| 精品国产乱码久久久久久男人| 老司机福利观看| 香蕉久久夜色| 国产又色又爽无遮挡免费看| 1024视频免费在线观看| www.熟女人妻精品国产| 亚洲av五月六月丁香网| 精品乱码久久久久久99久播| 亚洲精品美女久久av网站| 国产国语露脸激情在线看| 色综合婷婷激情| 精品人妻1区二区| 亚洲狠狠婷婷综合久久图片| 欧美日韩一级在线毛片| 久久伊人香网站| 亚洲成人免费电影在线观看| 亚洲精品一二三| 成人手机av| 国产高清国产精品国产三级| 久久人人97超碰香蕉20202| 国产精品九九99| 久9热在线精品视频| 国产1区2区3区精品| 一进一出抽搐gif免费好疼 | 人人澡人人妻人| 少妇粗大呻吟视频| 丰满的人妻完整版| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 日韩欧美国产一区二区入口| 国产一区二区三区在线臀色熟女 | 久久狼人影院| 国产成人精品久久二区二区91| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 又大又爽又粗| 国产精品野战在线观看 | 日韩一卡2卡3卡4卡2021年| 高清欧美精品videossex| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 日本wwww免费看| 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 亚洲中文av在线| 很黄的视频免费| 欧美不卡视频在线免费观看 | 黄频高清免费视频| 免费av中文字幕在线| 亚洲五月色婷婷综合| 国产午夜精品久久久久久| 操美女的视频在线观看| 在线十欧美十亚洲十日本专区| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 麻豆一二三区av精品| 村上凉子中文字幕在线| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 午夜两性在线视频| 黄色视频不卡| x7x7x7水蜜桃| 亚洲av五月六月丁香网| 欧美激情极品国产一区二区三区| 性少妇av在线| 日韩精品中文字幕看吧| 欧美老熟妇乱子伦牲交| 午夜精品久久久久久毛片777| 精品久久久久久久久久免费视频 | 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| 老司机深夜福利视频在线观看| 两个人免费观看高清视频| 视频区图区小说| 99国产精品一区二区三区| 80岁老熟妇乱子伦牲交| av福利片在线| 欧美激情久久久久久爽电影 | 嫩草影院精品99| 熟女少妇亚洲综合色aaa.| 老司机靠b影院| 国内毛片毛片毛片毛片毛片| 精品国产美女av久久久久小说| 大香蕉久久成人网| 午夜免费鲁丝| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 很黄的视频免费| 色老头精品视频在线观看| 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 午夜福利一区二区在线看| 久久香蕉激情| 岛国在线观看网站| 99国产精品免费福利视频| 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久| 高潮久久久久久久久久久不卡| 国产精品影院久久| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 天天影视国产精品| а√天堂www在线а√下载| 一区二区三区国产精品乱码| 99re在线观看精品视频| 欧美日韩一级在线毛片| 高清欧美精品videossex| 男女做爰动态图高潮gif福利片 | 香蕉丝袜av| av天堂久久9| 在线观看www视频免费| 午夜福利在线免费观看网站| 伦理电影免费视频| 亚洲精品在线观看二区| 18美女黄网站色大片免费观看| 久久青草综合色| 免费看a级黄色片| 在线观看免费日韩欧美大片| 91九色精品人成在线观看| 久久亚洲精品不卡| 三级毛片av免费| 9热在线视频观看99| 亚洲第一青青草原| 免费在线观看黄色视频的| 岛国在线观看网站| 国产精品一区二区三区四区久久 | 久久久久久免费高清国产稀缺| 露出奶头的视频| 黄色丝袜av网址大全| 91字幕亚洲| av超薄肉色丝袜交足视频| 精品国产乱子伦一区二区三区| 精品久久久久久,| 真人一进一出gif抽搐免费| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看完整版高清| 很黄的视频免费| 九色亚洲精品在线播放| 国产一区二区三区综合在线观看| 男女高潮啪啪啪动态图| 99久久人妻综合| 日韩av在线大香蕉| 国产99久久九九免费精品| 国产av一区二区精品久久| 国产麻豆69| 欧美日韩av久久| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 激情视频va一区二区三区| 久久久水蜜桃国产精品网| 久久久久国产一级毛片高清牌| 大型黄色视频在线免费观看| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 精品久久久久久电影网| 波多野结衣av一区二区av| x7x7x7水蜜桃| 亚洲精品中文字幕在线视频| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产精品成人在线| 免费在线观看视频国产中文字幕亚洲| 国产精品日韩av在线免费观看 | 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 亚洲成国产人片在线观看| 黄色 视频免费看| 99国产精品一区二区蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片| 丝袜人妻中文字幕| 免费在线观看影片大全网站| 国产精品秋霞免费鲁丝片| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜a级毛片| 国产av一区在线观看免费| a级片在线免费高清观看视频| 久久影院123| 99国产精品免费福利视频| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 国产伦人伦偷精品视频| av免费在线观看网站| 高清毛片免费观看视频网站 | 国产精品 国内视频| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区蜜桃| 精品久久蜜臀av无| 欧美午夜高清在线| 久久青草综合色| 露出奶头的视频| 欧美人与性动交α欧美软件| 久久精品91无色码中文字幕| 丝袜在线中文字幕| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 亚洲国产欧美网| 一夜夜www| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站 | a在线观看视频网站| 国产成人欧美| 免费在线观看亚洲国产| 在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 他把我摸到了高潮在线观看| 国产精品永久免费网站| 亚洲熟妇熟女久久| 午夜91福利影院| 国产成人精品久久二区二区91| 麻豆成人av在线观看| 午夜精品在线福利| 免费看a级黄色片| 人妻久久中文字幕网| 黄色丝袜av网址大全| 岛国视频午夜一区免费看| 国产精品野战在线观看 | 女同久久另类99精品国产91| 亚洲人成电影免费在线| 在线观看一区二区三区激情| 级片在线观看| 黄色视频不卡| 日韩国内少妇激情av| 18美女黄网站色大片免费观看| 亚洲精品国产区一区二| av片东京热男人的天堂| 午夜福利一区二区在线看| 高潮久久久久久久久久久不卡| 精品久久久久久久毛片微露脸| 无限看片的www在线观看| 日韩人妻精品一区2区三区| 热re99久久精品国产66热6| 精品国产一区二区久久| 日本五十路高清| 国产97色在线日韩免费| 另类亚洲欧美激情| 91精品国产国语对白视频| 天堂中文最新版在线下载| 一级黄色大片毛片| 午夜精品在线福利| 精品人妻1区二区| 亚洲男人的天堂狠狠| 国产精品二区激情视频| 美国免费a级毛片| a级毛片在线看网站| 老司机靠b影院| 国产97色在线日韩免费| 一进一出好大好爽视频| 亚洲中文日韩欧美视频| av网站免费在线观看视频| 欧美日韩黄片免| 日韩有码中文字幕| 国产一区在线观看成人免费| 亚洲情色 制服丝袜| videosex国产| 国产精品99久久99久久久不卡| 99在线视频只有这里精品首页| 村上凉子中文字幕在线| 91大片在线观看| 90打野战视频偷拍视频| 国产精品99久久99久久久不卡| 久久久国产成人免费| 成人三级黄色视频| 人人澡人人妻人| 国产精品av久久久久免费| 国产乱人伦免费视频| 中文字幕人妻熟女乱码| 精品国产一区二区三区四区第35| 亚洲精品久久午夜乱码| 日本a在线网址| 在线观看www视频免费| av片东京热男人的天堂| 18禁国产床啪视频网站| 精品久久久精品久久久| 高清毛片免费观看视频网站 | 69精品国产乱码久久久| 在线视频色国产色| 欧美大码av| 成在线人永久免费视频| 久久香蕉精品热| 极品人妻少妇av视频| 欧美黑人精品巨大| 国产精品野战在线观看 | 亚洲精品国产区一区二| 狂野欧美激情性xxxx| 欧美黑人欧美精品刺激| 好看av亚洲va欧美ⅴa在| 99riav亚洲国产免费| 亚洲精品在线观看二区| 天堂影院成人在线观看| 国产av精品麻豆| 国产视频一区二区在线看| 老司机午夜十八禁免费视频| 另类亚洲欧美激情| 黑人操中国人逼视频| av超薄肉色丝袜交足视频| 亚洲全国av大片| 国产精品久久电影中文字幕| 成人免费观看视频高清| av免费在线观看网站| 午夜老司机福利片| 他把我摸到了高潮在线观看| 亚洲午夜理论影院| 嫁个100分男人电影在线观看| 涩涩av久久男人的天堂| 国产精品一区二区免费欧美| 一夜夜www| 丝袜在线中文字幕| 亚洲精品国产一区二区精华液| 国产黄a三级三级三级人| 9热在线视频观看99| 99在线视频只有这里精品首页| 神马国产精品三级电影在线观看 | 亚洲五月色婷婷综合| 中文欧美无线码| 神马国产精品三级电影在线观看 | 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 国产野战对白在线观看| www.精华液| 男女床上黄色一级片免费看| 免费一级毛片在线播放高清视频 | 亚洲精华国产精华精| 亚洲三区欧美一区| 操出白浆在线播放| 欧美日本亚洲视频在线播放| 老司机福利观看| 亚洲激情在线av| 看免费av毛片| av在线天堂中文字幕 | 深夜精品福利| 国产精品电影一区二区三区| 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 日韩av在线大香蕉| 精品少妇一区二区三区视频日本电影| 免费日韩欧美在线观看| 日韩人妻精品一区2区三区| 欧美日韩国产mv在线观看视频| 可以在线观看毛片的网站| 精品久久久久久久久久免费视频 | 黑丝袜美女国产一区| 真人做人爱边吃奶动态| 一区二区三区激情视频| 午夜福利在线观看吧| 女性被躁到高潮视频| 满18在线观看网站| 黑人欧美特级aaaaaa片| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月| 成人三级做爰电影| 午夜视频精品福利| 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 亚洲精华国产精华精| 久热爱精品视频在线9| 一级片免费观看大全| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 又黄又爽又免费观看的视频| 免费看十八禁软件| 黄网站色视频无遮挡免费观看| 91国产中文字幕| 欧美一区二区精品小视频在线| 精品久久久久久电影网| 在线视频色国产色| 一级片'在线观看视频| 他把我摸到了高潮在线观看| 丰满迷人的少妇在线观看| 在线永久观看黄色视频| 两个人看的免费小视频| 91av网站免费观看| 成人av一区二区三区在线看| 99久久综合精品五月天人人| 久久久久久久午夜电影 |