• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Our expedition in the construction of fluorescent supramolecular metallacycles

    2019-10-31 09:01:34JunlongZhuXiLiuJunhaiHuangLinXu
    Chinese Chemical Letters 2019年10期

    Junlong Zhu,Xi Liu,Junhai Huang,Lin Xu

    a Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China

    b Zhangjiang Institute,China State Institute of Pharmaceutical Industry,Shanghai 201203,China

    c State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China

    Keywords:

    Supramolecular chemistry

    Fluorescent metallacycle

    Coordination-driven self-assembly

    Functionalized metallacycle

    Supramolecular gel

    ABSTRACT

    During the past few years,the construction of fluorescent supramolecular metallocycles has attracted extensive attention due to their diverse applications such as sensing,photoelectric devices,and mimicking complicated natural photo-processes.In this review,we will discuss how we entered the field of fluorescent supramolecular metallacycles and what we investigated in this field.The preparation of various fluorescent supramolecular metallacycles and their applications in monitoring the dynamics of coordination-driven self-assembly,sensing,catalysts,and supramolecular gels will be summarized.

    1.Introduction

    It is our pleasure to write this review tracing our expedition in the construction of fluorescent supramolecular metallacycles,with a particular focus on how we entered this field and what we found in this field.During my(Lin Xu)doctoral study in the group of Prof.Xuhong Qian at East China University of Science and Technology from 2007 to 2012,I was committed to develop fluorescent probes for anions,cations,and biological small-molecules.For example,based on an excited-state intramolecular proton transfer (ESIPT)mechanism,we have prepared a new ratiometric fluorescence probe for the detection of hydrogen sulfide(H2S)in living cells[1].In July 2012,I started my independent research at East China Normal University.Since that time,in parallel with the continuous research in the development of fluorescent probes [2-4],I paid significant attention on the construction of fluorescent supramolecular metallacycles[5].In particular,using fluorescence technology to solve the partial problems in the field of supramolecular assembly,including using fluorescence method to investigate the dynamic process and mechanism of self-assembly as well as preparing functional supramolecular assemblies.

    Coordination-driven self-assembly,based on the interaction between metal and ligand,is an efficient method to construct discrete supramolecular metallacycles with well-defined shapes,sizes,and geometries [6-14].Compared to stepwise covalent synthetic approaches with time-consuming process and lower yields,such strategy exhibited various synthetic superiority including fewer steps,nearly quantitative yields,defect-free assembly,and inherent self-correction.During the past few decades,Fujita [15],Stang [16],Mirkin [17],Newkome [18],and others [19-24]have constructed various metallacycles through coordination-driven self-assembly during the past three decades.

    Besides the construction of complicated and delicate supramolecular metallacycles,fluorescent metallacycles have attracted extensive attention due to theirdiverse applications such as sensing,photoelectric devices,and mimicking complicated natural photoprocesses[25-39].The placement and total number of introduced fluorophores within metallacycles could be precisely controlled by coordination-driven self-assembly.Moreover,the presence of chromophores in metallacycles allows for real-time monitoring the self-assembly process and dynamics of the resultant metallacycles by highly sensitive fluorescence technique.Furthermore,compared with organic fluorescent macrocycles,the stimuliresponsive fluorescent metallacycles were easier to be realized by taking advantage of the dynamic nature of metal-ligand bonds.Therefore,we have been paying considerable attention to designing and constructing different kinds of fluorescent metallacycles and investigating their photophysical properties as well as potential applications.In this review,we will summarize our efforts in the construction of various fluorescent metallacycles and their applications in monitoring the dynamics of coordination-driven selfassembly,sensing,catalysts,and stimulus-responsive supramolecular fluorescent gels.

    2.Self-assembly of supramolecular metallacycles with fluorescent properties

    From the topological point of view,theoretically,there are four ways to construct fluorescent metallocycles.Firstly,the exofunctionalized fluorescent metallocycle could be constructed by incorporating the fluorophore moiety onto the exterior surface of the directional building block.Secondly,the endo-functionalized fluorescent metallocycle could be obtained by attaching the fluorophore moiety into the inner side of the directional building block with a turning angle less than 180°.Moreover,the fluorophore moiety could function as the edge or corner of the directional building block to construct the edge or cornerfunctionalized fluorescent metallocycle [40].

    Pyrene and its derivatives have been extensively investigated for their fascinating fluorescent properties.For example,they poessess high fluorescent quantum,relatively long excited-state lifetime,and extraordinary distinction of the fluorescence bands for monomers and excimers[41-45].In consequence,the incorporation of multiple pyrene subunits into a single scaffold to construct supramolecular metallacycles with fluorescent properties has evolved to be one charming subject[46,47].However,it is challenging to introducted multiple pyrene groups into a well-defined discrete supramolecular systems in a controlled way.We constructed varioustris-and hexakis(pyrene)hexagonal metallocycles 4 and 5 with precise shapes and sizes through the coordination-driven self-assembly of the pyrenemodified 120°acceptor 1 and its complementary 120°donor ligand 2 or 180°donor ligand 3,respectively(Scheme 1)[48].Analogously,another series of“isomeric”multipyrene hexagons 9 and 10 were constructed through the coordination-driven self-assembly of the pyrene-modified 120°donor 6 and its complementary 120°acceptor ligand 7 or 180°acceptor ligand 8,respectively.These hexagonal metallocycles exhibited a similar geometry,but luminescent behaviors of them differed from each other dramatically(Fig.1).For example,hexagonal metallocycles 9(3.3×10-6mol/L)and 10 (1.7×10-6mol/L) in dichloromethane exhibited a longer emission band at λmax550 nm corresponding the excimer emission of the pyrene chromophore,while hexagonal metallocycles 4(3.3×10-6mol/L) and 5 (1.7×10-6mol/L) in dichloromethane disabled to form excimers due to the relatively lower charge densities of 4 and 5 compared to that of 9 and 10.This investigation indicated the structural effect could impact the formation of pyrene excimer.

    There have been some successful examples in preparation of fluorescent metallacycles by coordination-driven self-assembly[49,50],but the construction of fluorescent metallacycles with highly emissive property,especially in situ generated by external stimuli,is still a challenge.Light is often chosen as the source of stimuli-response because it is the cleanest energy [51-53].More recently,we constructed the highly emissive fluorescent metallacycles 18 and 19 upon irradiating non-fluorescent metallacycles 14 and 15,respectively [54].Through the reaction of the 120°diarylethene-based dipyridyl donors 12 and 16 with 120°acceptor 11 in a 1:1 ratio in dichloromethane at room temperature,respectively,non-fluorescent metallacycles 14 and 15 could be readily obtained without further purification (Scheme 2).The highly emissive fluorescent metallacycles 18 and 19 could be formed from non-fluorescent metallacycles 14 and 15 by UV irradiation with high conversion yields,respectively,due to the photoswitchable property of diarylethene ligands (Fig.2).This“turn-on” fluorescent switch differed from the most common photochromic systems,where the fluorescence is often quenched by UV irradiation.

    Scheme 1.Cartoon representation of the formation of multi-pyrene hexagons 4,5 and 9,10.

    Fig.1.Emission spectra of 1 (10-5 mol/L),6 (10-5 mol/L),4 (3.3×10-6 mol/L),5(1.7×10-6 mol/L),9 (3.3×10-6 mol/L),and 10 (1.7×10-6 mol/L) in CH2Cl2.Reproduced with permission [48].Copyright 2013,American Chemical Society.

    Scheme 2.Cartoon representation of the formation of dithienylethene hexagons 14,15,18 and 19.

    Fig.2.(a) Absorption spectral changes of 12 (10-5 mol/L in CH2Cl2) upon UV irradiation at 365 nm.(b)Emission spectral changes of 12(10-5 mol/L in CH2Cl2,EX= 450 nm)upon UV irradiation at 365 nm.Copied with permission[54].Copyright 2019,Wiley-VCH.

    Carbazole has been extensively explored owing to its wide application such as charge-hole transport material in organic light-emitting diodes (OLEDs) and light-emitting photosensitizer[55-61].Dendrimers are hyperbranched macromolecules consisting of some dendritic wedges which extend from a core [62-69].Recently,we prepared a series of carbazole-containing metallodendrimers 22a-c and 23a-c by self-assembly of carbazolecontaining dendrimers donors 21a-c with 60°acceptor 20 or 120°acceptor 11 in a 1:1 M ratio,respectively (Scheme 3) [70].The research of fluorescent properties of dendrimers 21a-c,22a-c,and 23a-c displayed that all of them possessed aggregation-induced emission (AIE) properties (Fig.3).Especially,metallodendrimers 22a-c and 23a-c exhibited generation-dependent AIE properties compared to ligands 21a-c proved by emission spectra in solvent mixtures of DCM and n-hexane with different volume ratio,as well as Tyndall effect,SEM and DLS consequence.This work provided the first examples of coordination-driven self-assembly of carbazole-containing metallodendrimers with generation-dependent AIE properties.

    Besides preparing homo-functional fluorescent metallocycles,we constructed hetero-functional fluorescent metallocycles 26a-c and 27a-c by coordination-driven self-assembly of the pyrenemodified 120°donors 1 or 24 and their complementary 60°dendritic acceptors 25a-c,respectively (Scheme 4) [71].The investigation of photochemical behavior showed that fluorescence quantum yields of 27a-c in DCM(0.47-0.61)are higher than those of 26a-c(0.14-0.17).Moreover,all fluorescence quantum yields of metallocycles 26a-c and 27a-c are higher than those of their pyrene-modified precursors 1 (0.03) and 24 (0.09),respectively,which may result from the inhibition of the aggregation of pyrene by dendrons.This strategy can be applied to construct high emission fluorescent metallodendrimers with well-defined shapes and sizes.

    Scheme 3.Cartoon representation of the formation of metallodendrimers 22a-c and 23a-c.

    3.Functionalized fluorescent supramolecular metallacycles

    3.1.Real-time monitoring the dynamics of coordination-driven selfassembly

    Fig.3.Fluorescence spectra of 21a(a),22a(b),and 23a(c)in mixtures of n-hexane/CH2Cl2 with different fh.Changes in the photoluminescence(PL)signal intensities of 21a(d),22a (e),and 23a (f) in mixtures of n-hexane/CH2Cl2 with different fh are also shown.Reproduced with permission [70].Copyright 2015,Wiley-VCH.

    Up to now,a large variety of intricate and fascinating metallacycles with well-defined shapes and sizes have been efficiently prepared through coordination-driven self-assembly[72-76].However,it is a huge challenge to investigate the dynamic process of coordination-driven self-assembly owing to the presence of numerous intermediates and uncertain processes within self-assembly.Recently,we chose coumarin and rhodamine moieties as the fluorescence-resonance energy transfer (FRET)donor and receptor,respectively,resulting from most overlap between the emission spectrum of coumarin and the excitation spectrum of rhodamine.Thus,the dipyridyl ligand 28 modified by 7-(diethylamino)-coumarin and the diplatinum(II) ligand 29 modified by rhodamine were successfully synthesized.Then,the fluorescent metallacycle 30 was prepared through coordinationdriven self-assembly of the ligand 28 and the ligand 29(Scheme 5)[77].As shown in Fig.4a,the rhodamine emission increased obviously accompanied by a decrease in coumarin emission during the self-assembly of the dipyridyl ligand 28 and the diplatinum(II)ligand 29,which attributed to FRET between coumarin and rhodamine moieties.In addition,we mix coumarin-based metallacycle and rhodamine-based metallacycle in a 1:1 ratio in acetone/water(5:1,v/v).As a result,coumarin emission decreased obviously accompanied by an increase in rhodamine emission,which was consistent with FRET progress resulting from the formation of new metallacycles containing both coumarin and rhodamine.Moreover,we designed disassembly and reassembly experiment by adding and removing competitive ligands such as halide ions to bring about reversible disassembly and reassembly through FRET approach (Scheme 6).As shown in Fig.4b,the gradual addition of 6.0 equiv.of Br-into the solution of metallacycle 30 resulted in an obvious decrease in rhodamine emission accompanied by an increase in coumarin emission,which indicated the disassembly of metallacycle 30 with the addition of Br-.After that,the addition of 6.0 equiv.of Ag+into the halogenated solution of 30 brought about the reassembly of metallacycle 30 proved by the reappearance of the FRET process.All results indicated that the self-assembly process and dynamics of the fluorescent metallacycle could be monitored in real time by employing FRET.

    3.2.Sensing

    Proton plays a vital role in many chemical and biological processes [78,79].Therefore,it is urgent to develop methods for detecting the change of pH.We chose 1,8-naphthalimide as the fluorophore owing to its great photostability,high quantum yield,and good compatibility [80-85].Therefore,naphthalimide fluorophore was connected to 120°dipyridyl donor by the nonconjugate incorporation way,which was able to avert the quenching of fluorescence.Weak fluorescent metallacycle 32 was obtained by self-assembly of naphthalimide-modified 120°dipyridyl donor 31 with 120°diplatinum acceptor 11 in mild condition(Scheme 7)[86].As shown in Fig.5a,as the pH decreased from 7.5 to 3.5,the fluorescence of metallacycle 32 gradually became stronger.This resulted from the inhibition of PET channel along with the protonation of the N atom in the N-methyl piperazine moiety [87-92].Furthermore,the enhancement of fluorescence intensity of 32 at 514 nm corresponded to the concentration of H+(0-60 μmol/L)in a linear relationship(linearly dependent coefficient: R2=0.9906),which suggested that the metallocycle 32 could quantitatively detect H+concentration below 60 μmol/L.This study provided such a non-conjugate incorporation method to prepare metallacycles with various fluorophore for fluorescence detection of different analytes.

    3.3.Catalysts

    Metallacycles are instable under relatively severe conditions due to the dynamic property of coordination bonds[93-95].As for fluorescent metallacycles,their luminescent properties suffer from the aggregation-cause quenching(ACQ)effect[96,97].Therefore,it is essential to construct the isolated fluorescent metallacycles with great stability and dispersity refraining from ACQ effect.Recently,we fabricated the hybrid materials(34?C)composed of porphyrinbased metallacycle 34,which is obtained through self-assembly of the 120°donor precursor 33 modified by porphyrin with typical 120°diplatinum(II) acceptor 11 within the cavity of mesoporous carbon FDU-16 (Scheme 8) [98].The hybrid materials possessed higher1O2generation efficiency than that of free metallacycles in solution and greatly improved stability and activity of metallacycles 34 inside the confined cavity,which could function as heterogeneous catalyst for photooxidation of sulfides (Fig.6a).Full conversion from sulfides to sulfoxides catalyzed by 34?C was observed after 4 h of white LED irradiation monitored by NMR and GC--MS.Under the same reaction conditions,the reaction catalyzed by metallacycle 34 or composites 34/C gave 42% and 54% conversion,respectively,and the conversion efficiency without a catalyst became lower (Fig.6b).More importantly,the catalytic activity of 34?C reduced a little bit after five reuse cycles.In contrast,the pristine metallacycle 34 was observed to deactivate remarkably even after two cycles (Fig.6c).This work was the first example of isolated functionalized metallacycle in the confined space,which presented a novel strategy to improve the dispersity and stability of metallacycles.

    Scheme 4.Cartoon representation of the formation of metallodendrimers 26a-c and 27a-c.

    Scheme 5.Cartoon representation of the formation of metallacycle 30.

    Fig.4.(a)Time-dependent changes in the emission spectra of the mixture of ligand 28 (30 μmol/L) and ligand 29 (30 μmol/L) in acetone; (b) Emission spectra of metallacycle 30 (5.0×10-6 mol/L) upon titration of TBAB in acetone-d6/D2O=5:1(v/v).Reproduced with permission [77].Copyright 2017,American Chemical Society.

    Scheme 6.Cartoon representation of reversible disassembly and reassembly of 30 induced by addition and removal of Br-.

    Scheme 7.Cartoon representation of the formation of metallacycle 32.

    Fig.5.(a)Fluorescence spectra of 32(20 μmol/L)upon addition of proton in aqueous solution(acetone/water,4/1,v/v);Inset(a)and(b):Curves of fluorescence intensity at 514 nm of 32 (20 μmol/L) versus increasing concentrations of CF3COOH.Reproduced with permission [86].Copyright 2014,Royal Society of Chemistry.

    Scheme 8.Cartoon representation of the formation of trisporphyrin metallacycle 34 in cavities of mesoporous carbon FDU-16.

    Fig.6.(a)Scheme for the photooxidation of sulfides(34?C as catalyst);(b)Photooxidation profile of sulfides; (c) Reusability hybrids 34?C and metallacycle 34.Reproduced with permission [98].Copyright 2018,American Chemical Society.

    3.4.Supramolecular gels

    Supramolecular gels are generated by self-assembly of small molecules or complexes through non-covalent interactions including π-π stacking,hydrogen bond,and coordination bond.As smart soft materials,they have been widely applied in many fields such as drug delivery,wound healing,tissue engineering,nanoelectronics,and chemical sensing [99,100].Metallacycles with well-defined shape and size can be readily modified by multiple functional moieties with non-covalent interactions to form supramolecular gels via hierarchical self-assembly [101-103].Furthermore,the reversible non-covalent interaction gave supramolecular gels with stimuli-response.

    Recently,we constructed a fluorescent metallacycle 37 with AIE property via coordination-driven self-assembly of the dipyridyl donor 36 modified with multiple amide groups and long hydrophobic alkyl chains and diplatinum(II)acceptor 35 decorated with tetraphenylethylene (Scheme 9) [104].Fluorescence emission-enhanced supramolecular gel was successfully prepared in acetone/water (5:1) at a low critical gelator concentration (CGC)(21.3 mg/mL)of metallacycle 37 by hierarchical self-assembly due to the intermolecular interactions derived from amide groups and long alkyl chains.Furthermore,the reversible gel-sol transitions were realized via disassembly and reassembly of metallacycle 37 by adding and removing bromine ions or fluorine ions because of the dynamic nature of coordination bond and hydrogen bond(Fig.7).Meanwhile,the apparent fluorescence switch was observed during the reversible gel-sol transitions.This research presented the interesting supramolecular metallogel possessing fluorescence emission-enhanced property with multiple stimuliresponsive behaviors via hierarchical self-assembly.

    Scheme 9.Cartoon representation of the formation of metallacycle 37.

    Fig.7.Photographs demonstrating the reversible stimuli-responsive gel-sol transition of hexagonal metallacycle 37 in acetone/water (5:1) by the addition of(a)TBAB and AgPF6 and(b)TBAF and HClO4.Digital photos of the reversible stimuliresponsive gel-sol transition of hexagonal metallacycle 37 by the addition of (c)TBAB and AgPF6 and(d)TBAF and HClO4 under irradiation by a UV lamp at 365 nm.Copied with permission [104].Copyright 2017,Royal Society of Chemistry.

    Scheme 10.Cartoon representation of the formation of metallacycles 39 and 40.

    Fig.8.Gel-sol transitions of supramolecular polymer gel 41?40 triggered by a variety of stimuli.Copied with permission [105].Copyright 2018,Royal Society of Chemistry.

    Besides the above supramolecular gel obtained via hierarchical self-assembly based on metal-ligand coordination bond and hydrogen bond,we prepared another kind of supramolecular gel via hierarchical self-assembly based on metal-ligand coordination bond and host-guest interactions [105].Through coordinationdriven self-assembly of 120°tetraphenylethylene-based dipyridyl donor 39 decorated with pillar[5]arene and the corresponding complementary 60°diplatinum(II) acceptors 20 or 120°diplatinum(II) acceptors 11,two different metallacycles 39 and 40 with different shapes and sizes were obtained,respectively(Scheme 10).The metallacycles host 39 or 40 and the neutral ditopic guest 41 can form the cross-linked supramolecular polymers with AIE properties under high concentration conditions through hostguest interactions.Interestingly,cross-linked supramolecular gels were generated with further increase of the concentrations.Furthermore,both gels 41?39 and 41?40 displayed reversible gel-sol transitions under different stimuli of temperature,competitive guest molecules,and halides,along with the “onoff”of fluorescence by taking the advantages of the dynamic nature of metal-ligand bonds and host-guest interactions (Fig.8).This investigation offered another new strategy to fabricate smart soft materials efficiently.

    4.Conclusion

    In this review,we summarized the recent advances of our group on the construction of fluorescent metallacycles via coordinationdriven selfassembly.A variety of fluorescent metallacycles with different shapes,sizes,and fluorescent moieties were designed and synthesized successfully,which indicated that coordinationdriven self-assembly was a simple and highly efficient strategy with numerous synthetic superiority,including fewer steps,nearly quantitative yields,defect-free assembly,and inherent selfcorrection.Furthermore,their photophysical properties and applications in monitoring the dynamics of coordination-driven self-assembly,sensing,catalysts,and supramolecular gels were also discussed.

    Although much progress has been made with the fluorescent metallacycles,three vital aspects should be considered in my opinion.On one hand,except for fluorescence intensity,the combination of electrospray ionization mass spectrometry (ESIMS),NMR,and super-resolution fluorescence microscopy techniques would be an effective method for monitoring the dynamic the self-assembly process of metallacycles.On the other hand,research focus should be shifted from the two-dimensional (2D)fluorescent metallacycles towards three-dimensional (3D) fluorescent metallacages,because metallacages,which contain guests by host-guest interactions,could be uesd for drug delivery,sensing,and catalysts.Thirdly,there have been relatively fewer reports on biological applications of fluorescent metallocycles and metallocages.Thus,fluorescent metallocycles and metallocages with high water solubility,good biocompatibility,or near-infrared emission should be constructed.Generally,3D metallacages display larger volume and higher molecular weight than those of 2D metallacycles,thus,the challenges of high stability,good solubility,and low toxicity need to be considered particularly for 3D fluorescent metallacages in biological application.

    Acknowledgments

    Thanks to all excellent authors whose names appear in the references.We acknowledge the National Natural Science Foundation of China (Nos.21871092 and 21672070),Shanghai Pujiang Program (No.18PJD015),and the State Key Laboratory of Fine Chemicals (No.KF1801) for the financial support.

    亚洲欧美成人综合另类久久久 | 国产伦在线观看视频一区| 麻豆国产av国片精品| 18禁在线播放成人免费| 久久亚洲精品不卡| 久久欧美精品欧美久久欧美| 一个人看的www免费观看视频| a级一级毛片免费在线观看| 乱系列少妇在线播放| 亚洲精品国产av成人精品 | av黄色大香蕉| 亚洲一区高清亚洲精品| 国产视频内射| 一进一出抽搐动态| 99久久精品国产国产毛片| 天天躁日日操中文字幕| 日本a在线网址| 国产一区二区激情短视频| 日本 av在线| 国产一区二区在线观看日韩| 亚洲美女黄片视频| 麻豆久久精品国产亚洲av| 伦理电影大哥的女人| 国产成人一区二区在线| 中文字幕av在线有码专区| 十八禁国产超污无遮挡网站| 高清毛片免费看| 亚洲国产精品国产精品| 成年av动漫网址| 极品教师在线视频| 国产真实乱freesex| 99riav亚洲国产免费| 亚洲精品影视一区二区三区av| 欧美性猛交╳xxx乱大交人| 日韩三级伦理在线观看| 日本 av在线| 97超视频在线观看视频| 99国产极品粉嫩在线观看| 一区二区三区高清视频在线| 国产一级毛片七仙女欲春2| 网址你懂的国产日韩在线| 国产探花极品一区二区| 真人做人爱边吃奶动态| 麻豆一二三区av精品| 国产激情偷乱视频一区二区| 美女被艹到高潮喷水动态| 国产在线精品亚洲第一网站| 高清毛片免费看| 国产精品永久免费网站| 干丝袜人妻中文字幕| 免费看日本二区| 精品日产1卡2卡| 久久草成人影院| 国产精品久久电影中文字幕| 晚上一个人看的免费电影| 男人狂女人下面高潮的视频| 久久99热6这里只有精品| 一进一出抽搐动态| 在线免费十八禁| 日韩高清综合在线| 国模一区二区三区四区视频| 天天躁日日操中文字幕| 卡戴珊不雅视频在线播放| 亚洲欧美日韩卡通动漫| 卡戴珊不雅视频在线播放| 亚洲精品影视一区二区三区av| 97热精品久久久久久| 俺也久久电影网| 在现免费观看毛片| 免费看日本二区| 成人二区视频| 如何舔出高潮| 一级av片app| 亚洲人成网站在线播| 九九爱精品视频在线观看| 成年av动漫网址| 级片在线观看| 亚洲精品乱码久久久v下载方式| 国产精品一二三区在线看| 国产精品伦人一区二区| 成年av动漫网址| 99久久成人亚洲精品观看| 国产精品永久免费网站| 久久久久久久久久久丰满| 成人综合一区亚洲| 老师上课跳d突然被开到最大视频| 观看免费一级毛片| 成人美女网站在线观看视频| 精品久久久久久久久久免费视频| 青春草视频在线免费观看| 可以在线观看毛片的网站| 又黄又爽又刺激的免费视频.| 国产精品永久免费网站| 国产91av在线免费观看| 色尼玛亚洲综合影院| 男女那种视频在线观看| 丝袜喷水一区| 日韩大尺度精品在线看网址| 麻豆一二三区av精品| 欧美高清成人免费视频www| 美女被艹到高潮喷水动态| 看片在线看免费视频| 美女被艹到高潮喷水动态| 久久久久久久久中文| 成人永久免费在线观看视频| 日韩精品中文字幕看吧| 欧美不卡视频在线免费观看| 国产精品一区二区三区四区免费观看 | 在现免费观看毛片| 三级毛片av免费| 97超级碰碰碰精品色视频在线观看| 国产v大片淫在线免费观看| 免费看日本二区| 国产大屁股一区二区在线视频| 在线播放无遮挡| 成人永久免费在线观看视频| 网址你懂的国产日韩在线| 成人亚洲欧美一区二区av| 国产一级毛片七仙女欲春2| 日本免费一区二区三区高清不卡| 麻豆久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 日韩欧美精品v在线| 亚洲成人中文字幕在线播放| 一进一出抽搐gif免费好疼| 国产精品久久久久久亚洲av鲁大| 国产午夜精品久久久久久一区二区三区 | 日本熟妇午夜| 国产白丝娇喘喷水9色精品| h日本视频在线播放| 亚洲一区二区三区色噜噜| 日韩人妻高清精品专区| 一级a爱片免费观看的视频| 一a级毛片在线观看| 国产91av在线免费观看| 久久精品国产99精品国产亚洲性色| 蜜桃久久精品国产亚洲av| 欧美最黄视频在线播放免费| 97超碰精品成人国产| 国产探花极品一区二区| 欧美区成人在线视频| 国产三级在线视频| 国产私拍福利视频在线观看| 哪里可以看免费的av片| 99久久无色码亚洲精品果冻| 国内精品宾馆在线| 国产视频内射| 丝袜喷水一区| 熟妇人妻久久中文字幕3abv| 成人亚洲欧美一区二区av| 成年女人看的毛片在线观看| 免费在线观看影片大全网站| 搡老岳熟女国产| 少妇的逼好多水| 成人午夜高清在线视频| 免费观看的影片在线观看| 国产人妻一区二区三区在| 久久精品国产99精品国产亚洲性色| 精品99又大又爽又粗少妇毛片| 黄色欧美视频在线观看| 色5月婷婷丁香| av天堂中文字幕网| 日韩av不卡免费在线播放| 国产成人91sexporn| 国产精品女同一区二区软件| 亚洲aⅴ乱码一区二区在线播放| 国产精华一区二区三区| 久久久久性生活片| 亚洲不卡免费看| 可以在线观看毛片的网站| 欧美+日韩+精品| 成人av一区二区三区在线看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧美人成| 卡戴珊不雅视频在线播放| 乱系列少妇在线播放| 国产精品永久免费网站| 国产午夜精品论理片| 日韩欧美 国产精品| 久久这里只有精品中国| 噜噜噜噜噜久久久久久91| 一个人观看的视频www高清免费观看| 最新在线观看一区二区三区| 亚洲三级黄色毛片| 国产精品国产高清国产av| 日韩一本色道免费dvd| 日韩欧美精品v在线| 国产精品久久久久久亚洲av鲁大| avwww免费| 少妇丰满av| 亚洲无线在线观看| 午夜福利在线观看吧| 中文字幕精品亚洲无线码一区| 久久久久精品国产欧美久久久| 不卡视频在线观看欧美| 日韩欧美 国产精品| 国产三级在线视频| 国产国拍精品亚洲av在线观看| 嫩草影院入口| 干丝袜人妻中文字幕| 别揉我奶头~嗯~啊~动态视频| 自拍偷自拍亚洲精品老妇| 亚洲不卡免费看| 精品一区二区免费观看| 18+在线观看网站| 老司机影院成人| 麻豆av噜噜一区二区三区| 最近最新中文字幕大全电影3| 看片在线看免费视频| 中文亚洲av片在线观看爽| 国产一区二区三区av在线 | 少妇丰满av| 国产精品爽爽va在线观看网站| 国产精品久久久久久av不卡| 色播亚洲综合网| 一进一出抽搐gif免费好疼| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 国产美女午夜福利| 午夜久久久久精精品| 天天一区二区日本电影三级| 又粗又爽又猛毛片免费看| 亚洲欧美成人综合另类久久久 | 看黄色毛片网站| 亚洲av二区三区四区| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 观看美女的网站| 51国产日韩欧美| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 亚洲成人久久性| 欧美bdsm另类| 久久人人爽人人爽人人片va| 18禁在线无遮挡免费观看视频 | 黄色日韩在线| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 狂野欧美白嫩少妇大欣赏| 蜜桃久久精品国产亚洲av| 亚洲国产日韩欧美精品在线观看| 高清午夜精品一区二区三区 | 国产av在哪里看| 久久久久久国产a免费观看| 最后的刺客免费高清国语| 在线看三级毛片| 欧美一级a爱片免费观看看| av.在线天堂| 亚洲av美国av| 男人的好看免费观看在线视频| 干丝袜人妻中文字幕| 亚洲久久久久久中文字幕| 国产亚洲精品综合一区在线观看| 国产女主播在线喷水免费视频网站 | 色综合色国产| 日韩精品青青久久久久久| 香蕉av资源在线| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 精品久久久噜噜| 国产熟女欧美一区二区| 国产高清激情床上av| 成人午夜高清在线视频| 欧美中文日本在线观看视频| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| eeuss影院久久| 久久精品综合一区二区三区| 男人和女人高潮做爰伦理| 级片在线观看| 白带黄色成豆腐渣| 成人三级黄色视频| 免费观看人在逋| 国产单亲对白刺激| 欧美+日韩+精品| 男人舔奶头视频| 97超视频在线观看视频| 免费观看人在逋| 久久99热6这里只有精品| 亚洲在线观看片| 99久久九九国产精品国产免费| 日日啪夜夜撸| 国产男人的电影天堂91| 最后的刺客免费高清国语| 又爽又黄a免费视频| 看免费成人av毛片| 日本五十路高清| 精品久久久久久久久av| 美女内射精品一级片tv| 人妻久久中文字幕网| 久久久国产成人精品二区| 国产成人a区在线观看| 欧美区成人在线视频| 国产精品av视频在线免费观看| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区 | 毛片一级片免费看久久久久| 亚洲欧美精品综合久久99| 久久精品国产亚洲av涩爱 | 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 九九爱精品视频在线观看| 看十八女毛片水多多多| avwww免费| videossex国产| 欧美高清性xxxxhd video| 内射极品少妇av片p| 91av网一区二区| 亚洲精品影视一区二区三区av| 欧美中文日本在线观看视频| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 六月丁香七月| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 国产av在哪里看| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 小说图片视频综合网站| 亚洲欧美成人综合另类久久久 | 91在线观看av| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 性欧美人与动物交配| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 久久久久九九精品影院| 亚洲国产精品国产精品| 国语自产精品视频在线第100页| 精品国产三级普通话版| 国产成人影院久久av| 啦啦啦韩国在线观看视频| 成人特级黄色片久久久久久久| 国产高清视频在线观看网站| 最后的刺客免费高清国语| 别揉我奶头 嗯啊视频| 小说图片视频综合网站| 欧美日韩精品成人综合77777| 黄色视频,在线免费观看| 欧美丝袜亚洲另类| 久久人妻av系列| 国产熟女欧美一区二区| 国产精品一及| 国产成人影院久久av| 极品教师在线视频| h日本视频在线播放| 免费av毛片视频| 中国美女看黄片| 精品不卡国产一区二区三区| 亚洲av中文av极速乱| 亚洲无线在线观看| 欧美成人精品欧美一级黄| 国产亚洲av嫩草精品影院| 尤物成人国产欧美一区二区三区| 尾随美女入室| 一级a爱片免费观看的视频| av在线播放精品| 老师上课跳d突然被开到最大视频| 国产一级毛片七仙女欲春2| 久久中文看片网| 成人av在线播放网站| 亚洲精华国产精华液的使用体验 | 国产熟女欧美一区二区| 国产精品人妻久久久影院| 亚洲四区av| 国产伦精品一区二区三区四那| 此物有八面人人有两片| 一区二区三区四区激情视频 | 韩国av在线不卡| 国产亚洲精品综合一区在线观看| 亚洲精品日韩在线中文字幕 | 欧美性感艳星| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 日本a在线网址| 一本精品99久久精品77| 国产极品精品免费视频能看的| 亚洲精品粉嫩美女一区| 校园人妻丝袜中文字幕| 欧美色欧美亚洲另类二区| 少妇的逼水好多| 久久国产乱子免费精品| 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 亚洲av免费在线观看| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| www.色视频.com| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 日韩精品有码人妻一区| 午夜老司机福利剧场| 久久亚洲国产成人精品v| 国产一区二区三区av在线 | 日韩强制内射视频| 亚洲精品456在线播放app| 国产视频一区二区在线看| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 日韩人妻高清精品专区| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 美女免费视频网站| 日韩欧美精品免费久久| 在线国产一区二区在线| 久久精品国产自在天天线| 国产精品一区www在线观看| 伦理电影大哥的女人| 变态另类丝袜制服| 欧美成人免费av一区二区三区| 1000部很黄的大片| 观看美女的网站| 精品一区二区三区av网在线观看| 国产三级在线视频| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添小说| eeuss影院久久| 日本欧美国产在线视频| 国产探花极品一区二区| 床上黄色一级片| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 亚洲综合色惰| 禁无遮挡网站| 老师上课跳d突然被开到最大视频| 91久久精品电影网| 亚洲精品国产成人久久av| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 激情 狠狠 欧美| 精品久久久久久久久久免费视频| 搡老岳熟女国产| 少妇人妻精品综合一区二区 | 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 国产一区二区亚洲精品在线观看| 亚洲美女搞黄在线观看 | 三级毛片av免费| 在线观看免费视频日本深夜| 日韩欧美免费精品| 免费人成在线观看视频色| 亚洲av.av天堂| 老司机午夜福利在线观看视频| 中文亚洲av片在线观看爽| 高清毛片免费看| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 午夜视频国产福利| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 麻豆国产av国片精品| 在线a可以看的网站| 亚洲无线观看免费| 成年女人永久免费观看视频| av在线老鸭窝| 久久精品国产亚洲av香蕉五月| 亚洲精品456在线播放app| 中文字幕av成人在线电影| 免费观看的影片在线观看| 亚洲av五月六月丁香网| 一级毛片久久久久久久久女| 中文字幕久久专区| 久久久成人免费电影| 久久草成人影院| 久久久午夜欧美精品| 国产真实乱freesex| 黄色日韩在线| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 日韩制服骚丝袜av| 国产69精品久久久久777片| 日韩一本色道免费dvd| 毛片女人毛片| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 久久亚洲国产成人精品v| 亚洲熟妇熟女久久| 中文字幕人妻熟人妻熟丝袜美| 久久亚洲精品不卡| 欧美成人精品欧美一级黄| 国产男靠女视频免费网站| 亚洲av免费高清在线观看| 精品福利观看| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 日韩强制内射视频| 日日摸夜夜添夜夜添小说| 变态另类丝袜制服| 淫妇啪啪啪对白视频| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 午夜精品国产一区二区电影 | 久99久视频精品免费| 全区人妻精品视频| 99久久无色码亚洲精品果冻| 欧美人与善性xxx| 九九热线精品视视频播放| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 午夜a级毛片| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区 | a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 97超视频在线观看视频| a级毛色黄片| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 精品福利观看| 日日干狠狠操夜夜爽| 亚洲性久久影院| 免费大片18禁| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 看片在线看免费视频| 国产亚洲91精品色在线| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 亚洲在线自拍视频| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 老司机福利观看| 亚洲美女视频黄频| 欧美国产日韩亚洲一区| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 特大巨黑吊av在线直播| 亚洲精品成人久久久久久| 久久草成人影院| 国产 一区精品| 干丝袜人妻中文字幕| 亚洲自拍偷在线| 特大巨黑吊av在线直播| 欧美日韩精品成人综合77777| 又爽又黄无遮挡网站| 国产一区二区三区av在线 | 性欧美人与动物交配| 亚洲精品日韩av片在线观看| 成人亚洲精品av一区二区| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆 | 午夜精品在线福利| 免费在线观看影片大全网站| 亚洲国产色片| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 波多野结衣高清无吗| 麻豆av噜噜一区二区三区| 国产三级在线视频| 又爽又黄无遮挡网站| 无遮挡黄片免费观看| 美女高潮的动态| 深夜a级毛片| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| av黄色大香蕉| 久久中文看片网| 99热这里只有是精品50| 有码 亚洲区| 赤兔流量卡办理| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 久久综合国产亚洲精品| 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 日韩欧美精品v在线| 精品99又大又爽又粗少妇毛片| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 亚洲第一电影网av| 国产成年人精品一区二区| 看片在线看免费视频| 午夜亚洲福利在线播放| av天堂中文字幕网| 亚洲欧美日韩高清专用| 日日啪夜夜撸| 成熟少妇高潮喷水视频| 丰满人妻一区二区三区视频av| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 亚洲av五月六月丁香网| 春色校园在线视频观看| 三级国产精品欧美在线观看| 非洲黑人性xxxx精品又粗又长| av中文乱码字幕在线| 亚洲精品乱码久久久v下载方式| 亚洲内射少妇av| 天天一区二区日本电影三级| 午夜免费激情av|