• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroatom-substituted rhodamine dyes:Structure and spectroscopic properties

    2019-10-31 09:00:32FeiDengZhaochaoXu
    Chinese Chemical Letters 2019年10期

    Fei Deng,Zhaochao Xu

    a CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:

    Rhodamine

    Heteroatom

    Si-rhodamine

    Optical properties

    Fluorescent dyes

    ABSTRACT

    Rhodamine is one class of most popular dyes used in fluorescence imaging due to the outstanding photoproperties including high brightness and photostability.In recent years,replacement the xanthene oxygen with other elements,especially silicon,has attracted great attentions in the development of new rhodamine derivatives.This review summarized the structures and photophysical properties of heteroatom-substituted rhodamines.We hope this review can help to understand the structure-property relationships of rhodamine dyes and then elucidate the way to create derivatives with improved photoproperties.

    1.Introduction

    Fluorescence microscopy is an essential tool for visualizing biological processes in living cells [1-6].The key point of this strategy is to select a proper fluorophore [7-10].Compared with fluorescent proteins and quantum dots,organic dyes are attracting much more attention in recent 20 years,ascribed to their advantages of mall size,easy of chemical modification,good brightness and photostability,and emissions spanning the entire color spectrum[11].Particularly,the single-molecule imaging and super-resolution imaging have been driving the development of new fluorophores with super brightness and photostability [12].

    Rhodamines,a fluorophore with a history over a century,are the most popular dyes used in fluorescence imaging due to their stability,brightness and water solubility[13].A typical structure of rhodamine is showed in Fig.1.Although pyronine and rhodamine share the same chromophore xanthene (Fig.1a,for example,Pyronin Y vs.tetramethylrhodamine(TMR)),rhodamine has higher brightness and stability,and is more suitable for biological application than pyronin.The carbon atom at 9-position of xanthene moiety was stabilized by the phenyl ring in rhodamine,where the one in pyronin Y was much more reactive to limit the applications of pyronine.Another feature of rhodamine is the equilibrium between the ring-opened fluorescent zwitterionic form and the ring-closed non-fluorescent lactone form (Fig.1b).This equilibrium has been widely used to design fluorogenic chemosensors [14].To avoid the formation of non-fluorescent lactone form,the common strategy is to introduce methyl or methoxyl groups at C-3'and C-7'in rhodamines[15,16].However,the absorption and emission of rhodamines within the range of 500-600 nm limit their applications in multicolour imaging and in vivo imaging[17].These scenarios necessitate the development of near-infrared (NIR) rhodamine fluorophores.

    It is required and challenging to extend the absorption and emission wavelength of rhodamines,especially to far-red and nearinfrared(NIR)region.The general strategies to elicit the absorption and emissionto NIR regioninclude theπ-conjugation extension and limited-flexibility of chromophore.The drawbacks of these methods are the associated decrease in brightness and watersolubility[18-20].Another way to shift emission into NIR region is to replace the xanthene oxygen in rhodamine by heteroatoms.This strategy has been demonstrated over half century and represented by C,N,S,Se and Te-rhodamine.Due to the limited improvement in fluorescent properties and complicated synthetic routes,these rhodamines did not get much attention,until the appearance of Si-Pyroninin2008,pioneered by QianandXiao et al.[21].Replacement of the oxygen in the skeleton of rhodamine with silicon produces a significant red-shift toNIR regionwhile maintaining the brightness.According to the advantage of Si-rhodamine in bioimaging,Nagano et al.developed a series of Si-rhodamines from far-red to NIR[22,23].Further studies revealed the fluorogenic behavior and extremely photostability of Si-rhodamine-carboxyl,which made it ideal fluorophore for live-cell super-resolution microscopy[24,25].The big success of Si-rhodamine has allowed a triumphant return of oxygen replacement in rhodamine modification,like borinate,phosphinate and sulfone.Here,we review various heteroatoms replaced rhodamines (Fig.1c) and focus on their photophysical properties in order to facilitate the modification and application of new rhodamine dyes.

    Fig.1.(a) A typical structure of pyronin and rhodamine.(b) Equilibrium of TMR between zwitterionic form and lactone form.(c) Elements used in rhodamine 10-position replacement was shown in red.

    2.Boron group

    Fig.2.Structures of B-rhodamines.

    The boron group is the chemical elements in group 13 of the periodic table,comprising boron(B),aluminium(Al),gallium(Ga),indium (In),thallium (Tl),and perhaps also the chemically uncharacterized nihonium (Nh).At the present time,only the element of boron was reported to replace rhodamine oxygen.The first B-pyronine JS-R was reported by Egawa et al.in 2016 (Fig.2 and Table 1,compound 4) [26].Incorporating a borinate moiety into a xanthene skeleton produced a significant (>60 nm)bathochromic shift compared to its parent dye pyronin Y.The molar absorption coefficient and quantum yield of JS-R were measured to be 1.3×105L mol-1cm-1and 0.59,respectively.Next,Stains et al.synthesized the corresponding B-rhodamine RF620(Fig.2 and Table 1,compound 5) by insertion of 2-methyl phenyl group at the 9-position of JS-R [27].Substitution by aromatic residues caused a slight red shift (<10 nm) in absorption and emission.Besides,molar absorption coefficient and quantum yield of RF620 were decreased to 1.09×105L mol-1cm-1and 0.36,respectively.Similar variation between pyronin Y and TMR were observed,that TMR displayed a deceased absorption and quantum yield compared with pronin Y.

    3.Carbon group

    The carbon group,Group 14 in the p-block,contains carbon(C),silicon(Si),germanium(Ge),tin(Sn),lead(Pb)and flerovium(Fl).Except Pb and Fl,all these elements have been successfully applied in rhodamine oxygen replacement.Compared with traditional Orhodamine,the obtained carbon-group-rhodamine fluorophores displayed significant red-shifts in fluorescence spectra.The bathochromic shift of group 14 rhodamines may be due to their lower LUMO levels.Except C-rhodamine,the existed σ*-π*conjugation in Si-,Ge-and Sn-rhodamine and the LUMO of π-system were stabilized.Besides,the conjugation became less efficient as the atomic number increase.As a consequence,the extent of red shift was C <Sn <Ge <Sn [28].

    3.1.Carbon-rhodamine (C-rhodamine)

    Replacement of rhodamine oxygen with a quaternary carbon elicits a 50-nm bathochromic shift.These C-rhodamines were firstly synthesized by Aaron et al.in 1963[29].In the following half century,few attentions had been paid to the research of Crhodamine,maybe due to the complex synthesis and low yield.Because of the high brightness and phtotostability,C-rhodamines have been successfully applied in super-resolution fluorescent imaging,which brought C-rhodamine back to the attention of dye scientists.

    Lavis et al.reported a series of C-rhodamines by alternating the substituents on the N atoms(Fig.3 and Table 1,compounds 6-9,17 and 18) [30-32].The twist of Caryl--N bond in rhodamine greatly influenced the brightness of the fluorophore.Replacing the N,Ndimethyl group in compound 7 with differently sized rings could mitigate twisted internal charge transfer (TICT) and regulate the brightness of the fluorophore.In particularly,the azetidinyl Crhodamine (compound 8) had higher quantum yield (φ=0.67)compared to compound 7(φ=0.52),while maintained the similar extinction coefficient (ε=1.21×105L mol-1cm-1).

    By introducing fluorine,Hell et al.obtained a series of Crhodamines with maximum absorption in the range of 560-630 nm (Fig.3 and Table 1,compounds 11-16) [33,34].Though the fluorination of the carbonrhodamine in tricyclic cores led to red-shifts of the absorption and emission compared to unmodified C-rhodamine,the extinction coefficients and quantum yields were reduced significantly.Taking compound 14 as an example,the extinction coefficients and quantum yields were only 6700 L mol-1cm-1and 0.06,whereas the unmodified compound 12 were 100,000 L mol-1cm-1and 0.59,respectively.These results were totally different to O-rhodamine.Typically,the fluorination of rhodamine could lead to slight improvement in brightness [35].However,introducing fluorine contained alkyl group into the N atoms of C-rhodamines (compounds 15 and 16) resulted in bathochromic shift while maintained the brightness compared to unmodified C-rhodamine,which was in accord with O-rhodamines.

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    Table 1 (Continued)

    In 2014,Klan et al.reported a NIR C-rhodamine (Fig.3 and Table 1,compound 10) by replacing the aromatic substituents at the position C9 with phenylethynyl group [36].This compound possessed two characteristic absorptions at 472 and 677 nm.Both of the absorption excited the maximum emission at 705 nm.The quantum yields were about 0.15 in methanol.

    3.2.Silicon-rhodamines (Si-rhodamine)

    In 2008,Xiao et al.replaced the oxygen in the pyronine Y with a silicon atom to obtain TMDHS(Fig.4 and Table 1,compound 19)[21].The absorption and emission of TMDHS were at 641 and 659 nm,nearly 90 nm bathochromic shift compared to pyronine Y.To improve the stability,Nagano et al.inserted 2-methyl phenyl group at the 9th position of TMDHS and created Sirhodamine [28].This compound exhibited λmax/λem=646 nm/660 nm,ε=1.1×105L mol-1cm-1and φ=0.31 in PBS buffer.These data illustrated Si-rhodamine was as bright as the Orhodamines.In order to fulfill the requirement of in vivo imaging,Nagano group further developed a series of NIR-excitable Sirhodamine (Fig.4 and Table 1,compounds 21-24) by the expansion of the xanthene ring.These compounds show the emissions over 700 nm [37,38].Especially,compound 22 showed excellent tolerance to photobleaching and high quantum efficiency (φ=0.12) [25].

    Like the modification in C-rhodamines,Lavis et al.also replaced dialkylamino substituents with differently sized rings to mitigate TICT and regulate the brightness in Si-rhodamine (Fig.4 and Table 1,compounds 25-29) [31,34,39,40].The azetidinyl Sirhodamine (compound 27) had similar absorption and emission(λmax/λem=646 nm/664 nm) and higher quantum yield (φ=0.31)compared to N,N-dimethyl Si-rhodamine (compound 26).Also,depending on the free rotation of the bond between the N atom and the Si-substituted xanthene moiety,Urano et al.designed a series of near-infrared fluorescence quenchers(Fig.4 and Table 1,compounds 30 and 31)[38].These compounds showed absorption in NIR region (660 nm and 779 nm) and the quantum yields were almost zero.

    In O-rhodamine modification,introducing halogen,especially fluorine,would improve the photostability and brightness of fluorophore.This strategy was also applied in Si-rhodamine.Lavis and Hell groups have vigorously developed various fluorine-containing Si-rhodamines (Fig.4 and Table 1,compounds 32-42).Similar to C-rhodamine,introducing fluorine into the tricyclic cores of Si-rhodamine decreased the extinction coefficients and quantum yields sharply,albeit with nearly 30 nm red-shift in wavelengths (compounds 32,34 and 36) [33,40].However,the fluorination or chlorination in the bottom phenyl group had a much smaller effect on brightness with 20-30 nm redshifts in wavelengths (compounds 35,37-42).The fluorinated azetidine (compound 33) exhibited ~10 nm blue shift in spectral properties,a slightly higher quantum yield (φ=0.56) relative to compound 27,which was similar to O-rhodamines and Crhodamines [32].

    Replacing the group at the 9-position also induced fluorescence changes(Fig.4 and Table 1,compounds 43-58).Compound 43 with a conjugated phenylethynyl group shifted the absorption and emission over 700 nm [36].The 9-imino-10-silaxanthone compounds 44 and 45 exhibit remarkably large Stokes shifts (around 200 nm),which were related to the excitation of an electron from the HOMO to the LUMO of the chromophores [41].These fluorophores with large Stokes shift would be useful in multicolor nanoscopy[42].Based on the structure of azetidinyl Si-rhodamine(compound 27),Lavis et al.also changed the substituents at the 9th position.(Compounds 46-58 showed similar absorption and emission spectra (~λmax/λem=650 nm/665 nm).The extinction coefficients of these compounds were about 1.2×105L mol-1cm-1.However,the quantum yields were greatly influenced by the substitutes.For example,compound 51 had a lower quantum yield of 0.2,while the quantum yields of compounds 52-56 were over 0.5 [33,40].The intramolecular rotation of phenyl ring in 51 may decrease the quantum yield.

    Dimethylsilane was routinely used as heteroatom in Sirhodamine.Indeed,the different substituents on silicon atoms also affect the fluorescence properties.For example,compounds 59-61 with different Si-substitutes were developed by Zhang et al.(Fig.4 and Table 1).These compounds displayed different bathochromic shifts and quantum yields [43].For compound 62,the substitute was changed from silane to silanediol,and the excitation and emission were further red-shifted to 663 nm and 681 nm,respectively,with ε=1.05×105L mol-1cm-1and φ=0.43 in PBS buffer [27].

    3.3.Germanium-rhodamines (Ge-rhodamine)

    Ge-rhodamines display further about 10 nm hypsochromic shift compared with Si-rhodamine.And the brightness is similar with that of Si-rhodamine (Fig.5 and Table 1,compounds 63-66)[28,34].Taking compound 65 as an example,it displayed λmax/λem=410 nm/471 nm,ε=9.7×104L mol-1cm-1and φ=0.43.Although the attention to Ge-rhodamine is constrained by the fact that synthetic raw materials are not readily available,the outstanding brightness and proper excitation wavelength make Ge-rhodamine a promising fluorophore in bioimaging(Fig.5).

    3.4.Tin-rhodamines (Sn-rhodamine)

    Compared to C-,Si-and Ge-rhodamine,Sn-rhodamines were rarely reported(Fig.6 and Table 1,compounds 67-68)[28].Nagano group synthesized both Sn-pyronine and Sn-rhodamine and found they were really chemical-active.Compound 68 showed the maximum absorption and emission at 614 nm and 628 nm,respectively.

    4.Nitrogen family

    4.1.Nitrogen-rhodamines (N-rhodamine)

    Replacement of the oxygen by a nitrogen atom on the pyronin framework produced acridine orange(69),which have been widely used as a nucleic acid-selective dye over half a century.When bound to DNA,acridine orange displayed a similar emission with that of fluorescein.When bound to RNA,its excitation and emission were shifted to 460 nm and 650 nm,respectively.Lavis et al.replaced the N,N-dimethylamino substituents in acridine orange with four-membered azetidine rings.Compound 70 showed an improved quantum yield from 0.21 to 0.52 (Fig.7 and Table 1,compounds 69-70) [31].

    4.2.Phosphorus-rhodamines (P-rhodamine)

    Fig.3.Structures of C-rhodamines.

    Besides nitrogen,phosphorus was also used to replace rhodamine oxygen.In 2015,Wang et al.reported a series of Prhodamines(Fig.8 and Table 1,compounds 71-73)[44].Due to the electron-withdrawing properties of the phosphorus moiety,these P-rhodamines elicit 140 nm bathochromic shifts relative to O-rhodamine.These compounds displayed similar absorption and emission spectra (λmax/λem=694 nm/711 nm).Due to the restricted intramolecular rotation,the quantum yields of 71-73,which have increasing number of methyl substituents in phenyl group,improved from 0.06 to 0.15.Stains et al.used phosphinate functional group as the bridge and created P-rhodamines 74-77 (Fig.8 and Table 1).Compound 74 exhibited excitation and emission maxima at 666 nm and 685 nm,respectively.The molar extinction coefficients and quantum yields were 1.65×105L mol-1cm-1and φ=0.38,respectively.Moreover,its ethyl ester counterpart compound 75 showed further 35 nm bathochromic shift,though the brightness decreased.By replacing the dimethylaniline in compounds 74 and 75 with julolidine substituent,the excitation and emissions in compounds 76 and 77 were further red-shifted to the rang over 700 nm [45].

    5.Oxygen family

    Due to the similar chemical characteristics in chalcogens,it was reasonable to replace the bridging oxygen atom with other chalcogens.The extent of red shift in emissions was correlate with the atom size(O <S <Se <Te)[46].This trend was thought to be related to the resonance effect of the chalcogen atom,which narrowed the HOMO-LUMO gap [47,48].Besides,the molar extinction coefficients and fluorescence quantum yields decreased with the increasing size of the chalcogen atom,which could be attributed to a strong heavy-atom effect [49].Different with oxygen,the common oxidation states in S,Se,and Te could be-2,+4 and+6.The corresponding oxide can also be applied in replacing the bridging oxygen atom.

    5.1.Sulfur-rhodamines (S-rhodamine)

    Most of S-rhodamines were firstly reported by Detty group(Fig.9 and Table 1,compounds 78-83).Compared to O-rhodamine,S-rhodamines displayed about 20 nm red-shift in absorption and emission spectra.However,the brightness was less than half that of O-rhodamine.Taking compound 78 as an example,it exhibited λmax/λem=571 nm/599 nm,ε=6.26×104L mol-1cm-1and φ=0.44 in methanol.These photophysical properties limited the wide applications of S-rhodamine in biological imaging[46,49,50].

    Guo et al.reported a series of sulfone-rhodamines in 2016(Fig.9 and Table 1,compounds 84-89)[51].The sulfone group serves as the bridge to rigidify their structures and a strong electron withdrawing group.The absorption and emission of sulfone-rhodamines reached 700 nm and 730 nm,respectively.Different substituents in phenyl group influenced the stability and brightness due to the steric effects,which have been referred in P-rhodamines.

    5.2.Selenium-rhodamines (Se-rhodamine)

    When the oxygen bridge was replaced by Selentium,the bathochromic shift in emission was further increased by 30 nm associated with sharply decreased brightness(Fig.10 and Table 1,compounds 90-95) [46,50].For example,compound 90 showed λmax/λem=581 nm/608 nm and ε=4.4×104L mol-1cm-1,but a relatively low φ=0.01 in methanol.Unlike other dyes,Serhodamine had a high yield for singlet oxygen generation,which could be applied as an efficient photosensitizer [49].

    5.3.Tellurium-rhodamines (Te-rhodamine)

    Te-rhodamines were reported with very weak fluorescence(φ <0.001) due to the heavy-atom effect (Fig.11 and Table 1,compounds 96-104)[50,52,53].For Te-rhodamines,Te atom could be easily oxidized by reactive oxygen species (Fig.11 and Table 1,compounds 105-107).The corresponding telluroxide rhodamines exhibited a large red shift compared to Te-rhodamine and showed strong fluorescence.Taking compound 96 as an example,it could be oxidized to compound 105 by reactive oxygen species and exhibited maximum fluorescence emission around 686 nm with φ=0.18 [52].These results indicated that the heavy-atom effect could be weakened by binding of oxygen atom.

    6.Conclusions and perspectives

    Rhodamine is a type of widely used fluorophore.The bridge modification atom at 10 position enriches the color palette of rhodamines.So far,most of the possible element have been applied to build heteroatom-substituted rhodamine.Changing the functional group of the same element at 10 position seems a promising method to further extend the heteroatom-substituted rhodamines in the further.For example,sulfur-rhodamine and sulfonerhodamine share the same element at 10 position but have totally different photophysical properties.Besides,most of the researches in this field are focusing on group 14 elements,especially silicon.A number of methods have been proposed to improve the brightness,photostability and fluorogenicity of rhodamine,C-rhodamine and Si-rhodamine.Among these methods,incorporation of fourmembered azetidine rings into the fluorophore is one of the most attractive.However,these methods have rarely been applied in other element replaced rhodamines so far.We hope that this review paper can draw much more attention on the structural modification of rhodamines.A new way of thinking can be found through the comparison of fluorescence structure-activity relationships.We hope that the structure-activity relationship summarized here,as shown in Table 1,will help to achieve the goal of creating more dyes with high brightness and photostability.

    Fig.4.Structures of Si-rhodamines.

    Fig.5.Structures of Ge-rhodamines.

    Fig.6.Structures of tin-substituted rhodamines.

    Fig.7.Structures of N-rhodamines.

    Fig.8.Structures of P-rhodamines.

    Fig.9.Structures of S-rhodamines and sulfone-rhodamines.

    Fig.10.Structures of Se-rhodamines.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation China (No.21878286) and DICP (Nos.DMTO201603,TMSR201601).

    Fig.11.Structures of Te-rhodamines.

    久久精品国产亚洲网站| 国产伦在线观看视频一区| 一个人看的www免费观看视频| 亚洲乱码一区二区免费版| 国产男人的电影天堂91| 简卡轻食公司| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 少妇丰满av| av在线天堂中文字幕| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区 | 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| 男女国产视频网站| 中文乱码字字幕精品一区二区三区 | 国产亚洲精品久久久com| 久久久久久久久久久丰满| 亚洲最大成人中文| 日韩精品有码人妻一区| 六月丁香七月| 成年av动漫网址| 人人妻人人看人人澡| 欧美精品一区二区大全| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 欧美成人午夜免费资源| 波野结衣二区三区在线| 日日撸夜夜添| 18禁裸乳无遮挡免费网站照片| 蜜桃久久精品国产亚洲av| 看免费成人av毛片| 精品一区二区免费观看| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品 | 日韩av在线免费看完整版不卡| 国产av不卡久久| 2021少妇久久久久久久久久久| 午夜久久久久精精品| 国产白丝娇喘喷水9色精品| www日本黄色视频网| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的 | 在线观看av片永久免费下载| 听说在线观看完整版免费高清| 国产中年淑女户外野战色| 欧美变态另类bdsm刘玥| 亚洲成人精品中文字幕电影| 欧美激情在线99| 晚上一个人看的免费电影| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 日韩欧美精品免费久久| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 欧美激情久久久久久爽电影| 我的女老师完整版在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成av人片在线播放无| 中文字幕av成人在线电影| 国产黄a三级三级三级人| 亚洲国产色片| 中国美白少妇内射xxxbb| av播播在线观看一区| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 看免费成人av毛片| 最近最新中文字幕免费大全7| 国语对白做爰xxxⅹ性视频网站| 99久久成人亚洲精品观看| 欧美不卡视频在线免费观看| 美女黄网站色视频| av女优亚洲男人天堂| 成人一区二区视频在线观看| 日韩欧美精品v在线| 搡老妇女老女人老熟妇| 国产在线一区二区三区精 | 日本爱情动作片www.在线观看| 国产单亲对白刺激| 亚洲国产精品合色在线| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 日韩国内少妇激情av| 国产 一区精品| av在线播放精品| 99久国产av精品| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 少妇猛男粗大的猛烈进出视频 | 蜜桃亚洲精品一区二区三区| .国产精品久久| 99热网站在线观看| 久久久久网色| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 亚洲精品自拍成人| 日日干狠狠操夜夜爽| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 国产黄a三级三级三级人| 国产成人aa在线观看| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| 1024手机看黄色片| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 国产乱来视频区| 特级一级黄色大片| 在线免费观看的www视频| 亚洲综合精品二区| 一级毛片aaaaaa免费看小| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 一级av片app| 国产白丝娇喘喷水9色精品| 美女黄网站色视频| 超碰97精品在线观看| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 午夜激情欧美在线| 女人久久www免费人成看片 | 91狼人影院| 亚洲精品成人久久久久久| 免费搜索国产男女视频| 国产又黄又爽又无遮挡在线| 国产极品天堂在线| 好男人视频免费观看在线| 国产色婷婷99| 深夜a级毛片| 性插视频无遮挡在线免费观看| 99热这里只有是精品50| 91av网一区二区| 亚洲婷婷狠狠爱综合网| 麻豆一二三区av精品| av播播在线观看一区| 嫩草影院入口| 成人午夜精彩视频在线观看| 99热精品在线国产| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 一个人看视频在线观看www免费| 色噜噜av男人的天堂激情| 一区二区三区乱码不卡18| 99热精品在线国产| 久久这里只有精品中国| 免费黄色在线免费观看| 三级男女做爰猛烈吃奶摸视频| 爱豆传媒免费全集在线观看| 人妻系列 视频| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 韩国高清视频一区二区三区| 女人久久www免费人成看片 | 久久久久久久久久久免费av| 九九热线精品视视频播放| 嘟嘟电影网在线观看| 小说图片视频综合网站| 综合色丁香网| 成人一区二区视频在线观看| 亚洲怡红院男人天堂| 在线免费十八禁| 高清视频免费观看一区二区 | 日韩欧美精品免费久久| 日韩成人伦理影院| 久久久久久久久大av| 乱系列少妇在线播放| 特级一级黄色大片| 有码 亚洲区| 国产精品伦人一区二区| 欧美精品一区二区大全| av视频在线观看入口| 国产 一区 欧美 日韩| 男人舔奶头视频| 亚洲av熟女| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 一级黄片播放器| 国产精品国产高清国产av| 亚洲国产欧洲综合997久久,| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 午夜免费激情av| 赤兔流量卡办理| 亚洲美女视频黄频| 久久精品夜色国产| 亚洲色图av天堂| 高清av免费在线| 18禁动态无遮挡网站| 日本黄大片高清| 久久综合国产亚洲精品| 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 精品欧美国产一区二区三| 特级一级黄色大片| 成人特级av手机在线观看| 中文字幕制服av| 国产精品一区二区性色av| 我要搜黄色片| 秋霞伦理黄片| 免费av毛片视频| 午夜激情福利司机影院| 老司机影院毛片| 男女国产视频网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品自拍成人| 亚洲av免费高清在线观看| 国产成人一区二区在线| 欧美一区二区国产精品久久精品| 国产一区有黄有色的免费视频 | 美女黄网站色视频| 亚洲国产成人一精品久久久| 久久久久久九九精品二区国产| 日日干狠狠操夜夜爽| 成人欧美大片| www.色视频.com| 日韩一区二区三区影片| 日本黄大片高清| 噜噜噜噜噜久久久久久91| av线在线观看网站| 日韩中字成人| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 精品国产一区二区三区久久久樱花 | 午夜福利视频1000在线观看| 黄色一级大片看看| 免费观看人在逋| 国产一区有黄有色的免费视频 | 国产精品无大码| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区 | 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 十八禁国产超污无遮挡网站| 日韩中字成人| 女人被狂操c到高潮| 亚洲精品aⅴ在线观看| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 国产精品精品国产色婷婷| 观看免费一级毛片| 亚洲美女视频黄频| 久久草成人影院| 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| 亚洲av福利一区| 欧美另类亚洲清纯唯美| 国产亚洲5aaaaa淫片| 午夜福利视频1000在线观看| 在线a可以看的网站| 一级毛片久久久久久久久女| 免费av观看视频| av又黄又爽大尺度在线免费看 | 久久99精品国语久久久| 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 99久久精品一区二区三区| 99久久精品热视频| 中文字幕制服av| 2022亚洲国产成人精品| 成人av在线播放网站| 国产精品1区2区在线观看.| 欧美性猛交╳xxx乱大交人| 一级爰片在线观看| 热99在线观看视频| 国产精品蜜桃在线观看| 欧美日韩在线观看h| 国产真实乱freesex| 夫妻性生交免费视频一级片| 精品免费久久久久久久清纯| 日韩成人伦理影院| 中文字幕熟女人妻在线| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 亚洲成色77777| 青青草视频在线视频观看| 成人欧美大片| 国产成人福利小说| 一级毛片aaaaaa免费看小| 日韩欧美三级三区| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 免费看日本二区| 男女啪啪激烈高潮av片| 精品人妻熟女av久视频| 亚洲中文字幕一区二区三区有码在线看| 美女内射精品一级片tv| 女人久久www免费人成看片 | 日产精品乱码卡一卡2卡三| 2021少妇久久久久久久久久久| av福利片在线观看| 欧美xxxx黑人xx丫x性爽| 两性午夜刺激爽爽歪歪视频在线观看| 一级毛片久久久久久久久女| 97超碰精品成人国产| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 男人舔奶头视频| 日韩av在线大香蕉| 国产真实乱freesex| 久久久久网色| 免费人成在线观看视频色| 久久欧美精品欧美久久欧美| 欧美性感艳星| 中文字幕免费在线视频6| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 男女视频在线观看网站免费| 又爽又黄a免费视频| 永久网站在线| 国产一区二区在线av高清观看| 99热这里只有是精品在线观看| 国产精品.久久久| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 联通29元200g的流量卡| 亚洲精品,欧美精品| 女人十人毛片免费观看3o分钟| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜 | 欧美区成人在线视频| 中文精品一卡2卡3卡4更新| 国产单亲对白刺激| 岛国毛片在线播放| 色视频www国产| 黄色一级大片看看| 变态另类丝袜制服| 久久精品国产亚洲av天美| 欧美人与善性xxx| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 国产成人精品久久久久久| 国产黄色小视频在线观看| 18禁动态无遮挡网站| 免费av不卡在线播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲电影在线观看av| 久久人人爽人人爽人人片va| 麻豆乱淫一区二区| 亚洲,欧美,日韩| av又黄又爽大尺度在线免费看 | 精品人妻一区二区三区麻豆| 三级经典国产精品| 国产欧美另类精品又又久久亚洲欧美| 午夜福利成人在线免费观看| 午夜福利高清视频| 亚洲av一区综合| 久久草成人影院| 纵有疾风起免费观看全集完整版 | 少妇丰满av| 免费观看的影片在线观看| 18+在线观看网站| 国产不卡一卡二| 免费观看的影片在线观看| av专区在线播放| 亚洲成人中文字幕在线播放| 一边摸一边抽搐一进一小说| 99热这里只有是精品50| 国产极品天堂在线| 美女内射精品一级片tv| 麻豆一二三区av精品| 黄片wwwwww| 国产精华一区二区三区| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 黄色配什么色好看| 精品午夜福利在线看| 桃色一区二区三区在线观看| 永久网站在线| 欧美xxxx性猛交bbbb| 神马国产精品三级电影在线观看| 女人被狂操c到高潮| 91av网一区二区| 欧美另类亚洲清纯唯美| 国产精品一及| 99热精品在线国产| 亚洲av电影在线观看一区二区三区 | 国产精品久久久久久精品电影小说 | 综合色丁香网| 久久久久久久久久久免费av| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 男女视频在线观看网站免费| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 日本-黄色视频高清免费观看| 好男人在线观看高清免费视频| 成人毛片a级毛片在线播放| 热99re8久久精品国产| 亚洲精品,欧美精品| 免费看日本二区| 久久久久精品久久久久真实原创| 国产大屁股一区二区在线视频| 日韩三级伦理在线观看| 亚洲丝袜综合中文字幕| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 久久久久九九精品影院| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 亚洲精品日韩在线中文字幕| 晚上一个人看的免费电影| 少妇丰满av| 日韩欧美国产在线观看| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 成人av在线播放网站| 亚洲精品久久久久久婷婷小说 | 成人毛片60女人毛片免费| av女优亚洲男人天堂| 国产免费福利视频在线观看| 午夜爱爱视频在线播放| 亚洲精品,欧美精品| 亚洲av不卡在线观看| 免费av毛片视频| 国产精品麻豆人妻色哟哟久久 | 精品一区二区三区视频在线| 免费看a级黄色片| 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| 又黄又爽又刺激的免费视频.| 国产一区二区在线av高清观看| 久久亚洲国产成人精品v| 一夜夜www| 国产精品.久久久| 最近手机中文字幕大全| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 国产私拍福利视频在线观看| 看片在线看免费视频| 欧美一区二区亚洲| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 国产成人午夜福利电影在线观看| 久久99热这里只频精品6学生 | 免费观看人在逋| 亚洲成色77777| 久久久色成人| 亚洲乱码一区二区免费版| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产淫片久久久久久久久| 日韩精品青青久久久久久| 超碰97精品在线观看| 91av网一区二区| 天堂影院成人在线观看| 丰满乱子伦码专区| 少妇高潮的动态图| 99在线视频只有这里精品首页| 日本五十路高清| 亚洲美女搞黄在线观看| 久久人人爽人人爽人人片va| 精品少妇黑人巨大在线播放 | 日韩av在线免费看完整版不卡| 久久草成人影院| 色噜噜av男人的天堂激情| 久久人妻av系列| 淫秽高清视频在线观看| h日本视频在线播放| 国内精品宾馆在线| 汤姆久久久久久久影院中文字幕 | 国产成人精品一,二区| 精品久久久久久久久av| 久久久久国产网址| 国产亚洲精品久久久com| 亚洲激情五月婷婷啪啪| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区久久| 国产成人午夜福利电影在线观看| 少妇猛男粗大的猛烈进出视频 | 国产免费男女视频| 男人的好看免费观看在线视频| 亚洲av中文av极速乱| 精品99又大又爽又粗少妇毛片| 爱豆传媒免费全集在线观看| 尾随美女入室| 亚洲综合精品二区| 人人妻人人澡欧美一区二区| 国产在视频线在精品| a级毛片免费高清观看在线播放| 国产毛片a区久久久久| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影 | 久久热精品热| 亚洲久久久久久中文字幕| 国产av不卡久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久国内精品自在自线图片| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 久久久久久国产a免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 大香蕉97超碰在线| 亚洲成人精品中文字幕电影| 国产色爽女视频免费观看| 亚洲av电影在线观看一区二区三区 | 欧美高清性xxxxhd video| 亚洲自偷自拍三级| 国产探花极品一区二区| 免费观看的影片在线观看| 亚洲乱码一区二区免费版| 欧美高清性xxxxhd video| 久久人人爽人人爽人人片va| 搞女人的毛片| 日韩亚洲欧美综合| eeuss影院久久| 亚洲在线观看片| 偷拍熟女少妇极品色| 国产精品久久久久久久电影| 国产精品国产三级国产专区5o | 日韩视频在线欧美| 岛国在线免费视频观看| 国产高潮美女av| 久久久久久久国产电影| 成年女人永久免费观看视频| 伦理电影大哥的女人| 亚洲国产精品成人久久小说| 欧美日韩精品成人综合77777| 青春草视频在线免费观看| av视频在线观看入口| 身体一侧抽搐| 久热久热在线精品观看| 精品午夜福利在线看| 国产精品乱码一区二三区的特点| 亚洲国产精品成人久久小说| 国内揄拍国产精品人妻在线| 久久这里有精品视频免费| 国产精品久久久久久av不卡| 神马国产精品三级电影在线观看| videos熟女内射| 成人特级av手机在线观看| 一级黄色大片毛片| 国产亚洲一区二区精品| 亚洲自偷自拍三级| 九草在线视频观看| 精品欧美国产一区二区三| 少妇被粗大猛烈的视频| 午夜视频国产福利| 一级毛片我不卡| 国产精品无大码| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩卡通动漫| 亚洲激情五月婷婷啪啪| 国产综合懂色| 69人妻影院| 日本免费一区二区三区高清不卡| 久久久久久久久久久丰满| av在线天堂中文字幕| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 国产精品三级大全| 色网站视频免费| 久久久国产成人精品二区| 高清av免费在线| 波野结衣二区三区在线| 久久精品久久久久久久性| 精品一区二区免费观看| 欧美97在线视频| 乱人视频在线观看| 观看免费一级毛片| 看十八女毛片水多多多| 一二三四中文在线观看免费高清| 国产毛片a区久久久久| 日韩av在线大香蕉| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 高清在线视频一区二区三区 | 色综合站精品国产| 午夜视频国产福利| 我要搜黄色片| 亚洲最大成人中文| 能在线免费看毛片的网站| 色网站视频免费| 国产真实乱freesex| 亚洲自拍偷在线| 国产精品永久免费网站| 少妇的逼好多水| 欧美激情国产日韩精品一区| 午夜福利在线观看吧| 91久久精品电影网| 国产精品伦人一区二区| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久 | 我要搜黄色片| 老司机影院毛片| 中文乱码字字幕精品一区二区三区 | 欧美日韩国产亚洲二区| 一级二级三级毛片免费看| 岛国毛片在线播放| 国内精品宾馆在线| 91午夜精品亚洲一区二区三区|