• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      熵加權(quán)聚類挖掘算法在學(xué)科競賽學(xué)員選拔中的應(yīng)用

      2019-10-14 03:18:09金媛媛李丹楊明
      現(xiàn)代電子技術(shù) 2019年19期
      關(guān)鍵詞:聚類分析數(shù)據(jù)挖掘

      金媛媛 李丹 楊明

      摘 ?要: 針對現(xiàn)有學(xué)科競賽學(xué)員選拔中對評估數(shù)據(jù)缺少有效利用的問題,提出一種基于熵加權(quán)聚類的挖掘算法,對學(xué)科數(shù)據(jù)集合進(jìn)行聚類,從而實(shí)現(xiàn)科學(xué)合理的人才挑選機(jī)制。采用人工統(tǒng)計對數(shù)據(jù)進(jìn)行采集和歸一化預(yù)處理,并利用稀疏分?jǐn)?shù)進(jìn)行數(shù)據(jù)特征選擇,實(shí)現(xiàn)非必要聚類特征的過濾。通過熵加權(quán)聚類算法挖掘具有最優(yōu)解的競賽成員分配方案。實(shí)例分析結(jié)果表明,相比標(biāo)準(zhǔn)的Apriori算法,熵加權(quán)聚類算法運(yùn)行效率更高,驗(yàn)證了提出方法的合理性和有效性。

      關(guān)鍵詞: 聚類分析; 人才評估; 熵加權(quán); 數(shù)據(jù)挖掘; 歸一化預(yù)處理; 數(shù)據(jù)特征選擇

      中圖分類號: TN911.1?34; TP309 ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)19?0112?03

      Abstract: In order to solve the problem of the lack of effective use of the evaluation data in the selection of existing academic contestants, a mining algorithm based on entropy?weighted clustering is proposed to cluster the subject data sets to achieve a scientific and rational mechanism of talent selection. The data is collected and normalized by manual statistic approach, and the sparse scores are used to select the data features for filtering of the non?essential clustering features. The entropy weighted clustering algorithm is used to mine the competition member allocation scheme with the optimal solution. The example analysis results show that the entropy?weighted clustering algorithm is more efficient than the standard Apriori algorithm, which verifies the rationality and effectiveness of the proposed method.

      Keywords: cluster analysis; talent assessment; entropy weighting; data mining; normalization preprocessing; data feature selection

      0 ?引 ?言

      數(shù)據(jù)挖掘作為一種新興的計算機(jī)科學(xué)技術(shù),已經(jīng)逐漸應(yīng)用到社會的各個行業(yè)之中,能夠在海量數(shù)據(jù)中尋找到有價值或關(guān)聯(lián)的科學(xué)技術(shù),通常包含三大方面內(nèi)容:知識發(fā)現(xiàn)過程、數(shù)據(jù)挖掘分類和數(shù)據(jù)挖掘應(yīng)用。聚類分析是目前應(yīng)用較為廣泛的數(shù)據(jù)挖掘方法,可以視為一個劃分?jǐn)?shù)據(jù)對象集的過程。文獻(xiàn)[1]提出適用于軌跡模式和路徑挖掘的聚類方法。文獻(xiàn)[2]提出基于事件日志的關(guān)聯(lián)、預(yù)測和聚類動態(tài)行為的事件過程挖掘框架。文獻(xiàn)[3]提出基于熵加權(quán)聚類算法的自組網(wǎng)優(yōu)化方案。

      隨著我國教學(xué)質(zhì)量的不斷提升,各種科學(xué)競賽已經(jīng)成為各大高校展現(xiàn)自身教學(xué)實(shí)力的平臺,對提高學(xué)生專業(yè)素質(zhì)和培養(yǎng)學(xué)習(xí)興趣有較大的促進(jìn)作用。由于競賽準(zhǔn)備時間短且學(xué)科競賽學(xué)員選拔困難,如何分配相應(yīng)學(xué)科較優(yōu)的學(xué)生參賽就具有比較現(xiàn)實(shí)的研究意義,但是,現(xiàn)階段相關(guān)領(lǐng)域的研究十分稀少,且僅限于Apriori關(guān)聯(lián)規(guī)則挖掘,例如文獻(xiàn)[4]。因此,本文提出一種基于熵加權(quán)聚類的挖掘算法,對學(xué)科數(shù)據(jù)集合進(jìn)行聚類,實(shí)現(xiàn)科學(xué)合理的人才挑選機(jī)制,從而解決多目標(biāo)的競賽成員分配求解問題。實(shí)驗(yàn)結(jié)果表明,熵加權(quán)聚類算法同Apriori算法一樣均能夠有效應(yīng)用于學(xué)科競賽學(xué)員選拔中,但是熵加權(quán)聚類算法具有更短的求解時間。

      1 ?數(shù)據(jù)的預(yù)處理

      1.1 ?統(tǒng)計數(shù)據(jù)的歸一化

      首先采用人工統(tǒng)計對學(xué)科競賽選拔中涉及的輸入樣本數(shù)據(jù)進(jìn)行采集,并歸一化預(yù)處理[5?6],具體方式如下:

      可以看出,隨著學(xué)生數(shù)量的提升,兩種算法所需的運(yùn)行時間均不斷增加,但是在相同數(shù)量條件下,熵加權(quán)聚類挖掘算法比標(biāo)準(zhǔn)的Apriori關(guān)聯(lián)規(guī)則挖掘算法運(yùn)行時間更短,即挖掘效率更高。

      4 ?結(jié) ?語

      本文提出一種基于熵加權(quán)聚類的挖掘算法,對學(xué)科數(shù)據(jù)集合進(jìn)行聚類,從而實(shí)現(xiàn)科學(xué)合理的人才挑選機(jī)制,解決多目標(biāo)的競賽成員分配求解問題。采用稀疏分?jǐn)?shù)表示法,降低數(shù)據(jù)維度。并通過學(xué)習(xí)成績、興趣指數(shù)和潛力指數(shù)3個評估指標(biāo)進(jìn)行聚類矩陣計算,實(shí)例驗(yàn)證了提出算法的有效性和高效性。但是挖掘過程中當(dāng)支持度設(shè)置逐漸增大時,算法的運(yùn)行效率下降較為嚴(yán)重,后續(xù)將對此進(jìn)行重點(diǎn)研究。

      參考文獻(xiàn)

      [1] HUNG C C, PENG W C, LEE W C. Clustering and aggrega?ting clues of trajectories for mining trajectory patterns and routes [J]. The VLDB journal, 2015, 24(2): 169?192.

      [2] LEONI M D, AALST W M P V D, DEES M. A general process mining framework for correlating, predicting and cluste?ring dynamic behavior based on event logs [J]. Information systems, 2016, 56(3): 235?257.

      [3] FATHIAN M, JAFARIAN?MOGHADDAM A R. New cluste?ring algorithms for vehicular Ad?hoc network in a highway communication environment [J]. Wireless networks, 2015, 21(8): 2765?2780.

      [4] 李毓蘭.改進(jìn)Apriori算法及其在信息學(xué)奧賽學(xué)員選拔中的應(yīng)用[D].泉州:華僑大學(xué),2015.

      LI Yulan. Improved Apriori algorithm and its application in the selection of informatics students [D]. Quanzhou: Huaqiao University, 2015.

      [5] CASTRO P M. Normalized multiparametric disaggregation: an efficient relaxation for mixed?integer bilinear problems [J]. Journal of global optimization, 2016, 64(4): 765?784.

      [6] GLEASON S, RUF C S, CLARIZIA M P, et al. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system [J]. IEEE transactions on geoscience & remote sensing, 2016, 54(5): 2495?2509.

      [7] BORNMANN L, HAUNSCHILD R. Normalization of mendeley reader impact on the reader?and paper?side: a comparison of the mean discipline normalized reader score (MDNRS) with the mean normalized reader score (MNRS) and bare reader counts [J]. Journal of informetrics, 2016, 10(3): 776?788.

      [8] ZHANG C, ZHOU S. Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data [J]. Journal of differential equations, 2017, 248: 1376?1400.

      [9] BORNMANN L, THOR A, MARX W, et al. The application of bibliometrics to research evaluation in the humanities and social sciences: an exploratory study using normalized Google Scholar data for the publications of a research institute [J]. Journal of the association for information science & technology, 2016, 67(11): 2778?2789.

      [10] 魏霖靜,寧璐璐,郭斌,等.大數(shù)據(jù)中基于熵加權(quán)的稀疏分?jǐn)?shù)特征選擇聚類算法[J].計算機(jī)應(yīng)用研究,2018,35(8):2293?2294.

      WEI Linjing, NING Lulu, GUO Bin, et al. Sparse?segment feature selection clustering algorithm based on entropy weigh?ting in big data [J]. Application research of computers, 2018, 35(8): 2293?2294.

      [11] YANG M S, NATALIANI Y. A feature?reduction fuzzy cluste?ring algorithm based on feature?weighted entropy [J]. IEEE transactions on fuzzy systems, 2018, 26(2): 817?835.

      [12] KAWAMURA T, SEKINE M, MATSUMURA K. Detecting hypernym/hyponym in science and technology thesaurus using entropy?based clustering of word vectors [J]. International journal of semantic computing, 2017, 11(4): 17?24.

      [13] 李敏,李彩霞,魏霖靜.基于熵加權(quán)的四叉樹分解單幀圖像去霧[J].計算機(jī)工程與設(shè)計,2017,38(6):1575?1579.

      LI Min, LI Caixia, WEI Linjing. Four?tree decomposition of single frame image defogging based on entropy weighting [J]. Computer engineering and design, 2017, 38(6): 1575?1579.

      [14] HAFEZALKOTOB Arian, ASHKAN Hafezalkotob. Extended MULTIMOORA method based on Shannon entropy weight for materials selection [J]. Journal of Industrial engineering international, 2016, 12(1): 1?13.

      猜你喜歡
      聚類分析數(shù)據(jù)挖掘
      探討人工智能與數(shù)據(jù)挖掘發(fā)展趨勢
      基于并行計算的大數(shù)據(jù)挖掘在電網(wǎng)中的應(yīng)用
      電力與能源(2017年6期)2017-05-14 06:19:37
      數(shù)據(jù)挖掘技術(shù)在中醫(yī)診療數(shù)據(jù)分析中的應(yīng)用
      基于聚類分析研究貴州省各地區(qū)經(jīng)濟(jì)發(fā)展綜合評價
      商情(2016年39期)2016-11-21 08:45:54
      新媒體用戶行為模式分析
      農(nóng)村居民家庭人均生活消費(fèi)支出分析
      基于省會城市經(jīng)濟(jì)發(fā)展程度的實(shí)證分析
      中國市場(2016年33期)2016-10-18 12:16:58
      基于聚類分析的互聯(lián)網(wǎng)廣告投放研究
      科技視界(2016年20期)2016-09-29 12:32:48
      “縣級供電企業(yè)生產(chǎn)經(jīng)營統(tǒng)計一套”表輔助決策模式研究
      一種基于Hadoop的大數(shù)據(jù)挖掘云服務(wù)及應(yīng)用
      琼结县| 绥化市| 德昌县| 尚志市| 八宿县| 定日县| 哈巴河县| 内丘县| 普兰店市| 鱼台县| 田东县| 英超| 长海县| 湖口县| 扎囊县| 九江市| 平江县| 呈贡县| 玛沁县| 永康市| 莆田市| 安丘市| 溆浦县| 玛多县| 绥棱县| 琼海市| 棋牌| 屏山县| 兴义市| 丹棱县| 临颍县| 吴忠市| 姜堰市| 临湘市| 宣城市| 枣庄市| 广水市| 凭祥市| 龙岩市| 涞水县| 托克逊县|