王秋菊,劉 峰,遲鳳琴,焦 峰,張春峰,姜 輝,李鵬緋,朱寶國(guó)
秸稈還田及氮肥調(diào)控對(duì)不同肥力白漿土氮素及水稻產(chǎn)量影響
王秋菊1,2,劉 峰1,遲鳳琴1,焦 峰3,張春峰4,姜 輝5,李鵬緋6,朱寶國(guó)4
(1. 黑龍江省農(nóng)業(yè)科學(xué)院土壤肥料與資源環(huán)境研究所,哈爾濱 150086; 2. 黑龍江省土壤環(huán)境與植物營(yíng)養(yǎng)重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150086;3. 黑龍江八一農(nóng)墾大學(xué),大慶 163319;4. 黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,佳木斯 154007;5. 黑龍江農(nóng)業(yè)科學(xué)院科研處,哈爾濱 150086;6. 前進(jìn)農(nóng)場(chǎng)現(xiàn)代農(nóng)業(yè)發(fā)展中心,富錦 156331)
三江平原是黑龍江省水稻主要種植區(qū),白漿土是主要種稻土壤,在白漿土上開(kāi)展秸稈還田試驗(yàn)研究,明確白漿土秸稈還田效果,根據(jù)土壤肥力水平調(diào)控氮素為秸稈還田提出因地制宜的土壤、施肥等管理技術(shù)提供參考。該文以白漿土為供試土壤,比較研究不同肥力白漿土上連續(xù)秸稈還田及調(diào)控氮素對(duì)水稻產(chǎn)量及土壤養(yǎng)分變化的影響。結(jié)果得出:高肥力土壤連續(xù)秸稈還田適合減氮,減氮10%連續(xù)3年水稻不減產(chǎn),增產(chǎn)幅度為0.1%~6.94%,減氮20%以上產(chǎn)量降低,秸稈連續(xù)還田增加氮素水稻產(chǎn)量第1年與正常施肥比增產(chǎn)4.47%,第2年水稻產(chǎn)量比對(duì)照減產(chǎn)4.02%~31.86%,調(diào)氮降低幅度大;中、低肥力土壤秸稈還田水稻產(chǎn)量第1年比對(duì)照分別增加1.48%,4.52%,第2年調(diào)氮增產(chǎn)幅度會(huì)下降;秸稈還田使土壤有機(jī)質(zhì)、氮素含量提高,在高肥力土壤上氮素過(guò)高使水稻前期分蘗量增多,水稻有效穗數(shù)降低,產(chǎn)量降低,減氮后可以避免土壤氮素過(guò)剩,水稻產(chǎn)量提高;中、低肥力土壤秸稈還田有利于增加土壤肥力水平,適當(dāng)增加氮素可使水稻產(chǎn)量提高。
土壤;氮素;水稻;秸稈還田;產(chǎn)量;氮肥調(diào)控;白漿土;不同肥力
農(nóng)作物秸稈屬于生物質(zhì)能源物質(zhì),在保持和提高土壤肥力方面具有重要作用[1]。因此農(nóng)業(yè)生產(chǎn)中廣泛采用秸稈還田培肥農(nóng)田土壤。據(jù)調(diào)查,發(fā)達(dá)國(guó)家秸稈還田率在70%以上,遠(yuǎn)高于發(fā)展中國(guó)家,2011年中國(guó)秸稈還田率平均在21.3%,東北地區(qū)僅為17.6%[2],其中水田不足5%。目前水稻秸稈還田存在以下問(wèn)題:一是秸稈還田在短期內(nèi)增產(chǎn)效果不明顯;二是機(jī)械收獲留茬高、拋撒不勻,影響整地質(zhì)量,特別是入水后有大量秸稈漂浮在水面,不僅增加清理成本,也影響插秧等作業(yè)質(zhì)量;三是秸稈在淹水條件下發(fā)酵分解產(chǎn)生的中間物質(zhì)及溫室氣體不僅導(dǎo)致秧苗生育受阻,也對(duì)環(huán)境產(chǎn)生不良影響;四是秸稈攜帶的病原菌可能誘發(fā)后作病蟲(chóng)害流行。這些均是導(dǎo)致秸稈還田量低的重要因素[3]。2017年秋,黑龍江省實(shí)施的秸稈“禁燒令”取得了一定效果,但絕大部分秸稈仍未得到妥善處理,為下年機(jī)械作業(yè)埋下隱患。
秸稈還田有利有弊,只有在還田過(guò)程中配套科學(xué)合理的施肥、排灌管理等,才能達(dá)到趨利避害的效果。國(guó)內(nèi)外學(xué)者對(duì)秸稈還田與土壤酶活性[4]、土壤生物[5]、養(yǎng)分積累[6-7]、氣體釋放[8]等方面進(jìn)行了相關(guān)研究,初步明確了秸稈還田對(duì)作物生育和產(chǎn)量形成的影響以及對(duì)改良土壤的重要作用[9-11]。一些研究認(rèn)為秸稈還田后可以減施肥料[12-13],但尚不明確減肥技術(shù)與土壤肥力之間的關(guān)系。
三江平原位于黑龍江省東部,總面積10.08萬(wàn)km2[14],總耕地面積約402.5萬(wàn)hm2[15],其中水稻面積占總耕地面積50%以上,是中國(guó)重要的粳稻生產(chǎn)基地,為保障國(guó)家口糧安全做出重要貢獻(xiàn)。該區(qū)白漿土面積占總耕地面積25.4%,其中水田占80%,白漿土黑土層薄,養(yǎng)分總儲(chǔ)量少,開(kāi)展秸稈培肥地力研究意義重大。針對(duì)白漿土秸稈還田效果以及秸稈還田下如何調(diào)控施肥仍處于不明確的現(xiàn)狀,本文以不同肥力白漿土為供試土壤,開(kāi)展白漿土連續(xù)秸稈還田氮肥調(diào)控技術(shù)研究,比較不同肥力白漿土連續(xù)秸稈還田氮肥調(diào)控對(duì)水稻生育、產(chǎn)量影響,明確不同肥力白漿土上秸稈還田效果及如何調(diào)控氮肥使用,為秸稈還田條件下的因地制宜地科學(xué)施肥提供技術(shù)參考。
試驗(yàn)地點(diǎn)位于三江平原腹地的建三江管理局的前進(jìn)農(nóng)場(chǎng)和青龍山農(nóng)場(chǎng),農(nóng)場(chǎng)位于三江平原腹地富錦市和同江市之間,平均海拔66 m。
供試土壤為草甸白漿土,典型的土壤剖面由4個(gè)發(fā)生層次構(gòu)成:第一層是黑土層,平均厚度為20~30 cm,有機(jī)質(zhì)豐富,適合于作物的生長(zhǎng)發(fā)育;第二層是白漿層,平均厚度18~22 cm,土壤緊實(shí)、片狀結(jié)構(gòu),是作物根系生長(zhǎng)的障礙層次;第三層是淀積層,平均厚度45~55 cm,小核狀結(jié)構(gòu),土質(zhì)黏重;第四層是母質(zhì)層,為黃色黏土,厚度5~11 m[16]。
3個(gè)試驗(yàn)點(diǎn)直線距離在5 km以?xún)?nèi),氣候條件相同。供試土壤的基本性質(zhì)如表1。從土壤有機(jī)質(zhì)、全氮、全磷水平綜合肥力指標(biāo)看,前進(jìn)園區(qū)試驗(yàn)點(diǎn)>三區(qū)試驗(yàn)點(diǎn)>青龍山試驗(yàn)點(diǎn);黑土層厚度也呈相同趨勢(shì)。由此劃分出3種肥力水平。
表1 供試土壤肥力水平
注:肥力指數(shù):土壤有機(jī)質(zhì)×土層厚度÷100。
Note: Fertility index: Organic matter×Average thickness of black soil÷100.
土壤剖面調(diào)查結(jié)果,供試的白漿土各土層分異明顯,土體內(nèi)有大量銹斑,無(wú)潛育化現(xiàn)象(圖1)。
圖1 供試地塊土壤剖面
1.3.1 白漿土秸稈還田減氮試驗(yàn)
該試驗(yàn)在建三江管局前進(jìn)農(nóng)場(chǎng)科技園區(qū)試驗(yàn)地進(jìn)行,供試土壤為表1中高肥力土壤。試驗(yàn)于2015年秋季水稻收獲后處理,以后每年在同一小區(qū)進(jìn)行相同處理,以保證試驗(yàn)連續(xù)性。
試驗(yàn)設(shè)(1)秸稈還田+常規(guī)施肥區(qū)(S)、(2)秸稈還田+減氮10%區(qū)(-N10%)、(3)秸稈還田+減氮20%處理(-N20%)、(4)秸稈還田+減氮30%區(qū)(-N30%)。
試驗(yàn)參照當(dāng)?shù)爻R?guī)施肥量按照純氮123.6 kg/hm2、P2O569 kg/hm2、K2O 90 kg/hm2,肥料品種為:大慶產(chǎn)尿素(含N46%)、美國(guó)產(chǎn)磷酸二銨(含N18%,含P2O546%)和加拿大產(chǎn)鉀肥(含K2O60%)。施肥方法:氮肥按照基肥:蘗肥:穗肥=4:3:3比例施入,磷肥作為基肥一次性施入,鉀肥按照基肥:追肥=6:4;基肥施用時(shí)間為春季入水后。秸稈處理方法:秋季采用聯(lián)合收割機(jī)收獲水稻,將試驗(yàn)區(qū)所有秸稈搬出區(qū)外,人工粉碎成小于10 cm,秸稈按照8 250 kg/hm2還田,均勻拋撒后進(jìn)行機(jī)械旋耕作業(yè)。減氮10%區(qū)、減氮20%區(qū)和減氮30%區(qū)氮素用量分別在常規(guī)施純氮123.6 kg/hm2的標(biāo)準(zhǔn)下減少氮素總量的10%、20%、30%,田間施用方法與正常施肥的時(shí)期和比例一致。試驗(yàn)設(shè)3次重復(fù),小區(qū)面積100 m2。
1.3.2 不同肥力白漿土秸稈還田增氮試驗(yàn)
于2016年秋分別在不同肥力白漿土上設(shè)置秸稈還田氮素調(diào)控試驗(yàn)區(qū),2017-2018年在同一試驗(yàn)區(qū)連續(xù)進(jìn)行相同處理,試驗(yàn)地點(diǎn)和土壤肥力狀況如表1,土壤剖面見(jiàn)圖2。
注:S表示秸稈還田正常施氮肥,N-10%、N-20%、N-30%表示減施氮肥10%、20%、30%,小寫(xiě)字母a、b、c表示在P在0.05水平差異顯著,大寫(xiě)字母A、B、C表示P在0.01水平差異顯著,下同。
試驗(yàn)設(shè)計(jì)如下:試驗(yàn)設(shè)(1)常規(guī)施肥區(qū)(CK)、(2)秸稈還田+常規(guī)施肥區(qū)(S)和(3)秸稈還田+調(diào)氮區(qū)(S+N)3個(gè)處理。隨機(jī)區(qū)組法,3次重復(fù),小區(qū)面積100 m2。
試驗(yàn)用肥料用量、品種、施肥方法、秸稈還田方法、還田量以及耕作方法同上。CK、S區(qū)均按照常規(guī)施肥量施肥,S+N區(qū)于旋耕之前增施氮素34.5 kg/hm2,秸稈處理方法同上。
水稻生育調(diào)查:2018年在高肥力土壤上,于水稻成熟期每小區(qū)按對(duì)角線法,選取有代表性植株10株,調(diào)查分蘗數(shù)量和有效穗數(shù)。
產(chǎn)量測(cè)定:在水稻成熟期,小區(qū)直接機(jī)械收獲,通過(guò)田間實(shí)際收獲后并折合含水量14.5%計(jì)算獲得水稻產(chǎn)量。
土壤化學(xué)樣品采樣方法:2018年,每個(gè)小區(qū)按S型取樣方法取5點(diǎn),采取0~20 cm土層土壤,5點(diǎn)混合后按四分法留500 g左右土樣帶回實(shí)驗(yàn)室備用。
土壤有機(jī)質(zhì)采用重鉻酸鉀外加熱法測(cè)定;全氮采用凱氏定氮法,全磷采用鉬銻抗比色法,全鉀采用火焰光度計(jì)法測(cè)定[17];堿解氮采用擴(kuò)散吸收法測(cè)定[18]。
采用Excel2003及 DPS 6.85處理數(shù)據(jù)及試驗(yàn)數(shù)據(jù)的相關(guān)性分析。
秸稈還田下連續(xù)減施氮肥試驗(yàn)產(chǎn)量調(diào)查結(jié)果如表2所示,秸稈還田下連續(xù)減氮10%處理比常規(guī)施肥增產(chǎn)0.1%~6.94%,增產(chǎn)幅度隨年份呈遞減趨勢(shì),第3年與對(duì)照持平;減氮20%處理第1年與對(duì)照比減產(chǎn)極顯著(<0.01),第2年增產(chǎn)不顯著,第3年減產(chǎn)顯著(<0.05);減氮30%處理第1年減產(chǎn)極顯著,第2年增產(chǎn)不顯著,第3年減產(chǎn)顯著(<0.05)。上述結(jié)果表明,在高肥力土壤上實(shí)施秸稈還田,氮肥用量可在常規(guī)用量基礎(chǔ)上連續(xù)3年減施10%;實(shí)施秸稈還田第1年氮肥減施量超過(guò)20%以上會(huì)導(dǎo)致大幅度減產(chǎn),第2與對(duì)照基本持平,第3年減產(chǎn),減施量越大,減產(chǎn)幅度越大。
表2 減施氮肥對(duì)水稻產(chǎn)量影響
從圖2調(diào)查結(jié)果看出,秸稈還田條件下連續(xù)3 a減施氮肥會(huì)導(dǎo)致土壤全氮和堿解氮降低。從土壤全氮看,減氮10%處理土壤全氮比對(duì)照增加2.13%,差異不顯著;減氮20%處理土壤全氮比對(duì)照降低4.66%,減氮30%處理土壤全氮比對(duì)照降低8.64%,差異極顯著(<0.01)。從土壤堿解氮變化看,減氮10%處理土壤堿解氮比對(duì)照降低1.33%,差異不顯著;減氮20%處理土壤堿解氮比對(duì)照降低7.14%,減氮30%處理土壤堿解氮比對(duì)照降低6.63%,差異極顯著(<0.01)。
土壤氮素調(diào)查結(jié)果表明,土壤全氮和堿解氮含量隨著氮肥減施量增加而降低;連續(xù)秸稈還田條件下減施氮素10%與常規(guī)施氮處理土壤氮素差異不顯著,說(shuō)明秸稈連續(xù)還田有利于土壤氮素積累,反映在水稻產(chǎn)量上,在連續(xù)秸稈還田條件下,常規(guī)施氮不僅不能提高水稻產(chǎn)量,反而會(huì)產(chǎn)生減產(chǎn)效應(yīng)。
由此可見(jiàn),在高肥力土壤上連續(xù)秸稈還田需要降低外源氮肥用量,以避免氮素供應(yīng)過(guò)剩導(dǎo)致水稻減產(chǎn),這一結(jié)果與以往提出的秸稈還田需要增施氮肥的常識(shí)相背離[19-21]。
不同肥力土壤秸稈還田對(duì)水稻產(chǎn)量影響如表3所示,比較不同肥力土壤CK處理年季間產(chǎn)量變化看出,高肥力土壤穩(wěn)產(chǎn)性強(qiáng);中、低肥力土壤年際間產(chǎn)量不穩(wěn)定,且土壤肥力越低,變幅越大。高肥力土壤,秸稈還田處理比CK,第1年增產(chǎn)0.36%,第2年減產(chǎn)4.02%,差異極顯著(<0.01);秸稈還田+調(diào)氮處理第1年增產(chǎn)4.47%,極顯著(<0.01),第2年極顯著減產(chǎn)31.86%;中肥力土壤上秸稈還田處理第1年增產(chǎn)不顯著,第2年顯著增產(chǎn)11.49%,秸稈還田+調(diào)氮處理第1年、第2年分別增產(chǎn)5.19%、10.34%,差異極顯著(<0.01);低肥力土壤,秸稈還田第1年、第2年分別增產(chǎn)4.52%、11.03%,差異極顯著(<0.01);秸稈還田+調(diào)氮處理第1年顯著增產(chǎn)5.69%,差異極顯著,第2年增產(chǎn)1.47%,差異不顯著。綜上所述,在高肥力土壤上實(shí)施秸稈還田,第1年常規(guī)施氮不減產(chǎn),增施氮肥增產(chǎn),但連續(xù)常規(guī)施氮或增施氮都會(huì)導(dǎo)致減產(chǎn);中、低肥力土壤連續(xù)增施氮肥增產(chǎn)。
段夢(mèng)慶[33]以學(xué)生宿舍樓為例,提出了空氣源熱泵熱水系統(tǒng)的優(yōu)化運(yùn)行模式及相應(yīng)的熱泵機(jī)組系統(tǒng)運(yùn)行控制策略,并對(duì)重慶地區(qū)和鄭州地區(qū)在對(duì)不同的最冷月機(jī)組設(shè)計(jì)工作時(shí)間取值下選型方案的經(jīng)濟(jì)性進(jìn)行了分析。
表3 不同肥力土壤秸稈還田水稻產(chǎn)量
注:差異顯著性分析為同一肥力條件下不同處理間比較;表中CK表示常規(guī)施肥、S表示秸稈還田+常規(guī)施肥、S+N表示秸稈還田+調(diào)氮。
Note: Differentiation analysis is a comparison of different treatments under the same fertility conditions; CK means normal fertilization, S means straw returning and normal fertilization, S+N means straw returning and nitrogen regulation in table.
不同肥力土壤秸稈還田第2年,水稻分蘗及有效穗數(shù)表現(xiàn)不同。高肥力土壤上,不同處理對(duì)水稻分蘗、有效穗數(shù)影響十分明顯,從表4看出,秸稈還田和秸稈還田+調(diào)氮處理水稻分蘗數(shù)量增加,但有效分蘗減少,秸稈還田+調(diào)氮處理與不還田比差異達(dá)到顯著水平(<0.05)。中肥力土壤秸稈還田及秸稈還田+調(diào)氮處理水稻分蘗數(shù)和穗數(shù)都得到增加,秸稈還田處理水稻穗數(shù)與不還田處理間差異達(dá)到顯著水平(<0.05),秸稈還田+調(diào)氮處理水稻有效穗數(shù)低于秸稈還田處理,但差異不顯著。低肥力土壤上,秸稈還田和秸稈還田+調(diào)氮處理水稻分蘗和穗數(shù)都高于不還田處理,差異達(dá)到顯著水平(<0.05),在有效穗上秸稈還田和秸稈還田+調(diào)氮處理水稻分蘗和穗數(shù)都高于不還田處理,各處理間差異不顯著。
表4 2018年不同處理水稻分蘗、穗數(shù)
針對(duì)高肥力土壤上秸稈還田第1年增氮增產(chǎn),第2年增氮減產(chǎn)的試驗(yàn)結(jié)果(表3),以及高肥力土壤連續(xù)秸稈還田導(dǎo)致水稻分蘗高,有效穗低的現(xiàn)象,可以推出高肥力土壤秸稈還田水稻減產(chǎn)與水稻前期氮素過(guò)剩,生長(zhǎng)過(guò)旺,后期生育受到影響,有效穗形成量低有關(guān)。而在中、低肥力土壤上,連續(xù)秸稈還田調(diào)節(jié)氮素有利于促進(jìn)水稻生長(zhǎng),但也要適當(dāng)。
于秸稈連續(xù)還田2年后(即2018年)調(diào)查不同肥力土壤有機(jī)質(zhì)、全氮、堿解氮,調(diào)查結(jié)果如圖3所示??傮w來(lái)看,高肥力土壤不論土壤有機(jī)質(zhì)、全氮或堿解氮水平都明顯高于中、低肥力土壤,屬于供氮能力強(qiáng)的土壤,秸稈還田會(huì)導(dǎo)致土壤氮素含量增加。在高肥力土壤上秸稈還田和秸稈還田+調(diào)氮處理對(duì)土壤有機(jī)質(zhì)影響不明顯,但土壤全氮、堿解氮增加,尤其是秸稈還田+調(diào)氮處理與正常施肥處理間差異達(dá)到顯著水平,土壤供氮能力增加。中、低肥力土壤秸稈還田后土壤全氮和堿解氮也有顯著增加趨勢(shì),但全氮和堿解氮含量仍明顯低于高肥力土壤。
中、低肥力土壤秸稈還田和秸稈還田調(diào)氮可以補(bǔ)充中、低肥力土壤肥力低的問(wèn)題,增強(qiáng)土壤氮素供給能力,所以在中、低肥力土壤上秸稈連續(xù)還田有增產(chǎn)作用,尤其在還田最初兩年適合根據(jù)秸稈腐解特性調(diào)施氮素;而高肥力土壤秸稈還田調(diào)氮和不調(diào)氮處理土壤有機(jī)質(zhì)和氮素含量都提高,調(diào)氮處理堿解氮更高,高肥力土壤本身肥力水平高,連年秸稈還田,秸稈腐解會(huì)使土壤中氮素逐漸累積,加上外源氮素的投入,導(dǎo)致土壤中氮素過(guò)剩,這也是導(dǎo)致產(chǎn)量降低幅度大的原因,所以在高肥力土壤上秸稈還田適合配合著減施氮肥,白漿土秸稈還田減氮試驗(yàn)的結(jié)果驗(yàn)證了這個(gè)觀點(diǎn)。
圖3 連續(xù)兩年秸稈還田對(duì)土壤有機(jī)質(zhì)及堿解氮影響
施入土壤的秸稈在微生物分解作用下,其中部分有機(jī)態(tài)氮迅速轉(zhuǎn)化成無(wú)機(jī)態(tài),成為可吸收態(tài)氮;另部分難分解的有機(jī)態(tài)氮被緩慢分解或轉(zhuǎn)化成結(jié)構(gòu)穩(wěn)定的土壤有機(jī)質(zhì)組成部分,對(duì)改善土壤理化性質(zhì)、提高土壤肥力起到重要作用[22-24]。
代文才等認(rèn)為水田秸稈氮素當(dāng)年釋放率為40.32%~60.05%[25];閆超認(rèn)為黑龍江省水田秸稈當(dāng)年氮素釋率59.52%[26];按照秸稈還田量8.25 t/hm2計(jì)算,秸稈含氮量6.75 g/kg,秸稈第1年氮素釋放率55.9%計(jì)算,秸稈還田當(dāng)年可釋放出純氮27.72 kg/hm2,占本研究氮素施用總量的26.82%;第2年累積釋放31.88 kg/hm2,逐年增加。
就水田而言,秸稈分解釋放的氮素對(duì)水稻生育的影響最明顯,秸稈還田后水稻產(chǎn)量因土壤肥力產(chǎn)生的差異,歸根結(jié)底是土壤氮素差異所致[32-33]。本研究中,高肥力土壤秸稈還田第1年,由于微生物迅速繁殖,土壤中的有效態(tài)氮被生物暫時(shí)固定[21],因此增施氮肥會(huì)表現(xiàn)出一定的增產(chǎn)效果;而高肥力土壤秸稈還田+調(diào)氮處理第2年之所以大幅度減產(chǎn)正是施氮量增加及秸稈還田導(dǎo)致土壤氮過(guò)剩所致。在中、低肥力土壤氮含量低,水稻生育中后期易發(fā)生脫肥,所以在中、低肥力土壤上,秸稈在生育中后期開(kāi)始大量腐解,釋放出氮素可以彌補(bǔ)土壤氮供應(yīng)量不足,水稻產(chǎn)量提高。因此,白漿土秸稈還田如何調(diào)控氮肥,要以土壤肥力水平為前提條件,因地制宜,高肥力土壤秸稈還田適合減氮,中、低肥力土壤秸稈還田適合增氮。
關(guān)于秸稈還田后氮素釋放特征與植株養(yǎng)分吸收的關(guān)系是秸稈還田氮素調(diào)控的關(guān)鍵依據(jù),在此方面有待于深入研究。此外,秸稈還田不僅增加土壤中氮素的累積,鉀的歸還量更大,不同地區(qū)如何調(diào)整磷、鉀用量會(huì)有差異[34-37],目前尚缺乏關(guān)于白漿土水田秸稈還田后磷、鉀肥調(diào)控技術(shù)的相關(guān)研究,有必要進(jìn)行深入探討,為水稻生產(chǎn)提供科學(xué)依據(jù)和技術(shù)指導(dǎo)。
秸稈還田除了要關(guān)注土壤地力水平,配合秸稈還田調(diào)控施肥量外,還要高度重視其它幾個(gè)方面的關(guān)鍵技術(shù):首先是適當(dāng)?shù)姆鬯楹途鶆蛏⒉际潜匾獥l件;其次是通過(guò)機(jī)械翻耕促進(jìn)地表秸與土壤充分混合,采取落水打漿,以防止秸稈漂??;第三是調(diào)整C/N比,削弱微生物與稻苗的氮素競(jìng)爭(zhēng);第四是強(qiáng)化排水曬田,抑制無(wú)氧發(fā)酵。秸稈還田有利有弊,趨利避害是關(guān)鍵。
1)白漿土不同肥力土壤秸稈連續(xù)還田對(duì)水稻產(chǎn)量影響趨勢(shì)存在差異,連續(xù)秸稈還田會(huì)使土壤氮素得到積累,高肥力土壤由于土壤氮素過(guò)高,導(dǎo)致前期生長(zhǎng)過(guò)盛、影響后期水稻穗形成,導(dǎo)致水稻減產(chǎn)。
2)在高肥力白漿土上常規(guī)氮肥用量124 kg/hm2條件下,秸稈還田適合以3 a為一個(gè)周期降低氮肥用量,連續(xù)3 a減氮10%,既控制土壤氮素積累,又有利于高產(chǎn)、穩(wěn)產(chǎn);減氮超過(guò)20%對(duì)水稻產(chǎn)量和土壤肥力都有降低趨勢(shì)。
3)中、低肥力土壤,秸稈還田有利于提高土壤肥力水平,提高水稻產(chǎn)量,其秸稈還田第1年比對(duì)照分別增產(chǎn)1.48%和4.52%,增氮分別增產(chǎn)5.19%和5.69%;第2年分別增產(chǎn)11.49%和11.03%,增氮分別增產(chǎn)10.34%和1.47%,連續(xù)增氮增產(chǎn)幅度下降,中、低肥力土壤秸稈連續(xù)還田也要避免土壤氮素過(guò)多積累。
4)從不同肥力白漿土秸稈連續(xù)還田結(jié)果看,肥力水平越低的土壤,秸稈還田效果越好;秸稈還田同時(shí)要注重氮素調(diào)控。
[1] 湯文光,肖小平,唐海明,等. 長(zhǎng)期不同耕作與秸稈還田對(duì)土壤養(yǎng)分庫(kù)容及重金屬Cd的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(1):168-176.
Tang Wenguang, Xiao Xiaoping, Tang Haiming, et al. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 168-176. (in Chinese with English abstract)
[2] 王如芳,張吉旺,董樹(shù)亭,等. 我國(guó)玉米主產(chǎn)區(qū)秸稈資源利用現(xiàn)狀及其效果[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011,22(6):1504-1510.
Wang Rufang, Zhang Jiwang, Dong Shuting, et al. Present situation of maize straw resource utilization and its effect in main maize production regions of China[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1504-1510. (in Chinese with English abstract)
[3] 戴飛,韓正晟,張克平,等. 我國(guó)機(jī)械化秸稈還田聯(lián)合作業(yè)機(jī)的現(xiàn)狀與發(fā)展[J]. 中國(guó)農(nóng)機(jī)化,2011(6):42-45,37.
Dai Fei, Han Zhengsheng, Zhang Keping, et al. Development present situation of straw returned combined machine used in China[J]. Chinese Agricultural Mechanization, 2011(6): 42-45, 37. (in Chinese with English abstract)
[4] Zhao S C, Li K J, Zhou W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems and Environment, 2016, 216: 82-88.
[5] Gu Y F, Zhang T, Che H, et al. Influence of returning corn straw to soil on soil nematode communities in winter wheat[J]. Acta Ecologica Sinica, 2015, 35(2): 52-56.
[6] 趙士誠(chéng),曹彩云,李科江,等. 長(zhǎng)期秸稈還田對(duì)華北潮土肥力、氮庫(kù)組分及作物產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(6):1441-1449.
Zhao Shicheng, Cao Caiyun, Li Kejiang, et al. Effects of long-term straw return on soil fertility, N pool fractions and crop yields on a fluvo-aquic soil in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1441-1449. (in Chinese with English abstract).
[7] 謝佳貴,侯云鵬,尹彩俠,等. 施鉀和秸稈還田對(duì)春玉米產(chǎn)量、養(yǎng)分吸收及土壤鉀素平衡的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(5):1110-1118.
Xie Jiagui, Hou Yunpeng, Yin Caixia, et al. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1110-1118. (in Chinese with English abstract)
[8] Shan J, Yan X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71(3): 170-175.
[9] Bai Y L, Wang L, Lu Y L, et al. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation[J]. Journal of Integrative Agriculture, 2015, 14(12): 2467-2476.
[10] Wang X H, Yang H S, Liu J, et al. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system[J]. Catena, 2015, 127: 56-63.
[11] Zheng L, Wu W L, Wei Y P, et al. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China[J]. Soil & Tillage Research, 2015, 145: 78-86.
[12] 王紅妮,王學(xué)春,黃晶,等. 秸稈還田對(duì)土壤還原性和水稻根系生長(zhǎng)及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):116-126.
Wang Hongni, Wang Xuechun, Huang Jing, et al. Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 116-126. (in Chinese with English abstract)
[13] 龍瑞平,張朝鐘,戈芹英,等. 施氮量對(duì)高海拔機(jī)插粳稻產(chǎn)量及群體生長(zhǎng)特性的影響[J]. 中國(guó)土壤與肥料,2018,2:89-95.
Long Ruiping, Zhang Chaozhong, Ge Qinying, et al. Effect of nitrogen fertilizer on yield and population growth characteristics of high altitude mechanical transplanting japonica rice[J]. Soil and Fertilizer Sciences in China, 2018, 2: 89-95. (in Chinese with English abstract)
[14] 何璉. 中國(guó)三江平原[M]. 哈爾濱:黑龍江科學(xué)技術(shù)出版社,2000.
[15] 黑龍江省統(tǒng)計(jì)局編. 黑龍江省統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2017.
[16] 曾昭順. 中國(guó)白漿土[M]. 北京:科學(xué)出版社,1997.
[17] Page A L, Miller R H, Keeney D R. Methods of Soil Analysis[M]. Madison: Soil Science Society of America, 1982.
[18] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2005.
[19] 宋朝玉,宮明波,高倩,等. 長(zhǎng)期玉米秸稈還田模式下氮肥用量對(duì)玉米生長(zhǎng)發(fā)育及土壤養(yǎng)分的影響[J]. 山東農(nóng)業(yè)科學(xué),2017,49(10):55-59.
Song Chaoyu, Gong Mingbo, Gao Qian, et al. Effects of nitrogen application rate on maize growth and soil nutrients under mode of long-term maize straw returning[J].Shandong Agricultural Sciences, 2017, 49(10): 55-59. (in Chinese with English abstract)
[20] 裴鵬剛. 秸稈還田耦合施氮水平對(duì)稻田土壤生化特征及水稻生育特性的影響[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
Pei Penggang. Effects of Straw Incorporation Coupled Nitrogen Levels on Biochemical Properties of Paddy Soil and Growth Characteristics of Rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)
[21] 西尾道徳. 堆肥·有機(jī)質(zhì)肥料の基礎(chǔ)知識(shí)[D].東京:農(nóng)山漁村文化協(xié)會(huì),2007.
[22] 王金武,唐漢,王金峰,等. 東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):1-21.
Wang Jinwu, Tang Han, Wang Jinfeng, et al. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017,48(05): 1-21. (in Chinese with English abstract)
[23] 劉書(shū)田,竇森,侯彥林,等. 中國(guó)秸稈還田面積與土壤有機(jī)碳含量的關(guān)系[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,38(6):723-732,738.
Liu Shutian, Dou Sen, Hou Yanlin, et al. Relationship between area of straw returning to the field and content of soil organic carbon in China[J]. Journal of Jilin Agricultural University, 2016, 38(6): 723-732,738. (in Chinese with English abstract)
[24] 白偉,安景文,張立禎,等. 秸稈還田配施氮肥改善土壤理化性狀提高春玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):168-176.
Bai Wei, An Jingwen, Zhang Lizhen, et al. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 168-176. (in Chinese with English abstract)
[25] 代文才,高明,蘭木羚,等. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(2):188-199.
Dai Wencai, Gao Ming, Lan Muling, et al. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199. (in Chinese with English abstract)
[26] 閆超. 水稻秸稈還田腐解規(guī)律及對(duì)土壤特性的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2015.
Yan Chao. Studies on Decomposition Regularity of Returning Rice Straw and Soil Nutrient Properties[D]. Harbin: Dongbei Agricultural University, 2015. (in Chinese with English abstract)
[27] 王秋菊. 黑龍江地區(qū)土壤肥力和積溫對(duì)水稻產(chǎn)量、品質(zhì)影響研究[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2012.
Wang Qiuju. Effect of Soil Fertility and Temperature on Rice Yield and Quality in Heilongjiang Area[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese with English abstract)
[28] 何虎,吳建富,曾研華,等. 稻草全量還田下氮肥運(yùn)籌對(duì)雙季晚稻產(chǎn)量及其氮素吸收利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(4):811-820.
He Hu, Wu Jianfu, Zeng Yanhua, et al. Effects of nitrogen management on yield and nitrogen utilization of double cropping late rice under total rice straw incorporation[J]. Plant Nutrition and Fertilizer Science, 2014, 20(4): 811-820. (in Chinese with English abstract)
[29] 劉世平,陳后慶,陳文林,等. 不同耕作方式與秸稈還田周年生產(chǎn)力的綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):82-85.
Liu Shiping, Chen Houqing, Chen Wenlin, et al. Comprehensive evaluation of tillage and straw returning on yearly productivity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 82-85. (in Chinese with English abstract)
[30] 成臣,汪建軍,程慧煌,等. 秸稈還田與耕作方式對(duì)雙季稻產(chǎn)量及土壤肥力質(zhì)量的影響[J]. 土壤學(xué)報(bào),2018,55(1):247-256.
Cheng Chen, Wang Jianjun, Cheng Huihuang, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-rice system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-256. (in Chinese with English abstract)
[31] Yuan Ling, Zhang Zhicheng, Cao Xiaochuang, et al. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation[J]. Field Crops Research, 2014, 155: 164-171.
[32] 陳杰. 水稻氮素行為及施氮優(yōu)化模擬研究[D]. 杭州:浙江大學(xué),2004.
Chen Jie. Simulation Studies on Nitrogen Dynamics and Fertilizer-N Optimization for Rice Production[D]. Hangzhou: Zhejiang University, 2004. (in Chinese with English abstract)
[33] 戴志剛,魯劍巍,李小坤,等. 不同作物還田秸稈的養(yǎng)分釋放特征試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):272-276.
Dai Zhigang, Lu Jianwei, Li Xiaokun, et al. Nutrient release characteristic of different crop straws manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 272-276. (in Chinese with English abstract)
[34] 李繼福,魯劍巍,任濤,等. 稻田不同供鉀能力條件下秸稈還田替代鉀肥效果[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(2):292-302.
Li Jifu, Lu Jianwei, Ren Tao, et al. Effect of straw incorporation substitute for K-Fertilizer under different paddy soil K supply capacities[J]. Scientia Agricultura Sinica, 2014, 47(2): 292-302. (in Chinese with English abstract)
[35] 張磊,張維樂(lè),魯劍巍,等. 秸稈還田條件下不同供鉀能力土壤水稻、油菜、小麥鉀肥減量研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(19):3745-3756.
Zhang Lei, Zhang Weile, Lu Jianwei, et al. Study of optimum potassium reducing rate of rice, wheat and oilseed rape under different soil K supply levels with straw incorporation[J]. Scientia Agricultura Sinica, 2017, 50(19): 3745-3756. (in Chinese with English abstract)
[36] 李秀雙,師江瀾,王淑娟,等. 長(zhǎng)期秸稈還田對(duì)農(nóng)田土壤鉀素形態(tài)及空間分布的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(3):109-117.
Li Xiushuang, Shi Jianglan, Wang Shujuan, et al. Effect of long-term straw returning on form and spatial distribution of potassium in agricultural soil[J]. Journal of Northwest A&F University: Natural Science Edition, 2016, 44(3): 109-117. (in Chinese with English abstract)
[37] 解文艷,周懷平,楊振興,等. 秸稈還田方式對(duì)褐土鉀素平衡與鉀庫(kù)容量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(4):936-942.
Xie Wenyan, Zhou Huaiping, Yang Zhenxing, et al. Effect of different straw return modes on potassium balance and potassium pool in cinnamon soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 936-942. (in Chinese with English abstract)
Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities
Wang Qiuju1,2, Liu Feng1, Chi Fengqin1, Jiao Feng3, Zhang Chunfeng4, Jiang Hui5,Li Pengfei6, Zhu Baoguo4
(1.,,150086,; 2.,150086,; 3.,, 163319,; 4.,154007,; 5.,150086,; 6.,156331,)
Crop straw is a kind of carbon-rich energy material, which is important for maintaining and improving soil fertility and sustainable development of agriculture. According to the survey, the proportion of straw application in developed countries is above 70%, which is relatively lower in developing countries. The Sanjiang Plain is an important commodity grain base in China. While the main soil type of paddy field is albic soil. It is of great significance to carry out straw application experiment on albic soil. Early studies have shown that the average yields of albic soil paddy fields increased by 8.9% after the straw application for five consecutive years, but the study is limited to a specific plot. The effect of increasing the yield by the straw application on albic soils with different fertilities has not been reported. In this paper, albic soils with different fertilities were taken as tested soils, field comparison test method was adopted to perform straw mulching on high fertility albic soils, the straw was returned to field for three consecutive years from 2015 to 2017, the nitrogen fertilizer treatments was reduced by 10%, 20%, 30% according to the conventional application level of nitrogen fertilizer, and the experiment of returning straw to field and adding nitrogen fertilizer was carried on different fertility albic soils. This research compared the effect of continuous straw application to albic soils with different fertilities on rice yield though continuous investigation. The results showed that the continuous reduction of nitrogen by 10% in the high-fertility soil for three consecutive years increased the yield when compared with the control, increased by 0.1%-6.94%, the yield decreased when the application of nitrogen fertilizer decreased by more than 20% in the high fertility soil. In the first year of the implementation of straw application on the soils with high-fertilities, the yield increase by 4.47% compared with the control. In the second year, the yield of straw application and straw application + nitrogen treatment reduced by 4.02% and 31.86% respectively when compared with the control. The decreased range of application + nitrogen treatment was high; high-fertility soil was not suitable for the continuous straw application. In the second year, the yield of the straw application + nitrogen treatment on medium- and low-fertility soils increased by 1.48%, 4.52% compared with the control. When straw was returned to the field, the soil organic matter and nitrogen content were increased, and the amount of tillering in the early stage of rice was increased due to the high nitrogen content in high-fertility soil, the effective spike number of rice was reduced, the yield was reduced, the soil nitrogen was reduced after nitrogen reduction, the yield of rice was increased. The purpose of this study is to propose soil management techniques suitable for local conditions, so as to provide supporting field management techniques for the promotion of straw application in the paddy fields.
soils; nitrogen; rice; straw returning; yield; nitrogen fertilizer regulation; albic soil; different fertilities
2018-12-04
2019-04-02
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300902-05)資助
王秋菊,博士,副研究員。主要從事土壤改良研究。Email:bqjwang@126.com
10.11975/j.issn.1002-6819.2019.14.013
S153
A
1002-6819(2019)-14-0105-07
王秋菊,劉 峰,遲鳳琴,焦 峰,張春峰,姜 輝,李鵬緋,朱寶國(guó). 秸稈還田及氮肥調(diào)控對(duì)不同肥力白漿土氮素及水稻產(chǎn)量影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):105-111. doi:10.11975/j.issn.1002-6819.2019.14.013 http://www.tcsae.org
Wang Qiuju, Liu Feng, Chi Fengqin, Jiao Feng, Zhang Chunfeng, Jiang Hui, Li Pengfei, Zhu Baoguo. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.013 http://www.tcsae.org