• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A time domain three-dimensional sono-elastic method for ships’ vibration and acoustic radiation analysis in water *

    2019-09-28 01:28:48MingsongZouYoushengWuCanSimaShuxiaoLiu
    水動力學研究與進展 B輯 2019年3期

    Ming-song Zou , You-sheng Wu , Can Sima , Shu-xiao Liu

    1. China Ship Scientific Research Center, Wuxi 214082, China

    2. State Key Laboratory of Deep-sea Manned Vehicles, Wuxi 214082, China

    3. National Key Laboratory on Ship Vibration and Noise, Wuxi 214082, China

    Abstract: The classical three-dimensional hydroelasticity of ships is extend to include the effect of fluid compressibility, which yields the three-dimensional sono-elasticity of ships. To enable the predictions of coupled transient or nonlinear vibrations and acoustic radiations of ship structures, a time domain three-dimensional sono-elastic analysis method of acoustic responses of a floating structure is presented. The frequency domain added mass and radiation damping coefficients of the ship are first calculated by a three-dimensional frequency domain analysis method, from which a retardation function is derived and converted into the generalized time domain radiation force through a convolution integral. On this basis the generalized time domain sono-elastic equations of motion of the ship hull in water are established for calculation of the steady-state or transient-state excitation induced coupled vibrations and acoustic radiations of the ship. The generalized hydrodynamic coefficients, structural vibrations and underwater acoustic radiations of an elastic spherical shell excited by a concentrated pulsating force are illustrated and compared with analytical solutions with good agreement. The numerical results of a rectangular floating body are also presented to discuss the numerical error resultant from truncation of the upper integration limit in the Fourier integral of the frequency domain added mass coefficients for the retardation function.

    Key words: Hydroelasticity, sono-elasticity, time domain, Fourier transform, vibration, acoustic radiation

    Introduction

    The fluid-structure interaction has been widely applied in various engineering practice, including improvement of ship motion performance and structural safety, ship vibration and noise control and enhancement of underwater acoustic stealth. In the late 70s of the twenty century, the hydroelasticity of ships was established as one new branch in the research of ship structure-fluid coupling dynamics. In early 80s, by combining the three-dimensional potential flow theory of ship motions with the three-dimensional structural dynamics, the threedimensional hydroelasticity was established by Wu[1],Bishop et al.[2]to deal with the dynamic response of arbitrarily shaped three-dimensional deformable body under internal and external loads. In the study of hydroelasticity, the water is usually treated as an incompressible potential flow[1-8]. When the structural vibration and the associated acoustic radiation of a ship are to be analyzed, the water must be treated as compressible acoustic medium. Several years ago the three-dimensional hydroelasticity theory of ships[1-2]was extended to include the effect of water compressibility, and a frequency domain sonoelasticity analysis method of acoustic radiations of an advancing floating structure responding to mechanical excitations was produced[9]. This method and the corresponding software “THAFTS-Acoustic” is feasible in predicting the steady state vibrations and underwater acoustic radiations of a ship[10-12]. The three-dimensional sono-elasticity theory is developed on the basis of the classical three-dimensional hydroelasticity theory. The sono-elastic method is closely related to the method of hydroelasticity.Generally speaking, the three-dimensional sonoelasticity theory is a branch of the hydroelasticity theory. To put it in another way, the sono-elasticity theory is also a generalized hydroelasticity theory,where the water is treated as compressible medium to include the acoustic effects. The comprehension of the three-dimensional sono-elasticity theory as well as its relationship with the three-dimensional hydroelasticity theory is described in detail in Ref. [13]. In many cases the coupled vibrations and acoustic radiations of a ship may be excited by a transient load or a nonlinear excitation caused by, for example, the interactions between a rotor shaft and the roller bearing mounted on the ship hull. The frequency domain method cannot directly deal with the transient or nonlinear problems.

    To enable the coupled transient or nonlinear vibrations and acoustic radiations of a ship structure to be analyzed, a time domain sono-elasticity analysis method of floating structures is presented in this paper.This method is composed of three procedures. At first the frequency domain sono-elasticity analysis method is employed to obtain the frequency domain added mass and radiation damping coefficients of the ship in calm water. Secondly the frequency domain added mass coefficients are used to derive a retardation function by a Fourier integral, which is related to the generalized time domain radiation force by a convolution integral. Thirdly, on this basis the generalized time domain sono-elastic equations of motion of the ship hull in water are established. Their numerical solutions provide the time histories of the coupled vibrations and sound radiations of the ship excited by transient loads. The acoustic wave propagation problems with known vibration or impedance boundary conditions were solved through time domain boundary integral method (TBIM) in Refs. [14-16]. The TBIM calculation suffers the well-known exponentially diverging instability due to numerical errors. In this paper, the time domain sono-elasticity analysis method need not to solve the time domain boundary integral equation, and hence this instability problem no longer exists.

    For validation of the proposed time domain sono-elasticity analysis method and the code, the generalized hydrodynamic coefficients, structural vibrations and underwater acoustic radiations of a floating elastic spherical shell excited by a concentrated pulsation force are illustrated and compared with analytical solutions. Very good agreement is achieved. The numerical results of a rectangular floating body are also presented to investigate the numerical error resultant from truncation of the Fourier integral for the retardation function. Although only transient mechanical excitations are analyzed in this paper, the presented method can also be extended to deal with acoustic responses of a ship induced by nonlinear excitations.

    1. The linear sono-elasticity theory of ships in frequency domain

    An equilibrium coordinate system Oxyz is introduced with the x-axis pointing towards the bow,the z-axis pointing upwards, as shown in Fig. 1. When a ship travels at a constant speed U in the x-direction in inviscid irrotational compressible fluid, vibration is excited by the on-board machineries or certain incident acoustic waves. The structural vibrations and acoustic responses as described in the equilibrium coordinate system are all small and linear. By introducing the principal coordinates ( )(=rq t r1,2, … , m) , the displacement column vector of the vibrating structure is expressed as the superposition of the principal modes of the structure in vacuum[2,9]

    The total velocity potential Φ may be represented as[2,9]

    Fig. 1 The equilibrium coordinate system

    Assuming a time harmonic dependence in the form ofin frequency domain, the corresponding-r th radiation wave potential may be represented as

    The radiation wave potentialrφ and the diffraction wave potentialin the whole fluid field can be represented by the following simple-source boundary integrals[1,17]over C in terms of the Green's function G ( r ,0r)[2,9]

    The Green's functions (see Eq. (6)) which are suitable for ideal compressible fluid considering the effect of free surface are used in the sono-elastic analysis. From the perspective of acoustic analysis,there is no limit on the frequency range of the Green's functions. That is to say, the frequency range can be 0 Hz-∞ Hz. The effect of forward speed is not included in Eq. (6). As stated in Refs. [9, 13], the forward speed of a ship is much smaller than the sound speed in water. Hence in acoustic analysis the influence of forward speed on the free surface boundary condition may be neglected, the Green's function of zero forward speed is acceptable in Eq. (5).

    When calculating the steady state velocity potential, the Green's function suitable for in-compressible flow in classical three-dimensional hydroelastic analysis is adopted. But the Green's function suitable for compressible acoustic medium,as shown in Eq. (6), is used when calculatingOφ ,Dφ and.

    The dynamic responses of the structure induced by the mechanical excitations described by concentrative forcesor the incident waves described byOφ are governed by the generalized equations of motion in the principal coordinatesin the following matrix form

    where a, b and c are the matrices of generalized modal inertia, modal stiffness of the dry structure. ξ,and G are the principal coordinate vector and the generalized excitation vector, respectively. A , B and C are respectively the matrices of generalized hydrodynamic inertia, damping and restoring coefficients

    where ρ is the fluid density.

    The frequency of concern is above 5 Hz for the analysis of acoustic radiation of ships in water. The excitations of machinery and acoustic waves are considered in the sono-elastic method presented in this paper. The excitation of gravitational waves is not taken into account. The component of generalized excitation vector in Eq. (7) is

    The principal coordinates are obtained from Eq.(7). Then the vibration and acoustic radiation in water of ship structures can be calculated based on the modal superposition method. The acoustic pressure in water is

    The sound power radiated from the wetted surface of the ship is given by[13,19]

    where the superscript “*”denotes complex conjugate.

    The numerical examples in Ref. [7] show that the ship speed U will influence the coupled vibration and acoustic radiation. However the influence is only limited to the low frequency range and near field, and the influence is usually negligible in engineering problems.

    2. The CVIS method of eliminating irregular frequencies

    In this paper, a “closed virtual impedance surface(CVIS) method” for depressing the “irregular frequencies” encountered in the numerical solution based on the simple-source distribution method is introduced.The problem of “irregular frequencies” exists because of the cavity resonances of imaginary inner fluid region occupied by the floating body. The irregular frequencies will frequently occur when using boundary integral formulations to solve exterior acoustics and water wave problems[20-22]. These frequencies do not represent any kind of physical resonance but are due to the numerical method. The numerical results will be distorted at irregular frequencies. To eliminate the irregular frequencies in the prediction of acoustic responses of a structure in ideal acoustic medium τ , it is proposed in this paper to place a closed virtual impedance surface Si2in the imaginary inner fluid domaininside the wetted surfaceas shown in Fig. 2. This impedance surface absorbs the acoustic energy and suppresses the cavity resonance in the imaginary fluid region, and hence efficiently eliminates the irregular frequencies.When the ship speed influence is eliminated,assuming φi, φ are respectively the velocity potentials defined in the inner and the outer fluid domain,the interface boundary conditions on Si2and S may be written as:

    where pni2is the pressure on Si2, uni2, ZSare respectively the displacement and mechanical impedance of Si2inin direction, unis the displacement of S in n direction. The integral equations for solving the source strength σ in the outer domain and the unknown displacement uni2are as follows:

    Insertion of the imaginary impedance surface inside the wetted surface of the body not only moves the oscillation frequencies of the inner fluid domain to the upper band by changing its volume, and also absorbs the oscillation energy of the inner fluid domain. This enables the elimination or removal of the irregular frequencies.

    Fig. 2 The impedance surface in the imaginary inner fluid domain

    3. Three-dimension sono-elasticity analysis method in time domain

    3.1 Time domain equations of coupled sono-elastic response of a floating structure

    In time domain, the generalized equations of motion of the structure may be written in matrix form as

    where a , b and c are matrices of generalized mass, generalized damping and generalized stiffness of the dry structure. q is a column vector of the principal coordinate. If there is no incident acoustic waves, and only mechanical excitations are concerned in the present analysis of structural vibration and acoustic radiation problems, there exists generalized radiation wave force Ξ( t) and generalized mechanical exciting force G(t ) .

    When the ship is stationary with zero forward speed, the radiation wave potential may be represented as

    In the fluid field the acoustic radiation wave pressure is

    A component of the generalized radiation wave forcecorresponding to the r-th principal mode may be written as

    Substituting Eq. (15) into Eq. (17), and denoting

    yields

    During the process of structural vibration and acoustic radiation the fluid restoring force that the structure may sustain is rather small and negligible.The generalized equations of motion of the ship structure in time domain may then be represented in the matrix form:

    where K(t -)τ is the matrix of retardation functions.Its elements are represented by Eq. (18). A component of the generalized exciting force vector G( t) corresponding to the r- th principal mode is

    3.2 Retardation function

    When the external excitations are sinusoidal with angular frequency ω, the principal coordinates may be expressed as

    The generalized equation Eq. (20) becomes

    Its counterpart, namely the generalized equation of the coupled structural vibration and fluid acoustic radiation in frequency domain has the form

    where A( )ω, B( )ω are respectively the matrices of added mass and radiation damping coefficients in frequency domain. The matrix of restoring coefficients is neglected, because its effect is rather small.

    The equivalence of Eqs. (23), (24) provides:

    Let t= ′t -τ , it becomes

    By eliminatingietωthe following relations may be obtained

    In the above two equations can be replaced by t for convenience. Substitutingsin/(2i) , denoting, and employing Fourier transform, the retardation function can be represented as:

    where δ( t) is the Dirac function.

    Calculation of δ( t) involves an infinite integral.Its physical meaning is the Fourier transform of the acoustic reactanceIt is clear that in frequency domainwhenHence it is possible to truncate the upper integration limit with proper accuracy. This is verified in the following sections in calculation of added mass coefficients of a spherical shell and a twin-rectangular-hull barge.

    3.3 Dynamic displacement and sound power

    The dynamic displacement in time domain is calculated by Eq. (1) and the corresponding frequency spectrum can be obtained by using Fourier transform.

    To obtain the radiated sound power spectrum, the Fourier transform of each principal coordinate is calculated at first

    where Re()? denotes the real part, Brkis an element of the generalized radiation damping matrix. An appropriate window function and the method of averaged crossing periods of time variation may be used in numerical calculation.

    For a non-stable signal, some time-frequency analysis methods may be used for data processing.The widely used short-time Fourier transform defined in Eq. (31) is introduced here for a non-stable signal s ( t) .

    where h ( t) is the window function. s ( t) is a signal that may represent a principal coordinate, a structural acceleration, or a sound power etc. In Eq. (31), s ( t)is segmented by h ( t) .

    The time-frequency spectrum of a predicted time domain signal may be obtained by Eq. (31). If the Fourier transformof each principal coordinategiven by Eq. (29) is replaced by its short-time Fourier transformrepresented by Eq. (31),the time-frequency spectrum of radiated sound power P ( t ,ω ) may be obtained.

    4. Numerical example and verification of the present method

    The Newmark method is used in numerical calculation of Eq. (20). The vibration and acoustic radiation of an elastic spherical shell in water excited by a concentrated force F , as shown in Fig. 3, is predicted as an example. The exciting force F is a cosine pulse with duration 1ms, as shown in Fig. 4.The shell is made of steel, with the radius 0.5 m,thickness 1mm and damping ratio 0.01.

    Fig. 3 Spherical shell and the coordinate system

    Fig. 4 Time variation of the exciting force

    To verify the present method and the code, the predicted results of the spherical shell located far below the water surface are compared with the analytical solutions of the case of infinite fluid domain. The analytical solutions include the structural accelerations and the radiated sound power[23-24]. The latter is of the form

    To investigate the influence on the numerical accuracy of the retardation function K′( t) caused by truncation of the infinite integral in Eq. (28), two methods of calculating the radiation damping coefficient B11( )ω of the rigid body translation mode are compared with each other. The first is the “Direct calculation” based on the frequency domain method.The second is called the “Calculation by retardation function”. Actually it is to use the frequency domain result of the added mass coefficient A11( )ω to calculate the retardation function K1′1( t) by Eq. (28) with the upper integration limit truncated to/2 π=3 000 Hz, and then re-calculate B11( )ω by employing Eq. (27b). The comparison of the two sets of predictions of B11( )ω is illustrated in Fig. 5 in the non-dimensional form:

    Fig. 5 Non-dimensional acoustic resistance of rigid body translation mode of the spherical shell

    which is actually the non-dimensional acoustic resistance ZReof the rigid body translation mode.,sA are the mass and wetted surface area of the spherical shell respectively. a11is the generalized mass of the rigid body translation mode. Figure 5 shows the two sets of results are nearly coincident,indicating that the truncation of the upper integration limitin integration of Eq. (28) is satisfactory to produce the retardation function in the frequency region

    When the spherical shell is shown in Fig. 3 excited by a unit sinusoidal force F , the acceleration transfer function and the radiated sound power transfer function predicted by both the numerical method and the analytical method of Ref. [18] including Eq. (32)are illustrated and compared in Fig. 6. In the figure the source level of the radiated sound power is represented as

    Fig. 6 Comparison of the present numerical predictions and the analytical solutions

    The numerical predictions and the analytical results in Fig. 6 are close to each other. When the excitation force F acting on the spherical shell is a cosine pulse force shown in Fig. 4, the time variation of the acceleration at the excitation point is shown in Fig. 7. According to the short-time Fourier transform,the corresponding acceleration time-frequency spectrum and the radiated sound power time-frequency spectrum are exhibited in Fig. 8.

    Fig. 7 Time variations of the acceleration at the excitation-point

    Fig. 8 (Color online) The predicted time-frequency spectra of acceleration and radiated sound power

    5. Analysis on a twin hull floating barge

    To further verify the present method and the code,and to investigate the effect of frequency truncation of retardation functions on computational accuracy, the generalized hydrodynamic coefficients associated with two rigid body modes (surge and sway) of a twin-rectangular-hull barge floating on surface of water with infinite depth are calculated. The length,width, draught and distance between inner surfaces of the twin hull are respectively 20, 9, 5 and 15. The size of the wetted surface panel used in numerical analysis is 0.5 as shown in Fig. 9. The non-dimensional acoustic resistance of Eq. (33) is calculated by two methods which are the same as in section V. The upper integration limit of Eq. (28) is truncated tofor the second method. The comparison of the results is shown in Fig. 10.

    Fig. 9 Mesh of wetted surface panels of the twin-rectangular-hull barge

    Fig. 10 Non-dimensional acoustic resistance of the two rigid body translation modes

    Fig. 11 The closed virtual impedance surface with impedance value ρ c abs the acoustic energy and suppresses the cavity resonances in the imaginary fluid region, and hence efficiently eliminates the irregular frequencies

    In this paper, the simple-source distribution method is used to calculate the generalized hydrodynamic coefficients. The problem of “irregular frequencies” exists because of the cavity resonances of imaginary inner fluid region occupied by the floating body. Some sharp peak points in Fig. 10(a)and the peak point “a” in Fig. 10(b) correspond to the irregular frequencies. The interference of multireflection waves between the two rectangular floating bodies, so called the standing wave phenomena, make the curves of non-dimensional acoustic resistance fluctuating with regard to frequency as shown in Fig.10(b). The peak points “A”, “B”, “C” and “D”correspond to the standing wave phenomena. This is self explanatory by the fact that the frequency differences between two adjacent hills are all about 100 z, the wavelength of which equals to the distance of the twin bodies.

    To eliminate the irregular frequencies in the calculation, the Closed Virtual Impedance Surface(CVIS) Method is used with a 4 m×2 m×4 m losed virtual impedance surface placed in the imaginary inner fluid region of each rectangular hull as shown in Fig. 11. The mechanical impedance ZSof the virtual impedance surface is cρ .

    The new comparison of the results is shown in Fig. 12. Apparently good agreement between the results of the “Direct calculation” and the “Calculation by retardation function” is achieved, and the CVIS method efficiently eliminates the irregular frequencies.

    Fig. 12 Non-dimensional acoustic resistances of the two rigid body translation modes

    6. Conclusions

    The basic equations and numerical methods of the three-dimensional sono-elasticity of ships are deduced in this paper. Based on the frequency domain three-dimensional sono-elasticity analysis method together with the convolution integral and Fourier transform approaches, a time domain three-dimensional sono-elasticity analysis method is established.The coupled fluid-structure acoustic responses of ship structures encountering transient excitation may then be solved in time domain.

    The present method and the code are verified by the numerical tests of structural responses and acoustic radiations of a submerged elastic spherical shell excited by a concentrated transient force, and the radiation damping coefficients corresponding to two rigid body translation modes of a twin-rectangularhull barge floating on water surface. Very good agreement is exhibited between the predictions by the proposed time domain method and the results obtained by the existing analytical solutions or frequency numerical method.

    The numerical error in calculation of retardation functions resultant from truncation of the Fourier integral is also discussed in the analyses of two examples.

    一级二级三级毛片免费看| 亚洲精品自拍成人| 欧美bdsm另类| 国产黄片视频在线免费观看| 色视频www国产| 久久久精品免费免费高清| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 久久青草综合色| 建设人人有责人人尽责人人享有的| 一个人免费看片子| 久久99一区二区三区| 日韩精品有码人妻一区| 六月丁香七月| 超碰97精品在线观看| 国产深夜福利视频在线观看| 欧美 日韩 精品 国产| 乱人伦中国视频| 如何舔出高潮| 如何舔出高潮| 性色av一级| 老司机亚洲免费影院| 免费大片18禁| 亚洲,一卡二卡三卡| 亚洲精品国产av成人精品| 国产精品一区www在线观看| 一级av片app| 狂野欧美激情性bbbbbb| 尾随美女入室| 观看av在线不卡| 色视频在线一区二区三区| 国产精品国产三级国产专区5o| 久久国产精品男人的天堂亚洲 | 精品人妻熟女av久视频| a级一级毛片免费在线观看| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 性色avwww在线观看| 国产在线一区二区三区精| 伦理电影大哥的女人| 最黄视频免费看| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 美女中出高潮动态图| 成人美女网站在线观看视频| 高清在线视频一区二区三区| 欧美日韩亚洲高清精品| 国产免费视频播放在线视频| 日韩成人av中文字幕在线观看| 国产男女内射视频| 最近最新中文字幕免费大全7| 国产成人91sexporn| 只有这里有精品99| 美女大奶头黄色视频| 国产熟女欧美一区二区| 波野结衣二区三区在线| 色网站视频免费| 99久久精品一区二区三区| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 久久女婷五月综合色啪小说| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 一边亲一边摸免费视频| 国产一区二区在线观看av| av免费观看日本| 一本—道久久a久久精品蜜桃钙片| 伦理电影免费视频| 一二三四中文在线观看免费高清| 精品人妻熟女av久视频| 少妇精品久久久久久久| 国产又色又爽无遮挡免| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| av线在线观看网站| 黑丝袜美女国产一区| 精品一区二区免费观看| 午夜福利影视在线免费观看| 免费少妇av软件| 午夜福利在线观看免费完整高清在| 一本—道久久a久久精品蜜桃钙片| 中文字幕精品免费在线观看视频 | a级毛色黄片| 亚洲,欧美,日韩| 日本午夜av视频| 久久6这里有精品| 欧美成人午夜免费资源| 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 国产成人aa在线观看| 国产又色又爽无遮挡免| 国产欧美日韩综合在线一区二区 | 亚洲无线观看免费| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 欧美97在线视频| 国产免费福利视频在线观看| 有码 亚洲区| 亚洲人与动物交配视频| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 看十八女毛片水多多多| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| 在线观看免费日韩欧美大片 | 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 搡老乐熟女国产| 91精品伊人久久大香线蕉| 亚洲综合精品二区| 另类精品久久| 国产午夜精品一二区理论片| 亚洲av二区三区四区| 午夜福利在线观看免费完整高清在| 日本免费在线观看一区| 欧美老熟妇乱子伦牲交| 伦理电影大哥的女人| 我的老师免费观看完整版| 26uuu在线亚洲综合色| 精品一区在线观看国产| 亚洲国产最新在线播放| 建设人人有责人人尽责人人享有的| 欧美激情国产日韩精品一区| 国产一区二区在线观看av| 日本欧美国产在线视频| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 久久久午夜欧美精品| 国产高清有码在线观看视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品aⅴ在线观看| 国产精品一区二区在线不卡| 亚洲人成网站在线播| 高清午夜精品一区二区三区| 色哟哟·www| 青春草国产在线视频| 大香蕉久久网| 亚洲内射少妇av| 国产69精品久久久久777片| 女人久久www免费人成看片| 亚州av有码| 水蜜桃什么品种好| 国产成人精品福利久久| 一级片'在线观看视频| 日韩一区二区三区影片| 欧美人与善性xxx| 日本wwww免费看| 麻豆成人午夜福利视频| 国产在线男女| 精品熟女少妇av免费看| 国产一区二区在线观看日韩| 十分钟在线观看高清视频www | 在线观看国产h片| 国产精品三级大全| 国产免费一区二区三区四区乱码| 三级国产精品片| 午夜免费观看性视频| 日韩欧美 国产精品| 七月丁香在线播放| 嫩草影院入口| 久久久久久久国产电影| 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 久久午夜福利片| 又爽又黄a免费视频| 美女大奶头黄色视频| 久久精品久久精品一区二区三区| 99热这里只有是精品50| 日韩中字成人| 午夜激情福利司机影院| 久久人妻熟女aⅴ| 我要看日韩黄色一级片| 久久久久久久大尺度免费视频| 亚洲欧美成人精品一区二区| 久久久久久久久久人人人人人人| 国产免费一级a男人的天堂| 国产欧美日韩综合在线一区二区 | 王馨瑶露胸无遮挡在线观看| 亚洲,一卡二卡三卡| 最后的刺客免费高清国语| 国产亚洲一区二区精品| 九九爱精品视频在线观看| 亚洲人成网站在线观看播放| 女性生殖器流出的白浆| 久久热精品热| 哪个播放器可以免费观看大片| 我的女老师完整版在线观看| 在线观看国产h片| 91精品伊人久久大香线蕉| 91精品国产九色| 日本黄色日本黄色录像| 久久国产乱子免费精品| 综合色丁香网| 妹子高潮喷水视频| 成年人免费黄色播放视频 | 蜜臀久久99精品久久宅男| 亚州av有码| 国产高清有码在线观看视频| 99热全是精品| 在线观看人妻少妇| 蜜桃在线观看..| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 国产成人精品一,二区| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 观看免费一级毛片| 欧美bdsm另类| 色视频www国产| 精品熟女少妇av免费看| 午夜福利视频精品| 麻豆成人av视频| 一本—道久久a久久精品蜜桃钙片| 久久99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 蜜桃在线观看..| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 日韩成人伦理影院| 欧美精品国产亚洲| 精品亚洲成国产av| 亚洲久久久国产精品| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| a级毛片在线看网站| 亚洲成人手机| 久久久欧美国产精品| 99热网站在线观看| 午夜精品国产一区二区电影| 国产黄色免费在线视频| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 亚洲成人一二三区av| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 亚洲中文av在线| 一级片'在线观看视频| 国产深夜福利视频在线观看| 91aial.com中文字幕在线观看| 女性被躁到高潮视频| 伦理电影大哥的女人| 国产视频首页在线观看| av专区在线播放| 久久久久久久久大av| 色视频www国产| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| 欧美高清成人免费视频www| 色吧在线观看| 久久精品国产a三级三级三级| 久久久久久久久久久久大奶| 日韩成人av中文字幕在线观看| 成人二区视频| 日韩成人伦理影院| 国产极品粉嫩免费观看在线 | 蜜臀久久99精品久久宅男| xxx大片免费视频| 久久综合国产亚洲精品| 老司机影院成人| 欧美一级a爱片免费观看看| 男女啪啪激烈高潮av片| 亚洲欧洲精品一区二区精品久久久 | 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的| 久久99一区二区三区| 国产免费一区二区三区四区乱码| 国产在线免费精品| 色视频在线一区二区三区| 久久久精品免费免费高清| 18禁裸乳无遮挡动漫免费视频| 国产91av在线免费观看| 日本色播在线视频| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 精品国产国语对白av| 一个人看视频在线观看www免费| av一本久久久久| 少妇精品久久久久久久| 最近最新中文字幕免费大全7| 中文字幕制服av| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 两个人的视频大全免费| 色婷婷久久久亚洲欧美| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 国产伦在线观看视频一区| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 久久久久精品久久久久真实原创| 免费看av在线观看网站| 国产精品福利在线免费观看| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 嫩草影院入口| 国产高清不卡午夜福利| 好男人视频免费观看在线| 看免费成人av毛片| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 国产精品人妻久久久久久| 精品久久国产蜜桃| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 国产亚洲一区二区精品| 亚洲美女黄色视频免费看| 51国产日韩欧美| 永久免费av网站大全| av不卡在线播放| 亚洲成人av在线免费| 免费观看无遮挡的男女| av有码第一页| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 国产精品欧美亚洲77777| 一级爰片在线观看| 五月玫瑰六月丁香| 美女中出高潮动态图| 五月玫瑰六月丁香| 男女无遮挡免费网站观看| 久久久久久久久大av| 建设人人有责人人尽责人人享有的| 国产av一区二区精品久久| 我的老师免费观看完整版| 一级毛片电影观看| 99热这里只有是精品在线观看| 久久这里有精品视频免费| 亚洲av日韩在线播放| 女人精品久久久久毛片| 最后的刺客免费高清国语| h视频一区二区三区| 在线看a的网站| 中国三级夫妇交换| 成年人午夜在线观看视频| 国产色婷婷99| 亚洲精品自拍成人| 少妇裸体淫交视频免费看高清| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美一区二区三区国产| 国产成人精品福利久久| 亚洲国产欧美在线一区| 久久久久精品性色| 看免费成人av毛片| 日韩三级伦理在线观看| 日韩一区二区三区影片| 久久久国产精品麻豆| 亚洲av.av天堂| 在线 av 中文字幕| 欧美+日韩+精品| 一本色道久久久久久精品综合| 国产亚洲一区二区精品| 欧美日韩一区二区视频在线观看视频在线| 一级二级三级毛片免费看| 国产精品麻豆人妻色哟哟久久| 日本色播在线视频| 黄色视频在线播放观看不卡| 亚洲av国产av综合av卡| 国产亚洲一区二区精品| 最黄视频免费看| 中文字幕免费在线视频6| 精品久久久久久久久亚洲| 中文字幕亚洲精品专区| 精品久久久久久电影网| 99热这里只有是精品50| √禁漫天堂资源中文www| 国产伦精品一区二区三区四那| 一级毛片电影观看| 欧美+日韩+精品| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡 | av视频免费观看在线观看| 欧美另类一区| 人妻一区二区av| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | 成人漫画全彩无遮挡| 亚洲,欧美,日韩| av在线播放精品| 看十八女毛片水多多多| 春色校园在线视频观看| 伊人亚洲综合成人网| 午夜激情福利司机影院| 亚洲熟女精品中文字幕| 久久精品国产亚洲av天美| 久久久久久久久大av| 国产精品麻豆人妻色哟哟久久| 国产亚洲91精品色在线| 80岁老熟妇乱子伦牲交| 天堂8中文在线网| 国产欧美亚洲国产| 精品久久久精品久久久| 九九在线视频观看精品| 五月天丁香电影| 日韩人妻高清精品专区| 超碰97精品在线观看| av福利片在线| 国产亚洲av片在线观看秒播厂| av又黄又爽大尺度在线免费看| 成人综合一区亚洲| 精品一区在线观看国产| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人| 久久国产精品大桥未久av | 国产亚洲5aaaaa淫片| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 丝瓜视频免费看黄片| 成人国产av品久久久| 看免费成人av毛片| 一级毛片我不卡| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的| 日本色播在线视频| 中文字幕人妻熟人妻熟丝袜美| 中国三级夫妇交换| av视频免费观看在线观看| 精品一区在线观看国产| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 午夜激情福利司机影院| 日本免费在线观看一区| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 在线观看国产h片| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 久久97久久精品| 精品亚洲成a人片在线观看| 国产极品天堂在线| 偷拍熟女少妇极品色| 成人综合一区亚洲| 极品人妻少妇av视频| 免费看日本二区| 日产精品乱码卡一卡2卡三| 欧美日韩av久久| 高清黄色对白视频在线免费看 | 日韩成人伦理影院| 中国国产av一级| 日本黄色日本黄色录像| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 国产黄片美女视频| 男人爽女人下面视频在线观看| 国产极品天堂在线| 丝瓜视频免费看黄片| xxx大片免费视频| 免费看不卡的av| 久久97久久精品| 夜夜看夜夜爽夜夜摸| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 精品亚洲成国产av| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品久久久com| 亚洲av中文av极速乱| 欧美日韩亚洲高清精品| 国产一区亚洲一区在线观看| 亚洲国产精品999| 99久久综合免费| 亚洲精品aⅴ在线观看| 妹子高潮喷水视频| av免费在线看不卡| 国产精品国产av在线观看| 国产av国产精品国产| 中文字幕人妻丝袜制服| 国产视频内射| 精品一区二区免费观看| 少妇被粗大的猛进出69影院 | 亚洲欧洲国产日韩| 在线观看免费视频网站a站| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| 简卡轻食公司| 26uuu在线亚洲综合色| 免费少妇av软件| 久久综合国产亚洲精品| 国产有黄有色有爽视频| 三级国产精品片| 极品人妻少妇av视频| 99久久精品一区二区三区| 国产高清有码在线观看视频| 亚洲av日韩在线播放| 久久精品久久久久久久性| 久久久久久伊人网av| 另类亚洲欧美激情| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 狠狠精品人妻久久久久久综合| 国产亚洲91精品色在线| 国产一区二区三区综合在线观看 | 好男人视频免费观看在线| 22中文网久久字幕| 成年av动漫网址| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡 | 在线观看免费日韩欧美大片 | 99精国产麻豆久久婷婷| 精品久久久精品久久久| 亚洲第一区二区三区不卡| av卡一久久| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 国产精品一区二区在线观看99| 日韩欧美精品免费久久| av.在线天堂| 午夜福利视频精品| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 蜜桃在线观看..| 欧美国产精品一级二级三级 | 亚洲天堂av无毛| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 老司机亚洲免费影院| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| av不卡在线播放| 高清午夜精品一区二区三区| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 色吧在线观看| 亚洲不卡免费看| 久久精品国产自在天天线| 亚洲av在线观看美女高潮| 免费不卡的大黄色大毛片视频在线观看| 国产色婷婷99| 成人特级av手机在线观看| 欧美+日韩+精品| 一二三四中文在线观看免费高清| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 久久免费观看电影| 天堂俺去俺来也www色官网| 日本av免费视频播放| 91精品国产九色| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av天美| 亚州av有码| 成人午夜精彩视频在线观看| 偷拍熟女少妇极品色| 久久久国产精品麻豆| 日韩欧美精品免费久久| 丝袜在线中文字幕| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| av天堂久久9| www.av在线官网国产| 一本久久精品| 22中文网久久字幕| 成人二区视频| 九九久久精品国产亚洲av麻豆| 国产av一区二区精品久久| 日韩欧美精品免费久久| 少妇人妻一区二区三区视频| 精品一品国产午夜福利视频| 一区二区三区免费毛片| 欧美日韩在线观看h| 一级毛片aaaaaa免费看小| 国产免费一区二区三区四区乱码| 国产精品成人在线| 欧美一级a爱片免费观看看| 91精品伊人久久大香线蕉| 亚洲真实伦在线观看| 黄色欧美视频在线观看| 久久久久久久精品精品| 日韩人妻高清精品专区| 精品亚洲成国产av| 久久97久久精品| 婷婷色麻豆天堂久久| 一级爰片在线观看| 久久国产亚洲av麻豆专区| 欧美精品人与动牲交sv欧美| 日日啪夜夜爽| 久久99热这里只频精品6学生| 日韩一本色道免费dvd| 久久久a久久爽久久v久久| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲 | 狂野欧美激情性xxxx在线观看| 欧美三级亚洲精品| 内地一区二区视频在线| 亚洲情色 制服丝袜| 伊人亚洲综合成人网| 老女人水多毛片| 久久97久久精品| av在线观看视频网站免费|