• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydraulic resistance of river ice jams *

    2019-09-28 01:28:54LinFanZeyuMaoHungTaoShen
    水動力學研究與進展 B輯 2019年3期

    Lin Fan , Ze-yu Mao Hung Tao Shen

    1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

    2. Development Research Center of the Ministry of Water Resources, Beijing 100036, China

    3. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13676, USA

    Abstract: The hydraulic resistance of the river ice jams consists of the resistances due to the seepage flow through the jam and the shear stress on the undersurface of the jam. Existing empirical formulations consider only the the undersurface resistance of the jam,and come up with relations between the jam resistance and the jam thickness with very slight theoretical basis. Based on the analysis of the seepage flow resistance and the flow resistance of the undersurface of the jam, it is shown that the resistance due to the seepage flow is a dominating part of the jam resistance, except for the portion of the jam where the thickness is very small. This analysis also shows that the total jam resistance can be approximated by a linear function of the jam thickness or the ratio of the jam thickness to the flow depth under the jam.

    Key words: River ice, hydraulic resistance, ice jam, friction factor, Manning's coefficient

    Introduction

    The river ice jams can become an extensive blockage of the flow in the channel. The surface ice jams are usually accompanied by a rapid water level rise due to the blockage effect related with the thickness and the hydraulic resistance of the surface ice floe accumulations. Pariset and Hausser[1]developed the classical ice jam theory by considering the static force balance of the surface ice floe accumulations on the water surface, which was then refined by others[2-4]. Two numerical methods were developed for calculating the ice jam profile in river channels: the ICEJAM model developed by Flato and Gerard (1986) and the RIVJAM model developed by Beltaos[4-5]. In both methods, the ice jam thickness equation together with the steady gradually varied flow equations are used. In field applications, due to the difficulty in obtaining the jam thickness profile,the calibration of the ice jam model parameters often relies on the observed water levels. However, since the water surface profile is affected by both the jam thickness and the flow resistance, it is possible to better reproduce the observed water surface profile even if the predicted jam thickness profile is not good.Based on a laboratory flume study, Healy and Hicks(1999) showed that the observed water surface profile can be reproduced with different combinations of the jam thickness profile and the Manning's coefficient of the jam in simulations using the ICEJAM model. This points to the need of a better understanding of the flow resistance of the ice jams. This paper will review and analyze existing formulations, and develop a clear understanding of the flow resistance of the ice jams.

    1. Empirical relations based on ice jam roughness

    Based on the field data, Nezhikhovskiy related the Manning's roughness coefficientin to the thickness of the ice covers formed by accumulations of ice floes, dense slush, and loose slush. Following empirical formulas were obtained based on Nezhikhovskiy's data and used in HEC-RAS[6]:

    For breakup jams

    For freeze up jams

    Fig. 1 (Color online) Comparison of model outputs with observed data for three different jam roughness formulations

    Table 1 The root-mean-squared error (RMSE (m)) and root-mean-squared relative error (RMSRE) of simulated jam thick-

    where H is the depth of the flow under the jam, tjis the jam thickness. Equations (1a)-(1c) are in English units[6], both the flow depth and the jam thickness are in ft.

    Beltaos[7]used a composite friction factor, f0, to represent the flow resistance due to the ice jams.Based on the field data, Beltaos came up with a formula to calculate the composite friction factor for the channel flow with an ice jam

    Shen et al.[8]assumed that the Manning's coefficient of the jam varies linearly with the jam thickness between a minimum value for a single layer juxtaposed cover and a maximum value for a large jam thickness in a dynamic ice jam model.Application results of the model agree well with the field data[9-12].

    The above empirical relationships were used in different studies, but without clear theoretical explanations. Since a portion of the water discharge flows through the jam, there is a significant head loss due to the energy dissipation of the seepage flow, especially at the toe of the jam. This aspect was overlooked in previous studies and should be considered. This study will examine the validity of the existing formulas for the ice jam resistance and improve them by including the seepage flow effect.

    2. Effect of jam resistance on jam profile

    In this section the effect of the flow resistance due to the ice jam on the jam profile will be discussed using the Thames River ice jam data on January 1986[4]. The water surface and the ice jam profiles are calculated using the method of the ICEJAM. In the ICEJAM model, the coupled flow and jam equations are used for the jam thickness and the water level.This approach was adopted in the HEC-RAS[6,13]. The water level downstream the toe, the length of the jam,and the ice thickness at the head of the jam are required as the input. The simulated results are compared with the observed data using different formulations of the jam roughness. The observed leading edge of the ice jam is 42 km downstream the toe. The data is only available up to 39.19 km.Therefore, the simulations are carried out with the jam up to 39.19 km with a 0.5 m leading edge ice thickness, and a bed Manning's coefficient =0.025[4]. Figure 1 shows the simulated water surface and the jam profiles for three different jam roughness formulations, where X is the distance from the downstream, Z is the elevation:

    Case 1: Constant jam roughness

    In this case, the ice jam Manning's coefficient=0.060as given in the HEC-RAS Example 14[6]is used. The simulated result does not match with the observed data.

    Case 2: Nezhikovsky's formula for jam roughness

    In this case, Eqs. (1a), (1b) are used for the ice jam roughness. The simulation result compares reasonably well with the data except for the jam toe.

    Case 3: Variable roughness along the jam

    The jam Manning's coefficient along the channel is calibrated based on the observed jam and water surface profiles. In this case, the comparison agrees best with the observed data, including the jam toe.

    Table 1 summarizes the root-mean-square error and the root-mean-square relative error (RMSE and RMSRE) of the simulated results in these three cases.Figure 2 summarizes the jam Manning's coefficient used in all three cases, which shows that the jam resistance coefficient should vary with the thickness in order to accurately describe the jam and water surface profiles. The result in case 3 shows that the Manning's coefficient can be assumed to vary linearly between a minimum and maximum values as proposed by Shen et al.[8].

    Fig. 2 The variation of the ice roughness with ice jam thickness in all three cases

    3. Energy loss in the ice jam reach

    In an ice jammed channel, the total energy loss comprises of those due to the bed shear stress, the shear stress on the undersurface of the jam, and the seepage flow through the jam. The total friction slope,, between two cross sections can be expressed as

    where Sfb, Sf1iand Sfi2are the friction slopes corresponding to the bed resistance, the resistance due to the undersurface roughness of the jam, and the resistance due to the seepage flow through the jam,respectively, ρ is the water density,A is the average flow area under the jam between two cross sections,bP ,bτ are the bed wetted perimeter and the shear stress, respectively,i1P ,1iτ are the ice cover wetted perimeter and the shear stress,respectively, andtD is the seepage drag on the ice particles in the jam.

    3.1 Energy loss due to the seepage flow

    The friction slope Sfi2for a jam element of unit length with a submerged cross section area Aj,containing N ice particles, can be expressed as

    where CDis the drag coefficient, v is the seepage velocity, equal to q/ n, q is the apparent velocity,αis the cross-section area of a particle normal to the flow, α is a shape factor, dsis a measure of the particle size, 6/Msand Msis the specific area per unit volume of the solid. Typically,15],is the ice block thickness. The drag coefficient can be expressed as[14]

    where λ is a factor representing the effect of the neighboring particles, and C1≈1.0, is a constant varying slightly for different media[14].

    The apparent velocity q can be related to the hydraulic gradient as[14]

    where a, b are the shape factors,,fν is the kinematic viscosity. Since the flow through the ice jams is fully turbulent, the Reynolds number is very large, in the order of 104[15], while (1 )/a -n b is in the order of 100, λ is in the order of 10[14], the first term in Eqs. (6), (7) can be neglected. Eq. (7) can be written as

    Combining Eqs. (4)-( 8), the friction slope Sfi2can be expressed as

    For wide river channels, Eq. (9) can be simplified further as

    3.2 Energy loss due to the undersurface roughness of the jam

    The bed shear stress can be described as

    Substituting Eq. (11) into the first term of Eq. (3),we have

    wherebA is the flow area associated with the river bed,bn is the bed Manning's coefficient, andcn is the composite Manning's coefficient.

    Hence, the friction slope contributed by the shear stress on the bottom surface of the jam can be expressed as

    4. Case studies

    Three cases are used to analyze the energy loss of the ice jams. These cases are:

    Case 1: Jam in a uniform channel

    An idealized ice jam formed at the transition area from a steep reach to a flat reach in a rectangular uniform channel is simulated[6]. The simulated jam with a downstream boundary water level of 18 m and an inflow discharge of 3 000 m3/s is shown in Fig. 3.

    Fig. 3 Model result for a jam in a rectangular uniform channel

    Case 2: Thames River ice jam

    The 1986 Thames River ice jam[4], which is simulated in Section 2. The simulated result in Case 3 shown in Figs. 1, 2 will be used.

    Case 3: Matapedia River ice jam

    An ice jam was observed in the Matapedia River in April, 1986. The simulated result of Beltaos[16]using the RIVJAM model as shown in Fig. 4 will be used.

    Fig. 4 Matapedia river ice jam simulated by RIVJAM[16]

    4.1 Energy loss

    With the water depth and the velocity of each cross section calculated from the ice jam model results,the total energy loss along the jam is determined.Using the total energy loss value from Eqs. (10), (13),with C1=1.0, λ=3π, the energy loss caused by the seepage flow in the ice jams and the shear stresses along the jam undersurface can be obtained. Beltaos[15]gives an average value offrom the field data calibration, and the value of the shape factor β can be estimated as around 0.8.

    4.1.1 Uniform channel jam

    The flow discharge in this channel is approximately 3 000 m3/s. The seepage coefficient, μ , is taken as 1.0 m/s, and the thickness of the ice block,it ,in the jam is 0.5 m. It is assumed that the porosity, n,is 0.4, the dimensionless coefficient, γ , is 1.67, and the value of the shape factor of the particle β is taken as 0.78. The ratio of the friction slope of the seepage flow in the ice jam, Sfi2, to the total friction slope, Sf, is given in Fig. 5, which shows clearly that the ratio increases with the ratio of the thickness of the jam to the flow depth up to a maximum value of 56%.

    Fig. 5 Variation of friction slopes along the jam in the uniform channel

    Fig. 6 Variation of friction slopes along the jam in Thames River

    4.1.2 Thames River jam

    The flow discharge is approximately 290 m3/s,while the seepage coefficient, μ , is 0.6 m/s, and the thickness of the ice block,it , in the jam is 0.2 m[4].The value of the shape factor of the particles, β , is about 0.8. The ratio of the friction slope of the seepage flow in the ice jam to the total friction slope is shown in Fig. 6, which shows clearly that the ratio increases with the jam thickness up to the water depth ratio. The maximum value of Sfi2is about 38% of the total energy loss.

    4.1.3 Matapedia river jam

    In this case, the flow discharge is approximately 140 m3/s, =1.5 m/sμ , =1.2 md , and the porosity=0.4sn[16]. The value of the shape factor β is about 0.75. Figure 7 shows that the ratio between the friction slope of seepage flow and the total friction slope increases with the jam thickness up to the water depth ratio to a maximum of about 66%.All three cases discussed above show that the energy loss due to the seepage flow through the jam is a dominating part of the total energy loss, especially in the jam toe region.

    Fig. 7 Variation of friction slopes along the jam in Matapedia River

    4.2 Relationship between and /H

    To explain why the resistance coefficient of the ice jam increases with its thickness, the relationship between the ice jam friction factorand /H is examined in this section.

    4.2.1 Analysis based on energy slope

    The friction factor of the jam can be calculated from the shear stress on the undersurface of the jam,, and the seepage drag,tD . The shear stressi1τ can be calculated from the energy slope Sfi1and the flow depth under the jam controlled by1iτ . Using the shear stress on the undersurface of the ice coveri1τ in conjunction with the drag force on the seepage flow,tD , the ice jam friction factor in Eq. (3) can be expressed as where V is the velocity under the jam, B is the channel width, and.α , we have

    Using Eqs. (4)-(7) and

    Figure 8 shows the relationship between fiand/H in all three cases.

    Fig. 8 Ice friction factor fi versus t j/H

    4.2.2 Analysis based on surface roughness of the jam

    The friction factor can be related to the roughness height based on the Williamson formula[17]

    where f is the friction factor, ksis the surface roughness height, defined as the diameter of the sand grains for the sand bed, R is the hydraulic radius,approximately equal to the flow depth in a natural stream under open water conditions. In the present study, we replace kswith dsto evaluate the friction factor due to the undersurface roughness of the jam, fi1. Combined with the drag force in the seepage flow, the total ice jam friction factor can be expressed as

    whereiR is the hydraulic radius of the ice-affected portion of the flow.

    Figure 9 shows the relationship between fiand/H calculated from Eq. (17) with the surface roughness method together with those calculated from Eq. (15) with the energy slope method, in all three cases. The results from these two methods are consistent. These results show that the jam friction factors vary linearly with /H, but with a minimum value corresponding to the single layer ice floe thickness. This lower limit is not shown in the Matapedia River jam case since the data for the portion of the jam head is not available.

    Fig. 9 Variations of fi with t j/H

    4.2.3 Relative contributions of fi1, fi2

    Figures 10, 11 show the friction factor fi1associated with the shear stress on the undersurface of the jam and the friction factor fi2associated with the seepage flow through the jam. These figures show that fi1remains nearly constant for a jam, while fi2increases with the jam thickness. Near the head of the jam, the ice jam is thin and the seepage flow is insignificant, the ice friction factor is mainly affected by the shear stress on the undersurface of the jam. As the jam thickness increases, fi2becomes the dominating part of the total ice friction factor. The energy loss due to the undersurface roughness of the jam is relatively small as compared to that due to the seepage flow.

    Fig. 10 The friction factor associated with ice shear stresses versus H on Thames River and Matapedia River

    Fig. 11 The friction factor associated with seepage flow versus H on Thames River and Matapedia River

    4.3 Validation of the Parameter κ

    In the energy slope method, empirical values of the parameter κ are used. These values are shown by dash lines in Fig. 12. In this section these κ values are validated using the surface roughness method, Eq. (17), with the calculated fivalues.Figure 12 shows the comparison of the κ values calculated, which shows that the values of κ used in the analysis are reasonable.

    4.4 Relationship between and j

    Using the value of ficalculated in Fig. 9, the Manning's coefficient of the jam, ni, can be obtained from the relationship. Figures 13, 14 show the jam Manning's niversus tj,. These figures show that the jam Manning's coefficients vary linearly with the jam thickness and the ratio, but with a minimum value corresponding to the roughness of the juxtapose ice cover from a single layer ice floe accumulation. For numerical model applications, it is more convenient to use the relationship between niand tj.

    Fig. 12 Validation of the parameter κ

    Fig. 13 Manning versusfor uniform channel, Thames River and Matapedia River jams

    5. Conclusion

    Thehydraulicresistanceisanimportantpara-meter affecting the flow condition associated with an ice jam as well as the jam thickness profile[18-21]. The empirical formulas for the flow resistance are often used in the ice jam models. In these formulas, the jam resistance coefficient varies with the jam thickness due to the undersurface roughness of the ice jam and they were used with little theoretical explanation. The resistance due to the seepage flow through the jam was overlooked. Through a detailed analysis of the seepage flow resistance and the resistance due to the undersurface roughness of jams, this study indicates that the seepage flow resistance increases with the jam thickness and the flow resistance due to the undersurface roughness of the jam remains relatively constant. Moreover, the relative contribution of the resistance due to the undersurface roughness decreases in comparison with the seepage flow resistance when the jam thickness increases. The seepage flow resistance becomes a dominating part of the jam resistance except for a portion of the jam near its head,where the jam thickness is small with negligible seepage flow. The analysis also shows that the total jam resistance in terms of the friction factor or the Manning's coefficient can be approximated by a linear function of the jam thickness or the ratio of the jam thickness to the flow depth under the jam, but with a minimum value corresponding to the juxtaposed ice accumulation.

    Fig. 14 Manning versus /H for uniform channel,Thames River and Matapedia River

    Acknowledgement

    This study was conducted during the first author's visits at Nanyang Technological University and Clarkson University under the support of Tsinghua University and Clarkson University.

    精品福利观看| 男女视频在线观看网站免费| 操出白浆在线播放| 99热精品在线国产| 两个人的视频大全免费| 美女高潮喷水抽搐中文字幕| 免费看十八禁软件| 国产69精品久久久久777片| 欧美另类亚洲清纯唯美| 午夜激情福利司机影院| 日韩欧美 国产精品| 99国产精品一区二区三区| 老司机深夜福利视频在线观看| 国产精品亚洲一级av第二区| 欧美又色又爽又黄视频| 亚洲真实伦在线观看| 午夜福利18| 丰满的人妻完整版| 变态另类丝袜制服| 一个人免费在线观看电影| 欧美成人一区二区免费高清观看| 成人性生交大片免费视频hd| 12—13女人毛片做爰片一| 18+在线观看网站| 搡老熟女国产l中国老女人| 成人国产综合亚洲| 又紧又爽又黄一区二区| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费 | 亚洲精品国产精品久久久不卡| ponron亚洲| 欧美+日韩+精品| 午夜激情欧美在线| 亚洲人成网站在线播| 怎么达到女性高潮| 欧美区成人在线视频| av欧美777| 欧美黑人欧美精品刺激| 久久久久九九精品影院| 欧美日韩亚洲国产一区二区在线观看| 日本一本二区三区精品| 欧美日韩黄片免| 国产伦精品一区二区三区视频9 | 啦啦啦观看免费观看视频高清| 国产免费av片在线观看野外av| 国产亚洲精品久久久久久毛片| 欧美国产日韩亚洲一区| 十八禁人妻一区二区| 黄色视频,在线免费观看| 久久婷婷人人爽人人干人人爱| 日韩成人在线观看一区二区三区| 在线观看av片永久免费下载| 欧美中文日本在线观看视频| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 可以在线观看毛片的网站| 男人的好看免费观看在线视频| 舔av片在线| 国产精品爽爽va在线观看网站| 成人三级黄色视频| 国产一区二区三区视频了| 欧美日韩精品网址| 欧美+日韩+精品| 亚洲av中文字字幕乱码综合| 久久久精品大字幕| 少妇人妻精品综合一区二区 | 变态另类丝袜制服| 在线观看免费视频日本深夜| 在线十欧美十亚洲十日本专区| 久久久精品大字幕| 熟女少妇亚洲综合色aaa.| 亚洲国产色片| 免费人成视频x8x8入口观看| 久久精品综合一区二区三区| 久久99热这里只有精品18| 午夜福利视频1000在线观看| 天堂√8在线中文| 9191精品国产免费久久| 99riav亚洲国产免费| 成年女人看的毛片在线观看| 毛片女人毛片| 国产一级毛片七仙女欲春2| 91在线精品国自产拍蜜月 | 狂野欧美白嫩少妇大欣赏| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| www.999成人在线观看| 偷拍熟女少妇极品色| 一个人观看的视频www高清免费观看| 一区二区三区免费毛片| 免费在线观看成人毛片| 国产 一区 欧美 日韩| 国产av麻豆久久久久久久| 丁香六月欧美| 欧美日韩精品网址| 午夜福利18| 亚洲av免费在线观看| 91在线精品国自产拍蜜月 | 亚洲精品一区av在线观看| 成年女人永久免费观看视频| 舔av片在线| 无限看片的www在线观看| 国产av一区在线观看免费| 51国产日韩欧美| 色播亚洲综合网| 亚洲国产欧美人成| 91av网一区二区| 亚洲乱码一区二区免费版| 亚洲成人久久性| 成人精品一区二区免费| 国产亚洲欧美98| 成人无遮挡网站| 国产亚洲欧美在线一区二区| 婷婷精品国产亚洲av在线| www日本在线高清视频| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 国产一区在线观看成人免费| 久久香蕉精品热| 国产综合懂色| 国产69精品久久久久777片| 男插女下体视频免费在线播放| 九九热线精品视视频播放| 国产一区在线观看成人免费| 日韩中文字幕欧美一区二区| 亚洲av成人精品一区久久| 99精品久久久久人妻精品| 精品免费久久久久久久清纯| 国产精品一及| 中文字幕人成人乱码亚洲影| 一区二区三区激情视频| 久久精品亚洲精品国产色婷小说| 日本一本二区三区精品| 精品熟女少妇八av免费久了| 偷拍熟女少妇极品色| 一区福利在线观看| 欧美最新免费一区二区三区 | 亚洲国产欧洲综合997久久,| 日韩欧美国产一区二区入口| 手机成人av网站| 午夜免费男女啪啪视频观看 | av在线蜜桃| 亚洲av二区三区四区| 美女被艹到高潮喷水动态| 欧美中文综合在线视频| 精品欧美国产一区二区三| 18禁美女被吸乳视频| 国产伦人伦偷精品视频| 中国美女看黄片| x7x7x7水蜜桃| 亚洲第一电影网av| 天堂影院成人在线观看| 欧美乱妇无乱码| 亚洲五月天丁香| 欧美一区二区国产精品久久精品| 日韩欧美精品v在线| 成人国产综合亚洲| 成人精品一区二区免费| 国产成人av激情在线播放| 国产视频内射| 免费大片18禁| 国产精品香港三级国产av潘金莲| 在线观看66精品国产| 小蜜桃在线观看免费完整版高清| 日本三级黄在线观看| 亚洲人成伊人成综合网2020| 青草久久国产| 哪里可以看免费的av片| 草草在线视频免费看| 欧美一区二区精品小视频在线| 国产乱人视频| 亚洲自拍偷在线| 国产极品精品免费视频能看的| 亚洲最大成人中文| 中文资源天堂在线| 中文字幕av在线有码专区| e午夜精品久久久久久久| 久久久精品欧美日韩精品| 中文字幕人妻丝袜一区二区| 97人妻精品一区二区三区麻豆| 国产99白浆流出| 久久久久国产精品人妻aⅴ院| 欧美大码av| 亚洲精品456在线播放app | 一级黄片播放器| 在线观看免费午夜福利视频| 欧美在线一区亚洲| 国产黄a三级三级三级人| 久久99热这里只有精品18| 午夜a级毛片| 村上凉子中文字幕在线| 久久精品人妻少妇| 免费在线观看影片大全网站| 亚洲av二区三区四区| 久久精品国产亚洲av涩爱 | 美女免费视频网站| 国产国拍精品亚洲av在线观看 | 亚洲精品乱码久久久v下载方式 | 九九久久精品国产亚洲av麻豆| 亚洲一区二区三区色噜噜| 国内精品一区二区在线观看| 国产精品野战在线观看| 99久久成人亚洲精品观看| 特大巨黑吊av在线直播| 少妇的丰满在线观看| 国产日本99.免费观看| 在线观看免费午夜福利视频| 青草久久国产| tocl精华| 性色avwww在线观看| 中国美女看黄片| 在线观看午夜福利视频| www.www免费av| 免费人成视频x8x8入口观看| av在线天堂中文字幕| 变态另类丝袜制服| 麻豆国产97在线/欧美| 亚洲精品美女久久久久99蜜臀| 国产高清视频在线观看网站| 90打野战视频偷拍视频| 成人午夜高清在线视频| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 免费看日本二区| 日本一本二区三区精品| 亚洲一区二区三区不卡视频| 99视频精品全部免费 在线| 午夜免费成人在线视频| 黄色女人牲交| 舔av片在线| 国产高清有码在线观看视频| 亚洲最大成人手机在线| 99热6这里只有精品| 亚洲国产中文字幕在线视频| 黑人欧美特级aaaaaa片| 国产精品99久久久久久久久| 九九在线视频观看精品| 日本与韩国留学比较| 高清日韩中文字幕在线| 亚洲熟妇熟女久久| av在线天堂中文字幕| 一本久久中文字幕| 首页视频小说图片口味搜索| 亚洲天堂国产精品一区在线| 午夜日韩欧美国产| 国产乱人伦免费视频| 国内少妇人妻偷人精品xxx网站| 丁香欧美五月| 亚洲av免费在线观看| 日韩欧美免费精品| 俺也久久电影网| 97超级碰碰碰精品色视频在线观看| 国产精品久久电影中文字幕| 精品日产1卡2卡| 精品人妻一区二区三区麻豆 | 99热6这里只有精品| 国产又黄又爽又无遮挡在线| 老司机深夜福利视频在线观看| 免费在线观看影片大全网站| avwww免费| 天天添夜夜摸| 最后的刺客免费高清国语| 国产v大片淫在线免费观看| 在线播放无遮挡| 久久久久亚洲av毛片大全| 久久精品综合一区二区三区| 国产亚洲av嫩草精品影院| 1024手机看黄色片| 三级毛片av免费| 欧美日韩福利视频一区二区| 日韩有码中文字幕| 天堂影院成人在线观看| 老汉色∧v一级毛片| 色吧在线观看| 最近最新中文字幕大全免费视频| 99精品久久久久人妻精品| av黄色大香蕉| 欧美日韩国产亚洲二区| 老汉色∧v一级毛片| 国产蜜桃级精品一区二区三区| 最近视频中文字幕2019在线8| 1024手机看黄色片| 在线播放国产精品三级| 日本熟妇午夜| 久久久久亚洲av毛片大全| 深夜精品福利| 色精品久久人妻99蜜桃| 欧美黄色淫秽网站| 中文字幕高清在线视频| 国产99白浆流出| 久久这里只有精品中国| 男女之事视频高清在线观看| 午夜激情福利司机影院| 亚洲在线观看片| av天堂中文字幕网| 久久精品国产自在天天线| or卡值多少钱| 久久久国产成人免费| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 国产欧美日韩精品亚洲av| 欧美xxxx黑人xx丫x性爽| 欧美中文日本在线观看视频| 亚洲中文日韩欧美视频| 1000部很黄的大片| 岛国视频午夜一区免费看| 精品久久久久久久末码| 91麻豆av在线| 亚洲一区二区三区不卡视频| 亚洲精品亚洲一区二区| 亚洲熟妇熟女久久| 久久九九热精品免费| 亚洲天堂国产精品一区在线| 老司机在亚洲福利影院| 91av网一区二区| 香蕉丝袜av| 两人在一起打扑克的视频| 国产伦精品一区二区三区四那| 成人av一区二区三区在线看| 88av欧美| 亚洲国产精品成人综合色| 精品日产1卡2卡| 一个人看视频在线观看www免费 | 亚洲av熟女| 特大巨黑吊av在线直播| 无限看片的www在线观看| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 久久香蕉精品热| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 岛国在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院入口| 特大巨黑吊av在线直播| 少妇的逼水好多| 亚洲av成人不卡在线观看播放网| 九九热线精品视视频播放| 午夜激情欧美在线| 亚洲欧美日韩高清在线视频| 国产午夜福利久久久久久| 亚洲av美国av| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 大型黄色视频在线免费观看| 久久久国产精品麻豆| x7x7x7水蜜桃| 国产亚洲精品一区二区www| 久久国产乱子伦精品免费另类| 欧美日韩乱码在线| 精品日产1卡2卡| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 级片在线观看| 精品国产亚洲在线| 免费高清视频大片| 久久久国产成人免费| 国产伦精品一区二区三区四那| 身体一侧抽搐| 久久久久久国产a免费观看| x7x7x7水蜜桃| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 母亲3免费完整高清在线观看| 成人18禁在线播放| 99视频精品全部免费 在线| 欧美黑人欧美精品刺激| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 听说在线观看完整版免费高清| 亚洲精品粉嫩美女一区| 国产精品 国内视频| 日韩欧美在线二视频| 欧美最新免费一区二区三区 | 亚洲国产精品合色在线| 国产主播在线观看一区二区| 最后的刺客免费高清国语| 国产成人av激情在线播放| 精品电影一区二区在线| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 白带黄色成豆腐渣| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 国产欧美日韩精品一区二区| 日本与韩国留学比较| 在线观看午夜福利视频| 18+在线观看网站| 国产高清视频在线播放一区| 最近视频中文字幕2019在线8| av片东京热男人的天堂| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 久久久久久久精品吃奶| 在线播放国产精品三级| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| aaaaa片日本免费| 欧美+日韩+精品| 亚洲美女视频黄频| 亚洲五月婷婷丁香| 国产av麻豆久久久久久久| 免费看a级黄色片| 69av精品久久久久久| 日本一本二区三区精品| 美女大奶头视频| 久久九九热精品免费| 韩国av一区二区三区四区| 亚洲美女黄片视频| 免费看十八禁软件| 又黄又粗又硬又大视频| 97超视频在线观看视频| 狂野欧美激情性xxxx| 亚洲一区二区三区色噜噜| 在线观看美女被高潮喷水网站 | a在线观看视频网站| 欧美日本视频| 免费电影在线观看免费观看| 午夜久久久久精精品| 久久精品国产自在天天线| 欧美丝袜亚洲另类 | 亚洲avbb在线观看| 亚洲 国产 在线| 久久6这里有精品| 天堂网av新在线| 亚洲自拍偷在线| 俺也久久电影网| 特级一级黄色大片| 99热只有精品国产| 亚洲一区高清亚洲精品| 九九在线视频观看精品| 嫩草影院精品99| 99久久成人亚洲精品观看| 好男人电影高清在线观看| 久久久久久久精品吃奶| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av在线| 日本 欧美在线| 国产激情偷乱视频一区二区| 国产一区二区在线观看日韩 | 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 又爽又黄无遮挡网站| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 18美女黄网站色大片免费观看| 啦啦啦韩国在线观看视频| 一区福利在线观看| bbb黄色大片| 欧美最新免费一区二区三区 | 日韩欧美 国产精品| 免费大片18禁| 久久久精品大字幕| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| 中国美女看黄片| 9191精品国产免费久久| 香蕉av资源在线| 欧美丝袜亚洲另类 | 国产精品 国内视频| 亚洲av中文字字幕乱码综合| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 在线a可以看的网站| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 亚洲精品成人久久久久久| 成人av在线播放网站| 黄色成人免费大全| 淫秽高清视频在线观看| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 婷婷亚洲欧美| 淫秽高清视频在线观看| 欧美大码av| 国产成人系列免费观看| 麻豆成人午夜福利视频| 亚洲av二区三区四区| 国产精品自产拍在线观看55亚洲| www.熟女人妻精品国产| 色在线成人网| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| or卡值多少钱| 两个人看的免费小视频| 在线观看日韩欧美| 欧美最新免费一区二区三区 | 国产一区在线观看成人免费| 99久久精品国产亚洲精品| 午夜福利高清视频| 99在线视频只有这里精品首页| 亚洲国产高清在线一区二区三| 中亚洲国语对白在线视频| 国产精品99久久久久久久久| 亚洲国产欧美人成| 高清在线国产一区| 人人妻人人澡欧美一区二区| 毛片女人毛片| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久 | 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 国产熟女xx| 99国产综合亚洲精品| netflix在线观看网站| 哪里可以看免费的av片| 国产在视频线在精品| 3wmmmm亚洲av在线观看| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 久久久国产成人精品二区| 91字幕亚洲| 最近在线观看免费完整版| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 国产伦一二天堂av在线观看| 久久香蕉国产精品| 日本一本二区三区精品| www.色视频.com| 熟女少妇亚洲综合色aaa.| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 三级国产精品欧美在线观看| 黄片大片在线免费观看| av天堂中文字幕网| 欧美激情在线99| 一个人看视频在线观看www免费 | 男女那种视频在线观看| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 国产真人三级小视频在线观看| 国产视频内射| 亚洲精品亚洲一区二区| 在线观看免费午夜福利视频| 国内精品美女久久久久久| 男插女下体视频免费在线播放| 波野结衣二区三区在线 | 老司机午夜十八禁免费视频| 精品人妻偷拍中文字幕| 亚洲国产色片| 三级国产精品欧美在线观看| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 一级黄色大片毛片| 18美女黄网站色大片免费观看| 亚洲色图av天堂| 亚洲av熟女| 天天一区二区日本电影三级| 香蕉丝袜av| 国产伦一二天堂av在线观看| 乱人视频在线观看| 中文资源天堂在线| 18禁在线播放成人免费| 国产熟女xx| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 18禁在线播放成人免费| 国产亚洲精品一区二区www| 国内毛片毛片毛片毛片毛片| 国产伦在线观看视频一区| 超碰av人人做人人爽久久 | 大型黄色视频在线免费观看| 在线观看日韩欧美| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 好男人电影高清在线观看| 国产成人aa在线观看| 日韩精品青青久久久久久| 99热6这里只有精品| av中文乱码字幕在线| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩 | 又黄又粗又硬又大视频| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 母亲3免费完整高清在线观看| 欧美最新免费一区二区三区 | 久久久久久久久大av| 99热这里只有是精品50| 哪里可以看免费的av片| 麻豆一二三区av精品| 嫩草影院精品99| 无限看片的www在线观看| 51午夜福利影视在线观看| 婷婷亚洲欧美| 欧美成人一区二区免费高清观看| 99视频精品全部免费 在线| 欧美乱妇无乱码| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 国产真实伦视频高清在线观看 |