• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative assessment and analysis of Rortex vortex in swirling jets *

    2019-09-28 01:28:52NanGuiLiangGePengxinChengXingtuanYangJiyuanTuShengyaoJiang

    Nan Gui, Liang Ge, Peng-xin Cheng, Xing-tuan Yang, Ji-yuan Tu, , Sheng-yao Jiang

    1. Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University, Beijing 100084, China 2. School of Engineering, RMIT University, Melbourne, VIC 3083, Australia

    Abstract: Recently, a new definition, called Rortex, was proposed to quantify the purely rotational motion of fluids. In this work,based on the DNS data, the Rortex is used to assess and visualize the rotational motion and structure of the vortex in swirling jets in comparison with other kinds of vortex criteria, including Q, 2λ , vorticity and Ω criteria. The Rortex vector, Ω , Q and 2λ criteria are found to be better than the vorticity criterion for the vortex core identification. The vector triangle formed by the Rortex R, the nonrotational shear S, and the vorticity VΩ is analyzed to give mechanical explanations, especially of the effect of the non-rotational shear on the rotation of fluids. In addition, the probability density distributions (PDF) of the Rortex R, the nonrotational shear S, and the vorticity VΩ are computed. The peak value of the PDF of the vorticity could be used to explain the pure rigid rotation effect and the combination effects of the rigid rotation and the non-rotational shear.

    Key words: Swirling flow, vortex, Rortex, direct numerical simulation, rigid rotation, non-rotational shear

    Introduction

    As well-known, the identification of vortex plays an important role in studying the feature of the fluid flow and uncovering the mechanisms of turbulence.The most conventional definition of vortex by thecriterion is based on the curl of the fluid velocity V , i.e.

    whereVΩ is called the vorticity. Hence, a connectedis regarded as a vortex.More recently, based on the work of Chong et al.[1],with ?V being the local velocity gradient tensor, its characteristic equation is fluid region with

    (1) Q- vortex[2]: It is defined by the positive second invariant, where A, B are the symmetric and anti-symmetric parts of the velocity gradient tensor ?V . Q represents the balance between the shear strain rate and the vorticity magnitude.

    (2) λ2- vortex[3]: To avoid complex eigenvalues,Jeong and Hussain[3]defined the λ2- vortex by the characteristic equation of. The connected are coefficients defined after the rotation Q transformation of the velocity gradient tensor. Notice that R could be positive or negative or 0, indicating the clockwise and anti-clockwise rotations. When Eq. (2)has one real root and two complex roots, the minimum rotational strength R in the plane perpendicular to the eigenvector corresponds to the real eigenvalue(root of Eq. (2)).region with the second largest eigenvalueless than zero, i.e.,is regarded as a vortex.vortex[4]: When the characteristic equation Eq. (2) has two complex eigenvalues, the imaginary part of the complex eigenvalue of the velocity gradient tensor is also used to quantify the local swirling strength of the vortex.

    (4) Omega vortex[5]

    whereT=trace( )a A A ,T=trace( )b B B and ε is a small positive number used to avoid division by zero.

    (5) Rortex vortex[6-8]: Liu et al.[6]used a new decomposition = + +?V A C D , where C is regarded a rigid rotation tensor with an angular speed of/2 R .

    to define a pure rigid rotation, with

    where

    Motivated by the clear physical meaning of the Rortex-vortex, we would revisit the vortex in the swirling flow. Notice that the swirling flow is characterized by the motion of the fluid swirl imparted onto a directional jet flow or without the directional jet flow[9-10], it might be one of the flow patterns mostly consistent with the definition of the Rortex vortex. Therefore, the direct numerical simulation data of the swirling jet flows in a rectangular container are utilized here, and the comparison of the Rortex-vortex,the Q- vortex, thevortex, thevortex is carried out to assess the performance and the capacity of these vortex criteria.

    1. Numerical method

    1.1 Governing equations

    In swirling jets[11-14], the Navier-Stokes equations for the time-dependent, incompressible viscous fluids, based on the conservation laws of mass and momentum, are expressed in the full three-dimensional dimensionless form as follows:

    where u, p, Re are the fluid velocity vector, the pressure and the Reynolds number, respectively.=? e is the gradient operator. “?” is the inner product. Equatins (6) are solved directly on the structured grids with its resolution as required by a direct numerical simulation. The upwind compact schemes[15]are used to discretize the convection term.The fourth-order compact difference schemes[16]are applied for the space derivatives and the pressuregradient terms. The third-order explicit schemes are used to deal with the boundary points, maintaining the global fourth-order spatial accuracy. The fourth-order Runge-Kutta schemes[17]are used for time integration.The pressure-Poisson equation is solved to obtain the pressure by using the fourth-order finite difference method[18]. The present simulation tool has been validated[11].

    1.2 Numerical setup and validation

    In this work, a swirling air jet of diameter =1cm is issued from the surface center of a rectangular box of dimension 0.10 m×0.05 m×0.05 m at the inlet velocity. The flow domain is discretized by 512×256×256 Cartesian mesh grids. The Reynolds number is/ =3 000 ν , where the kinematic viscosity. The parameters used in the present simulation are listed in Table 1.

    In the swirling flow, it is assumed that the rotational motion in the azimuthal direction is a translational streamwise motion. The inlet velocity profiles of the streamwise u , the azimuthal v velocities are shown in Figs. 1(a), 1(b), where the swirl number Snis defined as the ratio of the flowrate of the rotational momentum to the translational momentum as

    Table 1 Real parameters and corresponding dimensionless values used in simulation

    Fig. 1 (Color online) Velocity profiles at the inlet

    In addition, the program for computing R vortex,vortex is provided by Professor Chaoqun Liu from the Department of Mathematics, University of Texas at Arlington, USA.

    Fig. 2 (Color online) Snapshots of 3-D vorticity V Ω for= 0.36n S , and a central slice extracted from (c)

    2. Numerical results

    In this work, the features of the vorticity vortex( )VΩ , the Q- vortex, the λ2- vortex, the Omega vortex ( )

    LΩ and the Rortex vortex R are compared.

    2.1 Vorticity presentation

    The vorticity presentation (Eq. (1)) in the case ofis shown in Fig. 2. The vortex is expanded in the lateral and spanwise directions after being initially issued into the flow domain at t=4(Fig. 2(a)), and expanded continuously to make a group of rather complicated twisted vortices ( t= 12,Fig. 2(b)). The fully developed swirling vortices( t=20) are shown in Fig. (2(c)) with a clear bubble vortex breakdown (VB for short[20-21], Fig. (2(d)) and the turbulent motions downstream the VB region.These features of the VB and the complicated vortices are generally consistent with our early results on the swirling flows[11-14,22].

    Fig. 3 (Color online) Vortex structures of S n =0.36 at t=20

    2.2 Comparison amongst Q, LΩ , VΩ , 2λ and R

    Then, we take t=4 (Fig. 3), t=20 (Fig. 4)for the case study, to show the vortex presentations by Q (a),LΩ (b),VΩ (c),2λ (d), and R (e),respectively. It is clearly seen that all presentations have similar structures. They all indicate that the major ring-like vortex structure is formed perpendicular to the streamwise direction, where the interaction between such major streamwise vortex ring and the central axial direct vortex tube is through a circumferential array of secondary vortices. The secondary vortex rings follow a spiral distribution around the major vortex ring. The structure can all be identified in all kinds of vortex presentations. Thus, in such a free swirling flow, the Q,LΩ ,VΩ ,2λ and R presentations are all valid for the vortex study. It is also noticed that the diameter of the swirling jet visualized byVΩ near the immediate inlet of the flow (Fig. 3(c)) is larger than those obtained by other kinds of vortex presentations, especially larger than that presented byLΩ (Fig. 3(b)),2λ (Fig. 3(d)),and R (Fig. 3(e)). In fact, the diameter of the jet presented by the latter (e.g.2λ ) is realistic. It means that the vortex presented byVΩ has some shortcomings, for the possibility of making a fake recognition of the vortex cores.

    Moreover, the strong vortex breakdown in the downstream of the bubble can be clearly seen from Fig. 4. The bubble shape can be more clearly recognized by Q (Fig. 4(a)),2λ (Fig. 4(d)), and R(Fig. 4(e)). The strongly kinked small scale vortices in the downstream of the bubble are rather complex.Their structures are very similar, especially those presented by Q (Fig. 4(a)),2λ (Fig. 4(d)) and R(Fig. 4(e)). In Fig. 4(b) forLΩ , the small scale vortices are somewhat different from those presented by Q (Fig. 4(a)),2λ (Fig. 4(d)) and R (Fig. 4(e)),since more small scale vortices can be seen immediately after the bubble VB, masked as the VB.Moreover, some additional small vortices can be observed in the central and further downstream regions (Fig. 4(b)). Notice that all the vortex criterion presentations are computed from the same data. They are at the same time point under the same flow condition, including the same level of the swirl number Sn. It means that theLΩ definition can recognize the additional small scale vortices, which other criteria cannot, except the R criterion.

    In Fig. 4(e), the additional small scale vortices can also be recognized by the R criterion, and very completely since the R level (=2) may be a bit larger. In other words, the R vortex can be used to clearly visualize the large scale bubble VB, and the strongly kinked small scale vortices and the additional small scale vortices in the further downstream region.It would be one of the best candidate for the vortex presentation. ComparingLΩ with R, it is shown that the latter is somewhat better, since some additional small scale vortex can still be observed in the immediate inlet of the flow domain, which are not recognized by other criteria except theVΩ in Fig.4(c).

    Fig. 4 (Color online) Vortex structures of =0.36 at t=20

    TheVΩ (Fig. 4(c)) may be not a good candidate for the vortex presentation although it has been used the most widely with a longest history. It is seen from Fig. 4(c) that the diameter of the jet near the inlet is larger than those obtained by other vortex presentations. It is in fact a fake since the jet inlet is not so large, and it is caused by the shearing (larger radial velocity gradient) around the periphery of the main jet.Moreover, the 3-D bubble VB is not so clear as presented in other cases.

    Fig. 5 (Color online) Visualization of ΩV (red-vectors), R(green-vectors) at the locations of R ≠0

    2.3 Difference between VΩ , R: The S vector

    According to the former analysis, more attention is paid to the difference between the “worst” and “best”candidates of the vortex criterion, i.e.,VΩ , R. At first, taking the case of =0.36at t=16 for example, theVΩ ,R vectors on the location of R ≠ 0 are shown in Fig. 5. In Fig. 5(a), the red and green vectors are theVΩ , R vectors, respectively, at the same location at the same time. Particular attention is paid to the local region-A (Fig. 5(b)) and region-B(Fig. 5(c)) for a detailed inspection, and it is clear that VΩ , R results are always different in both magnitudes and directions, although they sometimes look consistent with each other.

    Fig. 6 (Color online) The relation between

    Notice that Liu et al.[5,23-24]and Liu et al.[6]proposed an equation

    where S is the difference betweenVΩ , R, which means the non-rotational shear vector in the vorticity.Based on the vector Eq. (8),VΩ , R and S form a vector triangle, which is completely defined by the length of the vector magnitudes. Therefore, we just compute the ratios of the vector norms, e.g.,,, as shown in Fig. 6.

    It is interesting to see from Fig. 6 that,have very similar distributions amongst the flows of various Snand time. We have just fitted the enveloping curves (see C1, C2 and C3 curves in Fig.6(f)) in the last case of =0.36at t=40. It is seen that other cases, including the cases of =0(Fig. 6(a)),=0.10(Fig. 6(b)), =0.20(Fig.6(c)), and at earlier time t=10 of =0.36(Fig.6(e)) are all within the three enveloping fitted curves:

    Regarding the geometric relation between the sides of a triangle, Curve C1 indicates the limiting relation

    which means that the non-rotational pure shear vector S is in the opposite direction of the pure rigid rotational motion vector R (Fig. 7(a)). In physics,for example, if a local fluid point is rotational clock-wise, the induced anti-symmetrical deformation is anti-clockwise, which partly counteracts the rigid rotational effect of the fluids. In other words, the shear motion plays the role of the flow resistance to the rotational motion of the fluids.

    Curve C2 indicates the limiting relation

    It means that the pure rigid rotational vector R is in the same direction of the local non-rotational shear vector S (Fig. 7(b)). It means that the rotational effect is caused by the shear deformation of the fluids.In other words, the shear deformation plays the role of accelerating the rotational flow to the fluid points.

    For Curve C3, we may linearize the fitted curve of Eq. (9) as follows

    where γ is a coefficient. It means that both the non-rotational shear vector and the pure rotational vector has a partial contribution to the vorticity,depending on the constant γ . For a geometrical explanation, as shown in Fig. 7(c), the non-rotational shear vector S has combinational effects: one is through accelerating (or decelerating) the rotation of the fluids (lengthening or shortening R caused byThe other one is through changing the direction of rotation of the fluids (changing direction of R caused by S⊥).

    Fig. 7 Sketches of the geometrical configuration amongst ΩV ,R and S

    2.4 Number distribution of criteria for the points of R ≠ 0

    Then the number distribution (ND) of the vortex criteria at the fluid points of R ≠0 is quantified,which is defined as.=number of points having the same values of x:

    where the variable x can be R, S andVΩ , here.

    Figure 8 for NR(a), NS(b) shows the lg-lg plots offor different Sn. Just like the division of the energy-spectrum, the number distributions of R and S can also be divided similarly into three parts. Particular interest is paid to the central part with an almost linear relation betweenas shown in the inset of Fig. 8(a) forand the inset of Fig. 8(b) for (1≤, respectively. In this part, the number distribution nearly follows a power-law as

    where the exponent K is in the range of -3.3 <for NSas obtained by a linear fitting.for,

    Fig. 8(a) (Color online) The lg-lg plot of number distribution of N R for different S n (main frame) on R≠0 points, and local linear part of lg()-lg( (leftdown inset)

    Fig. 8(b) (Color online) The lg-lg Plot of number distribu-tion of N S for different S n (main frame) on R≠0 points, and local linear part of lg-lg (upright inset)

    Besides, the comparison of Nxamongst,andVΩ is shown in Fig. 9. It is seen that only lg(-lg( )R , lg(-lg( )S have a local linear lg-lg distribution, whereas no such relations are found for NVΩ. lg(always has a peak value almost at the largest S, which means that there are a large proportion of NVΩlocated within the region with pure R ≠ 0 and without S, namely, the pure rigid rotational region without non-rotational deformation(as denoted in Fig. 9(a)). Otherwise, both the rigid rotational and non-rotational deformation may coexist.Additionally, when Snbecomes large, the peak ofbecomes wider but the largestVlocates almost at the same value ofimmediately beyond the largest S. In other words, the most probability ofis always around the region of nearly zero S.

    Fig. 9(a) (Color online) The lg-lg plot of number distributions of and on R ≠ 0 points for=0 at t=40

    Fig. 9(b) (Color online) The lg-lg plot of number distributions of and V on R ≠ 0 points for=0.36 at t=40

    3. Conclusions

    In this work, various vortex criteria are applied to identify the vortex structures in swirling flows. Based on the observations and analyses, the key features and conclusions of vortex criteria can be summarized as follows:

    (1) All vortex criteria can be generally used to characterize the basic feature of the vortex structures,such as the bubble vortex breakdown, the axial major vortex ring, and the spiral distribution of the secondary vortex ring, in the swirling flows. A phenomenological comparison shows that the vorticity criterion VΩ performs worse than others since it cannot correctly recognize the jet inlet diameter, and it cannot distinguish the shear from the pure rotational motion.Instead, theLΩ ,2λ , Q and R criteria can identify the vortex core and the jet diameter correctly.

    (2) TheVΩ , R criteria have the ability to identify more additional secondary small scale vortices immediately after the VB and in the far downstream, which cannot be clearly seen by the2λ ,Q criteria at the same levels of strongly kinked small scale vortices.

    (3) TheVΩ , R and S vectors form an interesting geometrical triangle. They have two limiting cases, i.e., S is in the opposite direction of R ,which indicates the role of the non-rotational shear in either resisting or promoting the rotational motion, i.e.,decelerating or accelerating the rotation of the fluids,respectively. Otherwise, S may have combinational effects not only on accelerating or decelerating the rotation strength of the fluids R (caused by the parallel component of S||) but also on changing the direction of rotation (caused by the perpendicular component S⊥).

    (4) The number distribution function has parts of linear relation between,in the lg-lg presentation. This indicates the power-law distribution characteristics of NR, NS, whereas there is no such relation forVΩ . However, NVΩhas the most high probability on the locations with a pure rigid rotation (R ≠0) without non-rotational shear( S=0).

    午夜激情欧美在线| 在线天堂最新版资源| 搞女人的毛片| 看十八女毛片水多多多| 黄色配什么色好看| 亚洲人成网站在线播放欧美日韩| 老熟妇乱子伦视频在线观看| 久久久久久久久久久免费av| 亚洲第一区二区三区不卡| 日本黄大片高清| 日日啪夜夜撸| 少妇丰满av| 爱豆传媒免费全集在线观看| 久久久久久久午夜电影| 一级毛片电影观看 | kizo精华| 欧美日韩国产亚洲二区| 国产在线精品亚洲第一网站| 精品99又大又爽又粗少妇毛片| 国产在线精品亚洲第一网站| 中文字幕精品亚洲无线码一区| 91久久精品国产一区二区成人| 日韩av在线大香蕉| 亚洲av免费高清在线观看| 精品人妻熟女av久视频| 亚洲第一电影网av| 99久国产av精品| 国产欧美日韩精品一区二区| 在线国产一区二区在线| 伊人久久精品亚洲午夜| 成人高潮视频无遮挡免费网站| 99视频精品全部免费 在线| 免费观看在线日韩| 91午夜精品亚洲一区二区三区| 亚洲欧洲国产日韩| 亚洲欧洲日产国产| 一夜夜www| 一本久久中文字幕| 少妇熟女欧美另类| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| 欧美激情久久久久久爽电影| 亚洲第一区二区三区不卡| 国产av在哪里看| 日韩欧美一区二区三区在线观看| 国产国拍精品亚洲av在线观看| 亚洲国产欧美在线一区| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 国产极品精品免费视频能看的| 日韩欧美精品v在线| 日本色播在线视频| 久久久久久伊人网av| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 观看美女的网站| 亚洲成a人片在线一区二区| 欧美变态另类bdsm刘玥| 国产精品无大码| 乱人视频在线观看| 麻豆乱淫一区二区| 伦理电影大哥的女人| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 欧美3d第一页| 成年版毛片免费区| 亚州av有码| 久久国内精品自在自线图片| 亚洲第一电影网av| 色5月婷婷丁香| 夫妻性生交免费视频一级片| 欧美一区二区精品小视频在线| 亚洲精品日韩在线中文字幕 | 国产精品一区www在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 欧美又色又爽又黄视频| 久久人人爽人人爽人人片va| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 欧美成人精品欧美一级黄| 中文字幕久久专区| 久久久久国产网址| 一进一出抽搐gif免费好疼| 亚洲欧美日韩无卡精品| 国产精品三级大全| 欧美成人a在线观看| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 国产亚洲91精品色在线| 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 久久99蜜桃精品久久| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 特级一级黄色大片| 亚洲av男天堂| 最近手机中文字幕大全| 久久久久久久久中文| 欧美日本亚洲视频在线播放| 欧美成人a在线观看| 一本精品99久久精品77| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 久久中文看片网| 99久国产av精品国产电影| 99热精品在线国产| 哪个播放器可以免费观看大片| 我要搜黄色片| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 99九九线精品视频在线观看视频| 亚洲图色成人| 中文字幕av成人在线电影| 国产精品三级大全| 午夜福利成人在线免费观看| 在线a可以看的网站| ponron亚洲| 91久久精品国产一区二区三区| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 国产精品av视频在线免费观看| 亚洲精品久久国产高清桃花| 久久这里有精品视频免费| av天堂在线播放| 69人妻影院| 尤物成人国产欧美一区二区三区| 日本免费一区二区三区高清不卡| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 我的老师免费观看完整版| 成人特级av手机在线观看| 欧美3d第一页| 永久网站在线| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 插逼视频在线观看| 久久久久久久午夜电影| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 国产成人福利小说| 亚洲成a人片在线一区二区| 色综合色国产| 亚洲av免费在线观看| 乱系列少妇在线播放| 久久久久免费精品人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 少妇熟女欧美另类| 99视频精品全部免费 在线| 床上黄色一级片| 久久精品国产亚洲网站| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 亚洲精品456在线播放app| 免费av不卡在线播放| 99在线人妻在线中文字幕| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线 | 尾随美女入室| 91av网一区二区| 18禁在线无遮挡免费观看视频| 精品久久久久久久久久免费视频| 精品人妻视频免费看| 免费人成视频x8x8入口观看| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 亚洲四区av| 欧美高清成人免费视频www| 美女大奶头视频| videossex国产| 成人一区二区视频在线观看| 亚洲美女视频黄频| 日韩一区二区三区影片| 国产极品精品免费视频能看的| av在线天堂中文字幕| 国内久久婷婷六月综合欲色啪| 日韩欧美 国产精品| 亚洲最大成人av| 欧美高清性xxxxhd video| 天堂中文最新版在线下载 | 观看免费一级毛片| 欧美日韩精品成人综合77777| 禁无遮挡网站| 国产伦一二天堂av在线观看| 亚州av有码| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频 | 日本一本二区三区精品| 精品久久久久久久久亚洲| 国产精品嫩草影院av在线观看| 国产伦一二天堂av在线观看| 九色成人免费人妻av| 又爽又黄无遮挡网站| 美女脱内裤让男人舔精品视频 | 黄色欧美视频在线观看| 国产真实伦视频高清在线观看| 亚洲av熟女| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 麻豆久久精品国产亚洲av| 美女大奶头视频| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 日韩视频在线欧美| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 好男人在线观看高清免费视频| 国产色爽女视频免费观看| 亚洲中文字幕日韩| 黑人高潮一二区| 美女cb高潮喷水在线观看| av黄色大香蕉| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 亚洲欧美清纯卡通| 真实男女啪啪啪动态图| 国产熟女欧美一区二区| 国产高清视频在线观看网站| 好男人在线观看高清免费视频| 伊人久久精品亚洲午夜| 淫秽高清视频在线观看| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 欧美激情国产日韩精品一区| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 一本久久精品| 国语自产精品视频在线第100页| 久久精品综合一区二区三区| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄 | 99精品在免费线老司机午夜| 26uuu在线亚洲综合色| 成人性生交大片免费视频hd| 精品熟女少妇av免费看| 一区二区三区免费毛片| 伊人久久精品亚洲午夜| 青春草亚洲视频在线观看| 中文字幕人妻熟人妻熟丝袜美| av天堂在线播放| 国产亚洲av嫩草精品影院| 亚洲在久久综合| 国产精品三级大全| 黄色欧美视频在线观看| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 久久99蜜桃精品久久| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 日韩大尺度精品在线看网址| 高清日韩中文字幕在线| 中文字幕制服av| 亚洲精品日韩在线中文字幕 | 2022亚洲国产成人精品| 国产真实乱freesex| 夫妻性生交免费视频一级片| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 久久精品影院6| 国内久久婷婷六月综合欲色啪| 日韩欧美精品v在线| 能在线免费观看的黄片| 寂寞人妻少妇视频99o| 国产高清有码在线观看视频| 伦精品一区二区三区| 色哟哟·www| 亚洲国产精品久久男人天堂| eeuss影院久久| 久久精品夜色国产| 国产成人精品久久久久久| 欧美成人a在线观看| 成人永久免费在线观看视频| 欧美性猛交╳xxx乱大交人| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 久久久久久久久久久丰满| 美女大奶头视频| 秋霞在线观看毛片| 亚洲精品自拍成人| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 一边亲一边摸免费视频| 日本一本二区三区精品| 韩国av在线不卡| 天堂中文最新版在线下载 | 日韩成人伦理影院| 亚洲最大成人av| 成人一区二区视频在线观看| 久久精品影院6| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 麻豆精品久久久久久蜜桃| 欧美一区二区精品小视频在线| 春色校园在线视频观看| 人体艺术视频欧美日本| 中国美女看黄片| 岛国毛片在线播放| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| av视频在线观看入口| 国产伦理片在线播放av一区 | 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 久久精品久久久久久久性| 亚洲精品自拍成人| 久久人人爽人人片av| 成人毛片a级毛片在线播放| 嫩草影院入口| 国产免费男女视频| 校园人妻丝袜中文字幕| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 成人欧美大片| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 精品久久久噜噜| 久久久久久久久大av| 精品久久久久久成人av| 久久这里只有精品中国| 内地一区二区视频在线| 日韩精品有码人妻一区| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 极品教师在线视频| 精品久久久久久久久亚洲| 性欧美人与动物交配| 欧美又色又爽又黄视频| 国产精品一二三区在线看| 国产三级中文精品| 国产视频内射| 成人三级黄色视频| 国产v大片淫在线免费观看| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| 亚洲国产精品成人久久小说 | 国产中年淑女户外野战色| 婷婷亚洲欧美| 一级毛片电影观看 | 人妻久久中文字幕网| av在线蜜桃| 69av精品久久久久久| 美女被艹到高潮喷水动态| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 国产伦精品一区二区三区四那| 久久精品久久久久久噜噜老黄 | 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲成a人片在线一区二区| 国产黄片美女视频| 色吧在线观看| 国产精品美女特级片免费视频播放器| 国产在线男女| 精品久久久久久久久亚洲| 好男人在线观看高清免费视频| 人妻制服诱惑在线中文字幕| 国产精品一及| 性欧美人与动物交配| av在线蜜桃| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 国产伦精品一区二区三区视频9| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 一级毛片久久久久久久久女| 久久久久久久亚洲中文字幕| 欧美日韩在线观看h| 99在线视频只有这里精品首页| 大香蕉久久网| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 深夜a级毛片| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 国产成人影院久久av| 在线天堂最新版资源| 给我免费播放毛片高清在线观看| 边亲边吃奶的免费视频| 午夜激情欧美在线| 少妇人妻一区二区三区视频| 高清毛片免费看| 男女做爰动态图高潮gif福利片| 尤物成人国产欧美一区二区三区| 国产精品人妻久久久影院| 国产成人精品一,二区 | 91狼人影院| 校园人妻丝袜中文字幕| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 三级男女做爰猛烈吃奶摸视频| 亚洲va在线va天堂va国产| 午夜福利在线观看免费完整高清在 | 国产伦在线观看视频一区| 午夜亚洲福利在线播放| 白带黄色成豆腐渣| 男插女下体视频免费在线播放| 日本黄大片高清| 亚洲国产精品成人久久小说 | 99热这里只有精品一区| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 成人特级av手机在线观看| 尾随美女入室| 久久韩国三级中文字幕| 亚洲第一区二区三区不卡| 国产淫片久久久久久久久| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免| 日韩精品有码人妻一区| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 99久久成人亚洲精品观看| 日韩精品有码人妻一区| 日本一本二区三区精品| 99久久中文字幕三级久久日本| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| 在线观看av片永久免费下载| 色综合站精品国产| 大又大粗又爽又黄少妇毛片口| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 亚洲七黄色美女视频| av福利片在线观看| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 国产精品蜜桃在线观看 | 夜夜夜夜夜久久久久| 久久精品国产自在天天线| 亚洲天堂国产精品一区在线| 大又大粗又爽又黄少妇毛片口| 欧美一区二区国产精品久久精品| 免费看光身美女| 精品久久久久久久末码| 欧美精品一区二区大全| 成人二区视频| 国产精品,欧美在线| 一级毛片aaaaaa免费看小| 深爱激情五月婷婷| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 久久人人精品亚洲av| 亚洲久久久久久中文字幕| 日韩三级伦理在线观看| 在线播放无遮挡| 亚洲国产精品成人综合色| 久久精品91蜜桃| 一进一出抽搐动态| 免费观看a级毛片全部| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 伊人久久精品亚洲午夜| 春色校园在线视频观看| 亚洲精品久久久久久婷婷小说 | 精品人妻一区二区三区麻豆| 麻豆国产97在线/欧美| 中国美白少妇内射xxxbb| 欧美zozozo另类| 高清午夜精品一区二区三区 | 深夜a级毛片| 亚洲国产精品国产精品| 国产一区二区在线av高清观看| 亚洲在久久综合| 18禁裸乳无遮挡免费网站照片| 精品人妻偷拍中文字幕| 亚洲av电影不卡..在线观看| 亚洲熟妇中文字幕五十中出| 久久亚洲国产成人精品v| 一个人观看的视频www高清免费观看| 久久精品91蜜桃| 人妻系列 视频| 久久婷婷人人爽人人干人人爱| 黄色欧美视频在线观看| 综合色丁香网| 亚洲欧美日韩东京热| 美女cb高潮喷水在线观看| 2022亚洲国产成人精品| 亚洲第一电影网av| 久久久久久大精品| 一个人看的www免费观看视频| 亚洲国产色片| 黄片wwwwww| 黄色欧美视频在线观看| 日本av手机在线免费观看| 成人特级黄色片久久久久久久| 久久人人爽人人片av| 草草在线视频免费看| 亚洲在线观看片| 成人漫画全彩无遮挡| 一级黄色大片毛片| 一进一出抽搐动态| 亚洲欧洲国产日韩| 看片在线看免费视频| 欧美在线一区亚洲| 国产女主播在线喷水免费视频网站 | 激情 狠狠 欧美| 亚洲色图av天堂| 国产精品久久久久久精品电影小说 | 日本色播在线视频| 麻豆国产av国片精品| 亚洲av中文av极速乱| a级毛色黄片| 久久人人精品亚洲av| 国产一级毛片在线| 一区福利在线观看| 欧美成人免费av一区二区三区| 国产色婷婷99| 国产视频首页在线观看| 黄色一级大片看看| 卡戴珊不雅视频在线播放| 一级黄色大片毛片| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 男人舔奶头视频| 国产日本99.免费观看| 2021天堂中文幕一二区在线观| 午夜激情福利司机影院| 久久精品人妻少妇| 国产视频内射| 3wmmmm亚洲av在线观看| 精品日产1卡2卡| 久久亚洲精品不卡| 国产亚洲av片在线观看秒播厂 | 狂野欧美白嫩少妇大欣赏| 国产精品电影一区二区三区| 永久网站在线| 乱系列少妇在线播放| 日本五十路高清| 如何舔出高潮| 精品一区二区免费观看| 国产成人a区在线观看| 国产成人福利小说| 亚洲性久久影院| 久久6这里有精品| 99视频精品全部免费 在线| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 日韩欧美一区二区三区在线观看| 欧美另类亚洲清纯唯美| 九九久久精品国产亚洲av麻豆| 国产色婷婷99| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 18禁在线无遮挡免费观看视频| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂 | 一级黄片播放器| 亚洲精品久久久久久婷婷小说 | 99久国产av精品| 久久中文看片网| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 91久久精品电影网| 亚洲精品456在线播放app| 久久久成人免费电影| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 国产在线精品亚洲第一网站| or卡值多少钱| 久久久久免费精品人妻一区二区| 男女视频在线观看网站免费| 成年女人看的毛片在线观看| 最近的中文字幕免费完整| 91av网一区二区| 亚洲在线观看片| 日本av手机在线免费观看| 国产午夜福利久久久久久| 青春草国产在线视频 | 国产成人影院久久av| 日韩av不卡免费在线播放| 成人亚洲精品av一区二区| 免费不卡的大黄色大毛片视频在线观看 | 丰满人妻一区二区三区视频av| 精品久久久久久久久久久久久| 97在线视频观看| 日本熟妇午夜| 日本欧美国产在线视频| 欧美+亚洲+日韩+国产| 中文字幕免费在线视频6| 久久精品影院6| 国产探花极品一区二区| 禁无遮挡网站| 国产三级在线视频| 别揉我奶头 嗯啊视频| 长腿黑丝高跟| 国产免费男女视频|