高美珠 吳家斌 張麗
[摘要] 目的 探討細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制蛋白-1(SOCS-1)及高糖培養(yǎng)條件對(duì)腎小球系膜細(xì)胞(HMC)生長(zhǎng)的影響。方法 體外培養(yǎng)人腎小球細(xì)胞,應(yīng)用脂質(zhì)體2000轉(zhuǎn)染SOCS-1 siRNA表達(dá)質(zhì)粒及SOCS-1 無(wú)意義siRNA表達(dá)質(zhì)粒。分為:對(duì)照組為甘露醇組;高糖模型組;高糖模型組+SOCS-1 siRNA干擾;高糖模型組+無(wú)意義siRNA,高糖模型組用 DMEM 培養(yǎng)液中加入葡萄糖,終濃度為30 mmol/L;流式檢測(cè)細(xì)胞凋亡。Western印跡和熒光定量PCR檢測(cè)系膜細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子3(STAT3)和核轉(zhuǎn)錄因子KappaB(NF-κB)的表達(dá)。 結(jié)果 高糖+SOCS-1干擾組細(xì)胞凋亡率1.01%,對(duì)照組1.52%,高糖模型組1.95%,SOCS-1 siRNA干擾組細(xì)胞凋亡率下調(diào),差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。高糖模型組相對(duì)于對(duì)照組,Western Blot檢測(cè)顯示NF-kB水平表達(dá)上調(diào)[(1.21±0.08) vs (0.47±0.04),t=9.49,P<0.01];STAT3表達(dá)上調(diào)[(1.37±0.12) vs (0.54±0.06),t=10.64,P<0.01];SOCS-1 siRNA干擾組相對(duì)于無(wú)意義siRNA組,NF-kB水平表達(dá)上調(diào)[(0.80±0.08) vs (0.32±0.02),t=10,P<0.01]、STAT3表達(dá)上調(diào)[(0.87±0.10) vs (0.32±0.02),t=9.17,P<0.01]。(RT-PCR檢測(cè)提示高糖模型組相對(duì)于對(duì)照組,NF-kB[(1.15±0.15)vs (0.80±0.16),t=2.9,P<0.05]、STAT3[(0.75±0.02)vs (0.46±0.09),t=5.686,P<0.01]表達(dá)上調(diào);SOCS-1 siRNA干擾組相對(duì)于無(wú)意義siRNA組,NF-kB[(1.15±0.17)vs (0.80±0.09),t=3.18,P<0.05]、STAT3[(0.88±0.06)vs (0.40±0.01),t=13.7,P<0.01]表達(dá)上調(diào)。 結(jié)論 高糖環(huán)境會(huì)上調(diào)HMC的JAK/STAT信號(hào)通路,促進(jìn)HMC的生長(zhǎng);干擾SOCS-1會(huì)上調(diào)JAK/STAT信號(hào)通路,并促進(jìn)NF-κB的表達(dá),降低細(xì)胞凋亡率,促進(jìn)高糖環(huán)境下HMC的生長(zhǎng)。
[關(guān)鍵詞] SOCS-1;HMC;高糖;STAT3
[中圖分類(lèi)號(hào)] R4? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1674-0742(2019)07(b)-0037-05
Effect of Cytokine Signal Transduction Inhibitor-1 on the Growth of Mesangial Cells in High Glucose Environment
GAO Mei-zhu, WU Jia-bin, ZHANG Li
Department of Nephrology, Fujian Provincial Hospital, Fuzhou, Fujian Province, 350001 China
[Abstract] Objective To investigate the effects of cytokine signal transduction inhibitor-1 (SOCS-1) and high glucose culture conditions on the growth of mesangial cells (HMC). Methods Human glomerular cells were cultured in vitro, and SOCS-1 siRNA expression plasmid and SOCS-1 nonsense siRNA expression plasmid were transfected with liposome 2000, and were divided into: control group as the mannitol group; high glucose model group; high glucose model group + SOCS-1 siRNA interference; high glucose model group + meaningless siRNA, high glucose model group with DMEM culture medium added glucose, the final concentration was 30 mmol/L; flow detection of apoptosis; Western blot and real-time PCR were used to detect the expression of mesangial cell signal transduction and transcriptional activator 3 (STAT3) and nuclear transcription factor KappaB (NF-κB). Results The apoptotic rate was 1.01% in the high glucose+SOCS-1 interference group, 1.52% in the control group, and 1.95% in the high glucose model group. The apoptosis rate of the SOCS-1 siRNA interference group was down-regulated, the difference was statistically significant (P<0.05). Compared with the control group, Western Blot showed that the expression of NF-kB was up-regulated [(1.21±0.08) vs (0.47±0.04), t=9.49, P<0.01]; STAT3 expression was up-regulated[(1.37±0.12) vs (0.54±0.06), t=10.64, P<0.01]; SOC-kB level was up-regulated in SOCS-1 siRNA interference group compared with non-meaningful siRNA group [(0.80±0.08) vs (0.32±0.02), t=10, P<0.01], STAT3 expression was up-regulated [(0.87±0.10) vs (0.32±0.02), t=9.17, P<0.01]. RT-PCR detection indicated that the high glucose model group was compared with the control group, NF-kB [(1.15±0.15) vs (0.80±0.16), t=2.9, P<0.05], STAT3[(0.75±0.02) vs (0.46±0.09), t=5.686, P<0.01] expression up-regulation; SOCS-1 siRNA interference group vs. nonsense siRNA group, NF-kB[(1.15±0.17) vs (0.80±0.09) , t=3.18, P<0.05], STAT3 [(0.88±0.06) vs (0.40±0.01), t=13.7, P<0.01] expression was up-regulated. Conclusion The high glucose environment up-regulates the JAK/STAT signaling pathway of HMC and promotes the growth of HMC. Interfering with SOCS-1 up-regulates JAK/STAT signaling pathway, promotes the expression of NF-κB, decreases the apoptosis rate, and promotes the growth of HMC in high glucose environment.
[Key words] SOCS-1; HMC; High glucose; STAT3
腎小球系膜細(xì)胞(HMC)的過(guò)度增殖是導(dǎo)致腎間質(zhì)纖維化及腎小球硬化的重要原因,甚至?xí)?dǎo)致腎臟病變,典型的例子就是糖尿病并發(fā)癥糖尿病腎病。JAK/STAT(Janus激酶-信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活因子)信號(hào)通路是細(xì)胞內(nèi)一連串蛋白質(zhì)的相互作用造成的轉(zhuǎn)導(dǎo)過(guò)程,受多種細(xì)胞因子和生長(zhǎng)因子激發(fā),與細(xì)胞的增殖、分化與腫瘤發(fā)生等多種行為密切相關(guān)[1]。研究顯示在糖尿病腎病的發(fā)病過(guò)程中JAK/STAT信號(hào)通路較為活躍,并發(fā)揮了重要作用[2],這個(gè)信號(hào)通路中,相應(yīng)的細(xì)胞因子會(huì)促使STAT磷酸化,磷酸化的STAT則會(huì)促進(jìn)下游諸多基因的表達(dá),SOCS-1在此通路中起著負(fù)調(diào)控因子的作用[3]。糖尿病帶來(lái)高血糖,而糖濃度同樣影響細(xì)胞的生長(zhǎng)。高糖環(huán)境下腎小球系膜細(xì)胞生長(zhǎng)的影響,以及SOCS-1在這個(gè)過(guò)程中的作用,是該實(shí)驗(yàn)試圖探索的內(nèi)容。該研究時(shí)間為2017年11月—2018年3月。
1? 材料與方法
1.1? 實(shí)驗(yàn)材料
細(xì)胞系:293T,購(gòu)自北納細(xì)胞資源庫(kù);SOCS-1 siRNA:NCBI查找SOCS1基因序列,種屬為人,設(shè)計(jì)siRNA,將siRNA序列在NCBI中的人源非冗余基因數(shù)據(jù)庫(kù)進(jìn)行Blast比對(duì),排除對(duì)SOCS-1之外的基因有干擾的序列,再交由上海生工生物工程股份有限公司合成。
1.2? 試劑與儀器
鼠單克隆抗體GAPDH(中杉金橋, TA-08);兔多克隆抗體NF-KB(Bioss, bs-0465R);兔多克隆抗體(STAT3, Boster-A5511);羊抗鼠IgG (中杉金橋, ZB-2305);羊抗兔IgG(中杉金橋, ZB-2301);Annexin V-FITC/PI Apoptosis Kit(MULTI SCIENCES, AP101-100-kit);流式細(xì)胞儀(艾森生物, NovoCyte 2060R);Trizon Reagent(康為世紀(jì), CW0580S);超純RNA提取試劑盒(康為世紀(jì),CW0581M);HiFiScript cDNA Kit(康為世紀(jì), CW2569M);UltraSYBR Mixture(康為世紀(jì), CW0957M);熒光PCR儀(伯樂(lè)生命醫(yī)學(xué)產(chǎn)品(上海)有限公司, CFX ConnectTM) ;細(xì)胞裂解液(普利萊, C1053);PMSF(索萊寶, A1514061);超敏發(fā)光液(賽默飛, RJ239676);BSA(索萊寶, A8020);冷凍高速離心機(jī)(常州中捷實(shí)驗(yàn)儀器制造有限公司, TGL-16D);蛋白垂直電泳儀(北京市六一儀器廠(chǎng), DYY-6C);超高靈敏度化學(xué)發(fā)光成像系統(tǒng)(伯樂(lè)生命醫(yī)學(xué)產(chǎn)品(上海)有限公司, Chemi DocTM XRS+);紫外分光光度計(jì)(上海美譜達(dá)儀器有限公司, UV-1600PC型);BCA蛋白定量試劑盒(康為世紀(jì), CW0014S);Acrylamide(Ultra Pure Grade, A8080);雙丙烯酰胺(DAMAO);Tris(Solarbio, T8060);Marker(Thermo, #26617);PVDF膜(Millipore, IPVH 00010)。
1.3? 細(xì)胞培養(yǎng)與轉(zhuǎn)染siRNA
細(xì)胞培養(yǎng)使用DMEM完全培養(yǎng)基,對(duì)照組的DMEM培養(yǎng)液中加入甘露醇,終濃度為30 mmol/L;高糖組的DMEM培養(yǎng)液中加入葡萄糖,終濃度為30 mmol/L,置于37 ℃,5% CO2培養(yǎng)箱中,當(dāng)六孔板中細(xì)胞密度達(dá)90%時(shí),準(zhǔn)備轉(zhuǎn)染,將DMEM完全培養(yǎng)基取出復(fù)溫;取滅菌的EP管,每管加125 μL Opti-MEM,加入5 μL Lipofectamine;另取EP管,加入質(zhì)?;旌弦?.5 μg,加入5 uL的P3 000輕輕混勻后室溫靜置5 min;將上述兩個(gè)EP管混勻,室溫靜置60 min,將混合液滴到六孔板中對(duì)應(yīng)的孔內(nèi),將細(xì)胞放回培養(yǎng)箱培養(yǎng)48 h后用于檢測(cè)。siRNA序列(5'-3'):SOCS1-siRNA-1的正義鏈:UCGCCCUUAGCGUGAAGAUTT,反義鏈:AUCUUCACG CUAAGGGCGATT;SOCS1-siRNA-2的正義鏈:GGUUG UUGUAGCAGCUUAATT,反義鏈:UUAAGCUACAACAA CAACCTT;SOCS1-siRNA-3的正義鏈:CCCAGUA UCUUUGCACAAATT,反義鏈UUUGUGCAAAGAUACU GGGTT。
1.4? 流式檢測(cè)細(xì)胞凋亡
使用Apoptosis Positive Control Solution調(diào)整儀器參數(shù)。收集各組細(xì)胞用EP管分裝好后向每管中加入1 mLPBS溶液2 000 rpm/2min,棄上清,重復(fù)3次。離心收集(1~5)×105個(gè)細(xì)胞。每個(gè)樣對(duì)應(yīng)用100 μL的5×Binding Buffer 稀釋到1×作為工作液,取500 uL工作液重懸細(xì)胞。每管加入5 μL Annexin V-FITC 熒光染料和10 μL PI熒光染料。渦旋混勻后,室溫避光孵育5 min。在流式細(xì)胞儀上,通過(guò) FITC 檢測(cè)通道檢測(cè)Annexin V-FITC ,通過(guò)PE檢測(cè)通道檢測(cè) PI。
1.5? Western Blot
取各組細(xì)胞,每組取約106個(gè)細(xì)胞,加入200~300 μL含PMSF的RIPA裂解液,放冰上裂解30 min后,收集到2 mLEP管中,超聲波震蕩5 min。之后于4 ℃,10 000 rpm/min離心10 min,吸取上清,即可獲得總蛋白。根據(jù)BCA試劑盒測(cè)定蛋白樣品濃度,取等量總蛋白上樣進(jìn)行SDS-PAGE電泳2 h,后濕法轉(zhuǎn)PVDF膜50 min。使用脫脂牛奶封閉PVDF膜2 h,之后清洗PVDF膜;置PVDF膜于一抗溶液孵育,4 ℃過(guò)夜;清洗PVDF膜,置于二抗溶液中室溫孵育2 h。在膜上滴加曝光液,在Chemi DocTM XRS+系統(tǒng)中成像拍照,分析各條帶灰度值,目的條帶和內(nèi)參條帶灰度值的比值為目的基因的相對(duì)表達(dá)量。
1.6? 熒光定量PCR
取各組細(xì)胞進(jìn)行RNA提取,提取RNA后根據(jù)逆轉(zhuǎn)錄試劑盒合成cDNA,以cDNA為模板,以GAPDH為內(nèi)參,進(jìn)行熒光定量PCR,算出各組細(xì)胞中NF-kB、STAT3的相對(duì)表達(dá)量。引物信息:NF-KB F引物序列為ACCCACCCCACCATCAA,NF-KB R引物序列為CAGAGCCGCACAGCATT,這兩者引物長(zhǎng)度17bp,產(chǎn)物長(zhǎng)度311bp,退火溫度57.7 ℃。STAT3 F引物序列為ACCAAGCGAGGACTGAGCA,引物長(zhǎng)度19bp,STAT3 R引物序列為CCAGACCCAGAAGGAGAAGC,引物長(zhǎng)度20bp,這兩個(gè)引物的產(chǎn)物長(zhǎng)度都為147bp,退火溫度60.5 ℃。GAPDH F引物序列為GAAGGTCGGAGTCAACGGAT,引物長(zhǎng)度20bp,GAPDH R引物序列為CCTGGAAGATGGTGATGGG,引物長(zhǎng)度19bp,這兩個(gè)引物的產(chǎn)物長(zhǎng)度為221bp,退火溫度58.6 ℃。引物合成公司:通用生物系統(tǒng)(安徽)有限公司。
1.7? 統(tǒng)計(jì)方法
所有數(shù)據(jù)均用SPSS 19.0統(tǒng)計(jì)學(xué)軟件處理,計(jì)量單位用(x±s)表示,組間比較采用單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2? 結(jié)果
2.1? 各組細(xì)胞凋亡檢測(cè)結(jié)果
高糖+SOCS-1干擾組細(xì)胞凋亡率(1.01%)低于對(duì)照組(1.52%),而對(duì)照組細(xì)胞凋亡率低于高糖組(1.95%)。差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)表1、圖1。
2.2? Western Blot檢測(cè)NF-kB、STAT3在各組細(xì)胞中的表達(dá)情況
結(jié)果以NF-kB、STAT3與內(nèi)參蛋白表達(dá)條帶的灰度值比表示。結(jié)果見(jiàn)圖2,Western Blot檢測(cè)顯示NF-kB水平表達(dá)上調(diào)[(1.21±0.08)比(0.47±0.04),t=9.49,P<0.001];STAT3表達(dá)上調(diào)[(1.37±0.12)比(0.54±0.06),t=10.64,P<0.001];SOCS-1 siRNA干擾組相對(duì)于無(wú)意義siRNA組,NF-kB水平表達(dá)上調(diào)[(0.80±0.08)比(0.32±0.02),t=10,P<0.01]、STAT3表達(dá)上調(diào)[(0.87±0.10)vs(0.32±0.02),t=9.17,P<0.01]。各組之間的差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
2.3? RT-PCR檢測(cè)NF-kB、STAT3在各組細(xì)胞中的表達(dá)情況
高糖模型組相對(duì)于對(duì)照組,NF-kB[(1.15±0.15) vs(0.80±0.16),t=2.9,P<0.05]、STAT3[(0.75±0.02) vs (0.46±0.09),t=5.686,P<0.01]表達(dá)上調(diào);SOCS-1 siRNA干擾組相對(duì)于無(wú)意義siRNA組,NF-kB[(1.15±0.17) vs(0.80±0.09),t=3.18,P<0.05]、STAT3[(0.88±0.06) vs (0.40±0.01),t=13.7,P<0.01]表達(dá)上調(diào)。差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)圖3。
3? 討論
糖尿病腎病已成為導(dǎo)致終末期腎病的首位病因,發(fā)病率高且危害嚴(yán)重[4]。腎小球系膜細(xì)胞的過(guò)度增殖是導(dǎo)致糖尿病腎病腎間質(zhì)纖維化及腎小球硬化的重要原因。其與多種因素有關(guān),如葡萄糖代謝紊亂,細(xì)胞因子異常表達(dá),炎癥因子和氧化應(yīng)激[5]。而其中炎癥信號(hào)通路的激活扮演重要角色。現(xiàn)有許多研究顯示,在糖尿病腎病的發(fā)病過(guò)程中JAK/STAT信號(hào)通路較為活躍,并發(fā)揮了重要作用。SOCS-1和SOCS-3在JAK/STAT通路中起著負(fù)調(diào)控因子的作用。SOCS-1能夠調(diào)節(jié)多種生理過(guò)程。在多發(fā)性骨髓瘤中,SOCS-1的表達(dá)異常偏低,相應(yīng)的JAK/STAT3通路持續(xù)活躍,助長(zhǎng)了病癥的惡化[6]。SOCS-1的過(guò)表達(dá)可以調(diào)節(jié)JAK/STAT信號(hào)通路的活性,降低了腎小管上皮細(xì)胞中TNF-α介導(dǎo)的氧化應(yīng)激和凋亡[7]。此外還有研究報(bào)道,SOCS-1協(xié)同TRL家族參與對(duì)病毒的免疫反應(yīng),這又進(jìn)一步加深了人們對(duì)SOCS-1的調(diào)控的重要性的認(rèn)識(shí)[8]。
該實(shí)驗(yàn)建立了腎小球系膜細(xì)胞高糖模型,并檢測(cè)了高糖培養(yǎng)條件下JAK/STAT信號(hào)通路中STAT3表達(dá)情況,發(fā)現(xiàn)高糖模型組相對(duì)對(duì)照組STAT3表達(dá)上調(diào),凋亡率也略上調(diào),而對(duì)JAK/STAT信號(hào)通路中負(fù)調(diào)控因子SOCS-1進(jìn)行siRNA干擾后,其與無(wú)意義siRNA組比較,STAT3表達(dá)上調(diào)[(0.87±0.10) vs (0.32±O.02),P<0.01]。而凋亡率也有明顯下降。這些結(jié)果說(shuō)明高糖會(huì)促使腎小球系膜細(xì)胞JAK/STAT信號(hào)通路上調(diào),而抑制這個(gè)通路的負(fù)調(diào)控因子SOCS-1后,此通路能進(jìn)一步上調(diào),并降低細(xì)胞凋亡率,最終促進(jìn)血管內(nèi)皮細(xì)胞增殖。而史永紅等[9]應(yīng)用脂質(zhì)體2000分別轉(zhuǎn)染pCR3.1-SOCS-1表達(dá)質(zhì)粒和pCR3.1空質(zhì)粒載體,與空載體對(duì)照組相比,SOCS-1過(guò)表達(dá)組系膜細(xì)胞STATI和STAT3的磷酸化水平顯著下降(P<0.05);MCP-1 mRNA表達(dá)下調(diào)[(0.34+0.04)vs(0.42±0.05),P<0.05]。其與該實(shí)驗(yàn)正反兩方面證實(shí)了SOCS-1對(duì)高糖誘導(dǎo)的腎小球系膜細(xì)胞JAK/STAT信號(hào)起負(fù)反饋的作用。近年來(lái)陸續(xù)有研究報(bào)道關(guān)于高糖環(huán)境中SOCS蛋白及信號(hào)通路對(duì)系膜細(xì)胞的影響。PI3K/STAT1/3信號(hào)通路介導(dǎo)高糖誘導(dǎo)的細(xì)胞外基質(zhì)積聚和系膜細(xì)胞中SOCS-3的上調(diào)[10]。王晨等[11]以脂質(zhì)體為載體將 PCR3.1 SOCS 3轉(zhuǎn)染至體外培養(yǎng)的HMC,Western Blot檢測(cè)高糖+SOCS3基因轉(zhuǎn)染組比較高糖+空質(zhì)粒轉(zhuǎn)染組及對(duì)照組,STAT1蛋白酪氨酸磷酸化水平顯著下降[(0.978±0.098)vs(0.645±0.067),P<0.05]。
核轉(zhuǎn)錄因子KappaB(NF-κB)通路是炎癥反應(yīng)的中心環(huán)節(jié),參與了糖尿病腎病的發(fā)病。體外試驗(yàn)也證實(shí)了高糖環(huán)境中NF-κB損傷腎小管上皮細(xì)胞[12]。NF-κB信號(hào)傳導(dǎo)是復(fù)雜的, NF-κB的激活由磷酸化IκBα的多泛素化介導(dǎo),然后是蛋白酶體降解[13-14]。其穩(wěn)定性受多種蛋白質(zhì)修飾的調(diào)節(jié),包括磷酸化,泛素化和谷胱甘肽化,以及活性氧和氮的修飾。有學(xué)者研究巨噬細(xì)胞中一氧化氮合成酶1合成的NO導(dǎo)致SOCS1的蛋白水解,減輕其對(duì)NF-κB轉(zhuǎn)錄活性的抑制[15]。有報(bào)道SOCS2過(guò)表達(dá)可使高糖誘導(dǎo)下的足細(xì)胞中的TLR4/NF-κB途徑失活[16]。但目前為止SOCS-1對(duì)高糖誘導(dǎo)下NF-κB作用的試驗(yàn)研究甚少,而該實(shí)驗(yàn)結(jié)果顯示SOCS-1 siRNA干擾組相對(duì)于無(wú)意義siRNA組,NF-kB表達(dá)上調(diào),提示SOCS-1可抑制高糖誘導(dǎo)下系膜細(xì)胞NF-κB的表達(dá)。其具體通過(guò)何種機(jī)制發(fā)揮作用有待進(jìn)一步深入研究。
[參考文獻(xiàn)]
[1]? Shuai K , Liu B . Regulation of JAK–STAT signalling in the immune system[J]. Nature Reviews Immunology, 2003, 3(11):900-911.
[2]? 糖基化終末產(chǎn)物(AGEs)誘導(dǎo)下SOCS基因在腎小管上皮細(xì)胞中的表達(dá)及意義[J].中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志, 2008, 17(1):56-60.
[3]? Kubo M , Hanada T ,Yoshimura A.Suppressors of cytokine signaling and immunity[J]. Nature Immunology, 2003, 4(12):1169-1176.
[4]? Chokhandre M K, Mahmoud M I, Hakami T, et al.Vitamin D & its analogues in type 2 diabetic nephropathy: a systematic review[J].Journal of Diabetes & Metabolic Disorders, 2015, 14(1):58.
[5]? An Y , Xu F , Le W , et al. Renal histologic changes and the outcome in patients with diabetic nephropathy[J]. Nephrology Dialysis Transplantation, 2015,30(2):257-266.
[6]? Beldiferchiou A , Skouri N , Ali C B , et al. Abnormal repression of SHP-1, SHP-2 and SOCS-1 transcription sustains the activation of the JAK/STAT3 pathway and the progression of the disease in multiple myeloma[J].Plos One, 2017, 12(4):e0174835.
[7]? Du CY,Yao F,Ren YZ, et al.SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells[J].Tissue and Cell.2017,49(5):537-544
[8]? Paul A M , Acharya D , Le L, et al. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice[J].The Journal of Immunology, 2016, 197(11):4425.
[9]? 史永紅,杜春陽(yáng),任韞卓,等.細(xì)胞因子信號(hào)傳導(dǎo)抑制蛋白1抑制高糖誘導(dǎo)的腎小球系膜細(xì)胞單核細(xì)胞趨化蛋白1的表達(dá)[J].中華腎臟病雜志,2010,26(5):352-357.
[10]? Sheu M L , Shen C C , Jheng J R , et al. Activation of PI3K in response to high glucose leads to regulation of SOCS-3 and STAT1/3 signals and induction of glomerular mesangial extracellular matrix formation[J].Oncotarget, 2017, 8(10):16925-16938.
[11]? 王晨,魏榮,張曉琴,等.細(xì)胞因子信號(hào)負(fù)調(diào)控因子3基因轉(zhuǎn)染對(duì)高糖刺激下腎小球系膜細(xì)胞增殖和凋亡的影響[J].中國(guó)藥物與臨床,2015(5):568-571.
[12]? Zhou L, Xu D , Sha W , et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway[J].Journal of Translational Medicine, 2015, 13(1):352.
[13]? Won M , Byun H S , Park K A ,et al. Post-translational control of NF-κB signaling by ubiquitination[J]. Archives of Pharmacal Research,2016,39(8):1075-1084.
[14]? Ikeda, Fumiyo. Linear ubiquitination signals in adaptive immune responses[J]. Immunological Reviews, 2015,266(1):222-236.
[15]? Baig M S ,Zaichick S V ,Mao M , et al.NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokinesignaling-1[J]. Journal of Experimental Medicine,2015,212(10):1725-38.
[16]? Yang S X,Zhang J,Wang S Y, et al.SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway[J].Oncotarget,2017,8(53): 91185–91198.