• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 2-DIMENSIONAL ANALOGUE OF S′ARK?ZY’S THEOREM IN FUNCTION FIELDS

    2019-09-21 00:15:26LIGuoquanLIUBaoqingQIANKunXUGuiqiao
    數(shù)學(xué)雜志 2019年5期

    LI Guo-quan, LIU Bao-qing, QIAN Kun, XU Gui-qiao

    (School of Mathematics Science, Tianjin Normal University, Tianjin 300387, China)

    Abstract: Let Fq[t] be the polynomial ring over the finite field Fq of q elements. For N ∈N,let GN be the set of all polynomials in Fq[t] of degree less than N. Suppose that the characteristic of Fq is greater than 2 and . If (d,∈A ?A= for any d ∈Fq[t]{0},we prove that |A| ≤ where the constant C depends only on q. By using this estimate,we extend S′ark?zy’s theorem in function fields to the case of a finite family of polynomials of degree less than 3.

    Keywords: S′ark?zy’s theorem; function fields; Hardy-Littlewood circle method

    1 Introduction

    Let N={0,1,2,···} and write N+for N{0}. For a subset A of an additive group, we define the difference setIf A also is finite, we denote by |A| its cardinality.

    In the late 1970s, Furstenberg [1] and S′ark?zy [2] independently proved the following conclusion. If A is a subset of positive upper density of Z, then there exist two distinct elements of A whose difference is a perfect square. The latter also provided an explicit estimate, but the former result is not quantitative. S′ark?zy’s theorem was later improved by Pintz, Steiger and Szemer′edi in [3], where they obtained the following theorem.

    Theorem AThere exists a constant D >0 such that the following holds. Let N ∈N+and A ?N ∩[1,N]. If (A ?A)∩{n2:n ∈N+}=?, then we have

    Remark 1Balog, Pelik′an, Pintz and Szemer′edi [4] showed that one may replacebyin the above bound. This estimate is the current best known bound.

    In 1996, by extending the ideas of Furstenberg, Bergelson and Leibman [5] established a far reaching qualitative result, the so-called Polynomial Szemer′edi theorem. It is natural to ask for a quantitative version of the Polynomial Szemer′edi theorem. Recently, Lyall and Magyar[6]made some progress towards this problem. They first proved a higher dimensional analogue of S′ark?zy’s theorem.

    Theorem BFor k ∈N with k ≥2, there exists a constantsuch that the following holds. LetZ{0}=?, then wehave

    Then by applying Theorem B,they established a quantitative result on the existence of polynomial configurations of the type in the Polynomial Szemer′edi theorem in the difference set of sparse subsets of Z.

    Theorem CLet l ∈N+and P1,··· ,Pl∈Z[x]with Pi(0)=0 for i=1,··· ,l.Suppose thatThen there exists a constantsuch that the following inequality holds: let N ∈N+andfor a ny n ∈Z{0}, then we have

    Remark 2Theorems B and C were quoted from the revised version of [6], where the authors improved the main results in the original edition.

    By taking l=1, P1=x2and k =2, S′ark?zy’s theorem follows from Theorem C. Thus,we may consider Theorem C to be S′ark?zy’s theorem for a family of polynomials.

    Let Fqbe the finite field of q elements. Let p denote the characteristic of Fq.We denote by A=Fq[t] the polynomial ring over Fqand write A×=Fq[t]{0}. For N ∈N, let GNbe the set of all polynomials in A of degree less than N.

    By adapting part of the Pintz-Steiger-Szemer′edi argument, L?e and Liu [7] obtained an analogue of Theorem A in function fields.

    Theorem DIf p ≥3, then there exists a constant, depending only on q, such that the following holds: let N ∈N with N ≥2 and A ?GN.If(A?A)∩{d2:d ∈A×}=?,then we have

    In this paper, for the case k = 2, we consider the analogues of Theorems B and C in function fields. First, by closely following the approach of Lyall and Magyar, which is explained in detail by Rice [8], we prove a 2-dimensional version of S′ark?zy’s theorem in function fields.

    Theorem 1If p ≥3,then there exists a constant C >0,depending only on q,such that the following holds: let N ∈N with N ≥2 and. If (A ?A)∩{(d,d2):d ∈A×}=?,then we have

    By adapting the lifting argument in [6], we deduce the following analogue of Theorem C from Theorem 1.

    Theorem 2Let l ∈N+and P1,··· ,Pl∈A[x] with Pi(0)=0 for i=1,··· ,l. Suppose that≤2 and p ≥3. Then there exists a constantdepending only on q,P1,··· ,Pl, such that the following inequality holds: let N ∈N with N ≥2 and A

    In particular,by taking l=1 and P1=x2in Theorem 2,we obtain a slight improvement of Theorem D.

    In the general cases k ≥3, it is more difficult to establish a k-dimensional analogue of Theorem B in function fields. The main obstruction is that we are not able to obtain satisfactory exponential sum estimates on the minor arcs (for details of the circle method,see [9]), i.e., suitable generalizations of Proposition 10. We intend to return to this topic in the future.

    2 Preliminaries

    Let K = Fq(t) be the field of fractions of A. For a,b ∈A with b= 0, we defineThenis a valuation on K. The completion of K with respect to this valuation is K∞=the field of formal Laurent series in.

    K∞is a locally compact field and T=is a compact subring of K∞. Let dω be the Haar measure on K∞such that T 1dω =1.

    Let tr : Fq→Fpbe the familiar trace map. For c ∈Fq, writ eThe exponential function e : K∞→C×is defined by e(ω) = eq(res ω). Using this function, one can establish Fourier analysis in A. In particular, A,K,K∞,T play the roles of Z,Q,R,R/Z, respectively.

    For ω ∈K∞andwrite ωγ = (ωγ1,ωγ2) andLet f,g :A2→C be functions with finite support sets. The Fourier transformC of f is defined byThe convolution f ?g :A2→C of f and g is defined by

    Then it follows that

    Let dα denote the product of Haar measures. For m ∈A2, we have the orthogonal relation

    Lemma 1For M ∈N+and ω ∈K∞, we have

    ProofThis is [10, Lemma 7].

    For N ∈N+, the exponential sum SN:T2→C is defined by

    Lemma 2Let N ∈N+andgcd(b,m1,m2) = 1. Suppose that ordb

    Then we have

    ProofWrite β =(β1,β2)=α ?. Then

    Let s ∈GN?ordband t ∈Gordb. Note that

    we have e(β1(sb+t))=e(β1sb). Similarly, since

    it follows that e(β2(sb+t)2)=e(β2s2b2). Thus, we obtain

    This completes the proof of the lemma.

    Lemma 3Let r1,r2∈N.Then for any α=(α1,α2)∈T2,there exists(b,m1,m2)∈A3with the following properties

    (i) b is monic and ordb ≤r1+r2;

    (ii) gcd(b,m1,m2)=1;

    (iii) ordmj

    ProofFor 1 ≤j ≤2, let Tj=ω ∈T:ordω ≤?rj?1. Then Tjis a subgroup of T.Also,

    Let c be the leading coefficient ofand letBy taking b =and mj=the lemma follows.

    3 Estimate for G

    In this section, we obtain an estimate forOur arguments run in parallel with the approach of Chen [11].

    Lemma 4Let a1,a2,b1,b2∈A with b1,b20 and gcd(b1,a1) = gcd(b2,a2) = 1. Let m=(m1,m2)∈A2. Suppose that gcd(b1,m1,m2)=gcd(b2,m1,m2)=1. If gcd(b1,b2)=1,then

    ProofSince gcd(b1,b2)=1, b2+b1A is invertible in the ring H1=A/b1A. Thus,

    Similarly, we have

    Combining the above two equalities, it follows that

    Equality (3.1) follows since gcd(b1,b2)=1.

    Lemma 5Let a,b ∈A withand gcd(b,a)=1. Let m=(m1,m2)∈A2. Suppose that gcd(b,m1,m2)=1. If p ≥3 and b is irreducible, then we have

    ProofSince b is irreducible and gcd(b,a)=1,it follows that.We divide into two cases.

    Case 1Suppose that. Since gcd(b,m1,m2)=1,By Lemma 1, we have

    Case 2Suppose that. Since b is irreducible, H = A/bA is a field. Note thatwe can find an isomorphism T :F|b|→H of fields.

    Consider ψ :F|b|→C×defined by ψ(c)=e(). It follows from Lemma 1 that

    Thus, ψ is a non-trivial additive character of F|b|. Let P(t) =. Then P is a polynomial of degree 2 in F|b|[t].

    Note that

    by Weil’s theorem in [12], we have

    Combining the above two cases, the lemma follows.

    Lemma 6Let a,b ∈A withand gcd(b,a)=1. Let m=(m1,m2)∈A2. Suppose that gcd(b,m1,m2)=1. If p ≥3 and b is irreducible, then for any r ∈N+, we have

    ProofWe will prove this lemma by induction on r.

    For r =1, the lemma follows from Lemma 5.

    Let r ∈N with r ≥2. Suppose that the lemma holds for allwith. We now prove that the statement is true for r.

    Note that for d ∈Gordbr, there exist d1∈Gordbr?1and d2∈Gordbsuch that d =This observation allows us to obtain

    There are two cases.

    Case 1Suppose that b|m2. Sinceby Lemma 1, we have

    By (3.2), we have

    Case 2Suppose thatThen there exists unique d0∈Gordbsuch that

    For any d1∈Gordbr?1, it follows from Lemma 1 that

    Write

    By (3.2), we have

    If r =2, then

    If r ≥3, then

    we deduce from (3.3) that

    By the induction hypothesis, it follows that

    By combining the above two cases, we complete the proof of the lemma.

    Proposition 7Let a,b ∈A withand gcd(b,a) = 1. Let m = (m1,m2) ∈A2.Suppose that gcd(b,m1,m2)=1. If p ≥3, then we have

    ProofWithout loss of generality, we assume thatand ordb ≥1.Also, b is monic.There exist ι,j1,··· ,jι∈N+and distinct monic irreducible polynomials σ1,··· ,σιin A such thatWe prove the lemma by induction on ι.

    For ι=1, the lemma follows from Lemma 6.

    Let ι ∈N with ι ≥2. Suppose that the lemma is true for ι ?1. We now prove that the claim holds for ι. Since gcd(b,a)=1, we can findsuch that

    By Lemmas 4 and 6, we have

    By the induction hypothesis, the proposition follows.

    4 Estimates for SN

    For the present, we fix N ∈N+and A ?GN×G2Nwith |A|=δq3N. Throughout this section, we assume that the following hypothesis holds.

    Hypothesis A

    Take θ ∈N+with q?θ<δ ≤q1?θ. Then N ≥12θ. Write M =N ?6θ.

    The characteristic function 1A:A2→R of A is defined by

    Write ΓN= GN×G2N. We define the balanced function fA: A2→R of A to be fA=1A?δ1ΓN.

    Let b ∈A×with b monic. Write

    For (a1,a2)∈Ab, we define the Farey arc F(b,a1,a2) to be

    Also, we define

    We say F(b,a1,a2) is major if ordb ≤2θ+3 and minor if ordb>2θ+3. Let

    We define the major arcs M and the minor arcs m as follows:

    Lemma 8Let b,B. Suppose thatthen we have

    ProofTo prove the lemma, we suppose the contrary. Then there exists

    Let 1 ≤j ≤2. Since

    it follows that

    It is easy to see that b = lcm(B1,B2) =. It follows that aj=. This leads to a contradiction, and the lemma follows.

    Proposition 9If b ∈B, then for any α ∈Fb, we have

    ProofWrite (α1,α2)=α. Take a=(a1,a2)∈Absuch that α ∈F(b,a1,a2). Since

    by Lemma 2, we have

    It follows from Proposition 7 that

    Proposition 10For any α ∈m, we have

    ProofWrite α = (α1,α2). By using Lemma 3 for r1= 0 and r2= N, we can find a monic polynomial b in A×and a=(a1,a2)∈A2such that ordb ≤N, gcd(b,a1,a2)=1, ordaj

    In the following, we assume that ordb ≤2θ+3. Consider the following estimate

    For d ∈GN, since

    it follows that {β2d}=β2d. By Lemma 1, we have

    Combining Lemma 2 and Proposition 7 with the above inequality, it follows that

    Case 1Suppose that |β2|≥q?2M|b|?1. By (4.1), we have

    Case 2Suppose that

    If ordβ2≥1 ?N +ordβ1, then by (4.1), we have

    Thus, it remains to estimate |SN(α)| under the additional assumption ordβ2≤ordβ1?N.

    Write L1=?ordβ1, then 1 ≤L1≤M+ordb; write L2=?ordβ2, then L2≥1+2M+ordb; writesince L1≤M +2θ+3

    For j ∈N, write Cj={d ∈A:ordd=j}, then

    Let d ∈GK. By the assumption ordβ2≤ordβ1?N, we have

    It follows that e(β2d2)=1. Note that ord{β1}=?L1≥?K, by Lemma 1, we have

    Thus

    Let K ≤I ≤N?1 and d ∈CI.Take c0,c1,··· ,cI∈Fqwithsuch that

    Then

    For 0 ≤i,j ≤I, if i+j ≥L2?1, by the assumption ordβ2≤ordβ1?N, we have

    Thus, there exists the polynomial QI(t1,··· ,tI?L1+1) of (I ?L1+1) variables over Fqsuch that

    Substituting this into the definition of the functionand noting thatwe have

    It follows from (4.2) that SN(β)=0. Finally, by Lemma 2, we have SN(α)=0.

    Combining the above two cases, we complete the proof of the proposition.

    5 Density Increment

    In this section, we continue to fix N ∈N+and A ?ΓNwith |A| = δq3N. Also, we assume that Hypothesis A holds.

    Lemma 11

    ProofWriteBy (2.1), we have

    If d ∈GN, then∈ΓN. Thus ΓN+=ΓN?=ΓN. It follows that (A ?A)∩{:d ∈A×}=?from Hypothesis A. Thus

    Finally, by (5.1) and (5.2), we obtain

    Lemma 12There exists a monic polynomial b0in G2θ+4such that

    where 0

    ProofBy Proposition 10, we have

    Write

    Combining the above inequality with Lemma 11, it follows that

    For j ∈N, write Oj= {b ∈A×: b monic, ordb = j}. By Lemma 8 and Proposition 9, we have

    Take a monic polynomial b0in G2θ+4such that

    It follows from the above inequality that

    Since δ ≤q1?θ, we can find a constantdepending only on q, such that

    Lemma 13There exists n0∈ΓNsuch that

    ProofWrite P =b0ΓM. Let m=(m1,m2)∈ΓMand 1 ≤j ≤2. Since

    we have b0m ∈ΓN. Thus, P ?ΓN. Also, we have

    For n ∈ΓN, we have

    If there exists n0∈ΓNsuch that fA?1?P(n0)≥δ|P|, then

    Thus, in the following, we assume that fA?1?P(n) ≤δ|P| for all n ∈ΓN. It follows from(5.4) that

    Let α=(α1,α2)∈Fb0. Take a=(a1,a2)∈Ab0such that α ∈F(b0,a1,a2). Since

    we have e(b0mjαj)=e(mjaj)=1. Thus,=|P|. It follows from (5.5) that

    By Lemma 12, we have

    Take n0∈ΓNsuch that

    By (5.4), we have

    Proposition 14There existandwith |such that

    ProofWrite L = ordb0and T = |b0|. Then 0 ≤L ≤2θ+3. By takingproperty (iii) follows. Take d1,··· ,such that

    For d ∈GLand 1 ≤i,j ≤T, write

    where

    Let m = (m1,m2) ∈ΓM. Take d ∈GLandsuch thatBy(5.6), we can find 1 ≤i,j ≤T such thatThen we have

    Thus, we see that

    Take d0∈GLand 1 ≤i0,j0≤T such that

    By Lemma 13, we have

    which contradicts Hypothesis A. This completes the proof of the proposition.

    6 Proof of Theorem 1

    Proposition 15If p ≥3, then there exists a constant C1> 0, depending only on q,such that the following inequality holds. Let N ∈N with N ≥2 and A ?GN×G2N. If, then we have

    Remark 3Note that,the form of Proposition 15 is more natural than of Theorem 1.

    ProofWritethen by taking

    the proposition follows. Thus in the following, we assume that

    Now,we recursively define a sequence of triples(Ni,Ai,δi)with Ni∈N+, Ai?ΓNiandδiq3Nias follows. Take (N0,A0,δ0)=(N,A,δ). Let i ∈N. Suppose that (Ni,Ai,δi) is defined. Ifwe stop the definition. If δiby Proposition 14, we can findsuch that

    Claim 1For j ∈N, write

    ProofWe prove the claim by induction on j. For j = 0, we haveIt follows from (ii) that

    Thus if i ≥I0, then δi≥2δ.

    Suppose that the claim holds for j. We now prove that the statement is true for j+1.

    This completes the proof of the claim.

    Take j0∈N such that 2j0δ ≤1<2j0+1δ. Then we have

    It follows from (iii) that

    By (6.1), we have

    Thus, there exists a constant C1>1, depending only on q, such that

    Note that the function x log x on [1,+∞) is increasing, and the proposition follows since

    Proof of Theorem 1Write. If N ≤7, by takingthe theorem follows. In the following, we assume that N ≥8. Write

    For 1 ≤i ≤S and 1 ≤j ≤T, takesuch that

    Then, we have

    Write

    Take 1 ≤i0≤S and 1 ≤j0≤T such that

    7 Proof of Theorem 2

    For 1 ≤s ≤l,take cs1,cs2∈A such thatDenote by r the rank of the matrix P. Then 1 ≤r ≤2. Thus, we divide into two case.

    Case 1Suppose that r =2. Without loss of generality, we assume thatc11,c12andlinearly independent. Writesuch thatWhen l ≥3, takesuch that

    Take S ∈N with S ≥4 and D ∈A×such that

    If l ≥3, we also require

    Claim 2For m ∈writeThen there existssuch that

    ProofLet a = (a1,a2) ∈A2. For 1 ≤i ≤2, takethatWriteThen we have

    This completes the proof of the claim.

    Claim 3Suppose that l ≥3.For mThen there existssuch that

    ProofLet n ∈Al?2and b ∈If n+DRb ∈Al?2, then n ∈. Thus

    The claim follows from (7.2) and Claim 2.

    Write

    Suppose that there exists d ∈A suth thatfor some b,∈B. Since

    we have

    from which it follows that d=0. Thus, we obtain

    By Theorem 1, we have

    Case 2Suppose that r =1.Without loss of generality,we assume thatsuch that

    Take S ∈N with S ≥4 and D ∈A×such that

    If l ≥2, we also require

    Claim 4For m ∈GS, writeThen there existssuch that

    ProofLet a ∈A. Takeandsuch thatWriteThen we have

    For m ∈GS, writeFor each a ∈Am, we fix asuch that=a. Since

    This completes the proof of the claim.

    Claim 5Suppose that l ≥2.For mwrite

    ProofThe claim follows from the similar argument as in Claim 3.

    Write

    By using similar arguments as in Case 1, we obtainthe theorem follows from (7.5).

    Combining the above two cases, the proof of the theorem is completed.

    日韩欧美精品v在线| 国产精品亚洲美女久久久| 18禁黄网站禁片午夜丰满| 久久中文看片网| 欧美日韩黄片免| 久久 成人 亚洲| 亚洲七黄色美女视频| 伊人久久大香线蕉亚洲五| 日日爽夜夜爽网站| 亚洲国产精品成人综合色| 国产成人系列免费观看| 99国产精品99久久久久| 日本一二三区视频观看| 女生性感内裤真人,穿戴方法视频| 此物有八面人人有两片| 老司机深夜福利视频在线观看| 老司机午夜福利在线观看视频| 国产精品av久久久久免费| av欧美777| 亚洲精品中文字幕在线视频| 啦啦啦韩国在线观看视频| 亚洲av电影不卡..在线观看| tocl精华| 一本一本综合久久| 搡老妇女老女人老熟妇| 丁香欧美五月| 精品国产亚洲在线| 欧美乱色亚洲激情| 国产av麻豆久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成电影免费在线| cao死你这个sao货| 舔av片在线| 丰满的人妻完整版| 人人妻,人人澡人人爽秒播| 精品不卡国产一区二区三区| 欧美乱码精品一区二区三区| 一本精品99久久精品77| 欧美3d第一页| 成年人黄色毛片网站| 岛国在线免费视频观看| 久久精品影院6| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久av网站| 欧美+亚洲+日韩+国产| 亚洲成人免费电影在线观看| 99精品在免费线老司机午夜| 中出人妻视频一区二区| 男男h啪啪无遮挡| av天堂在线播放| 可以免费在线观看a视频的电影网站| 1024视频免费在线观看| 精品国产乱码久久久久久男人| 视频区欧美日本亚洲| 91麻豆精品激情在线观看国产| 国产真人三级小视频在线观看| 国内少妇人妻偷人精品xxx网站 | 欧美最黄视频在线播放免费| 老司机午夜福利在线观看视频| 亚洲人成电影免费在线| 亚洲七黄色美女视频| 亚洲狠狠婷婷综合久久图片| 久久久久久久午夜电影| 亚洲,欧美精品.| 午夜a级毛片| 神马国产精品三级电影在线观看 | 久久亚洲真实| videosex国产| 亚洲美女视频黄频| av国产免费在线观看| 亚洲全国av大片| 人妻夜夜爽99麻豆av| 日本黄色视频三级网站网址| 在线观看舔阴道视频| 久久国产精品人妻蜜桃| 欧美国产日韩亚洲一区| 国产精品永久免费网站| 国产区一区二久久| 99在线视频只有这里精品首页| 午夜福利视频1000在线观看| 夜夜爽天天搞| 精品免费久久久久久久清纯| 老汉色av国产亚洲站长工具| 亚洲男人天堂网一区| 黄片小视频在线播放| 亚洲精品久久成人aⅴ小说| 婷婷六月久久综合丁香| 国产真人三级小视频在线观看| 亚洲国产精品sss在线观看| 久久久国产欧美日韩av| 精品人妻1区二区| 亚洲电影在线观看av| 激情在线观看视频在线高清| 岛国在线观看网站| 中文字幕av在线有码专区| 久久热在线av| 久久久久精品国产欧美久久久| 99热这里只有精品一区 | 亚洲国产欧美人成| 国产精品一区二区三区四区久久| 久久精品国产清高在天天线| 宅男免费午夜| 国产精品免费一区二区三区在线| 日本 av在线| 啦啦啦免费观看视频1| 亚洲国产看品久久| 久久久国产欧美日韩av| 国产av在哪里看| 成人三级黄色视频| 美女黄网站色视频| 亚洲,欧美精品.| 久久久国产欧美日韩av| 中文字幕人成人乱码亚洲影| 亚洲自拍偷在线| 999久久久国产精品视频| 成人av一区二区三区在线看| 国产精品1区2区在线观看.| 亚洲成人免费电影在线观看| 亚洲电影在线观看av| 成人国产一区最新在线观看| 国产亚洲精品第一综合不卡| 欧美日本亚洲视频在线播放| 巨乳人妻的诱惑在线观看| 国产在线观看jvid| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区三| 国产午夜精品久久久久久| 日韩三级视频一区二区三区| 亚洲狠狠婷婷综合久久图片| 免费观看人在逋| 69av精品久久久久久| 在线观看美女被高潮喷水网站 | 久久热在线av| 亚洲男人的天堂狠狠| 法律面前人人平等表现在哪些方面| 黑人欧美特级aaaaaa片| 亚洲 欧美一区二区三区| 9191精品国产免费久久| 又黄又粗又硬又大视频| 国产熟女xx| 超碰成人久久| 国产乱人伦免费视频| 我的老师免费观看完整版| 亚洲精品在线美女| 中文亚洲av片在线观看爽| 国产精品久久久久久亚洲av鲁大| 一区福利在线观看| 床上黄色一级片| 我要搜黄色片| 一个人免费在线观看的高清视频| 欧美日韩中文字幕国产精品一区二区三区| 性色av乱码一区二区三区2| 黄片大片在线免费观看| 国产熟女午夜一区二区三区| 国产亚洲欧美98| 特大巨黑吊av在线直播| 国产av一区在线观看免费| 脱女人内裤的视频| 欧美高清成人免费视频www| 成人永久免费在线观看视频| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| 精品人妻1区二区| 久久精品夜夜夜夜夜久久蜜豆 | 久久久精品欧美日韩精品| 国产精品 国内视频| www.www免费av| 久99久视频精品免费| 精品久久蜜臀av无| 久久久精品大字幕| 看黄色毛片网站| 国产精品一区二区精品视频观看| 999久久久精品免费观看国产| 亚洲美女黄片视频| 欧美午夜高清在线| 最近视频中文字幕2019在线8| 18禁美女被吸乳视频| 亚洲国产欧美一区二区综合| 麻豆成人午夜福利视频| 99热6这里只有精品| 99热这里只有精品一区 | 最近最新免费中文字幕在线| 亚洲一码二码三码区别大吗| 亚洲欧美日韩高清专用| 精品日产1卡2卡| 亚洲男人的天堂狠狠| 看免费av毛片| 国产精品国产高清国产av| 999精品在线视频| 97人妻精品一区二区三区麻豆| 国产精品香港三级国产av潘金莲| 亚洲av成人av| 日韩欧美免费精品| 十八禁人妻一区二区| 亚洲人成伊人成综合网2020| 欧美另类亚洲清纯唯美| 久久 成人 亚洲| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一区av在线观看| 国产免费av片在线观看野外av| 日本精品一区二区三区蜜桃| 国产成人精品无人区| 麻豆国产av国片精品| 色综合欧美亚洲国产小说| 精品国产乱子伦一区二区三区| 国产成+人综合+亚洲专区| 亚洲中文字幕日韩| www日本黄色视频网| 在线永久观看黄色视频| 亚洲性夜色夜夜综合| 青草久久国产| x7x7x7水蜜桃| 亚洲欧洲精品一区二区精品久久久| 久久久久久久久免费视频了| 久久久久免费精品人妻一区二区| 国产乱人伦免费视频| 亚洲精品一区av在线观看| 国产精品,欧美在线| 俄罗斯特黄特色一大片| 两性夫妻黄色片| 亚洲国产中文字幕在线视频| 99国产精品99久久久久| 国产精品免费视频内射| av中文乱码字幕在线| 一进一出好大好爽视频| 免费观看人在逋| 91国产中文字幕| 国产97色在线日韩免费| 国产又黄又爽又无遮挡在线| 亚洲av成人一区二区三| 精品福利观看| 国产男靠女视频免费网站| 午夜福利欧美成人| a级毛片a级免费在线| 亚洲国产欧美一区二区综合| 亚洲一区高清亚洲精品| 欧美大码av| 少妇的丰满在线观看| 99久久精品国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 老司机靠b影院| 两个人免费观看高清视频| 视频区欧美日本亚洲| 亚洲黑人精品在线| 女人被狂操c到高潮| 日本一本二区三区精品| 亚洲欧美日韩东京热| 18禁观看日本| 一进一出好大好爽视频| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 国产aⅴ精品一区二区三区波| 熟妇人妻久久中文字幕3abv| 妹子高潮喷水视频| 久久久国产欧美日韩av| 国产精品免费一区二区三区在线| 国产精品自产拍在线观看55亚洲| 最近在线观看免费完整版| 国产高清videossex| 男男h啪啪无遮挡| 动漫黄色视频在线观看| 精品久久久久久,| 99在线人妻在线中文字幕| 欧美在线一区亚洲| 精品无人区乱码1区二区| 久久国产精品人妻蜜桃| 在线十欧美十亚洲十日本专区| 精品久久久久久,| 国产一区二区激情短视频| 在线观看免费日韩欧美大片| 亚洲av电影不卡..在线观看| 久久精品亚洲精品国产色婷小说| 国产爱豆传媒在线观看 | 国产成人av教育| 级片在线观看| 亚洲欧美日韩东京热| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 亚洲精品久久国产高清桃花| 两人在一起打扑克的视频| 国产99久久九九免费精品| 亚洲欧美精品综合一区二区三区| 欧美av亚洲av综合av国产av| 国产午夜精品久久久久久| 午夜福利视频1000在线观看| svipshipincom国产片| 久久精品国产综合久久久| 免费在线观看影片大全网站| 久久这里只有精品中国| 成在线人永久免费视频| 久久久久性生活片| 精品国内亚洲2022精品成人| 在线a可以看的网站| 啦啦啦免费观看视频1| 久久人妻福利社区极品人妻图片| 国产成人av教育| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 在线观看美女被高潮喷水网站 | 国产免费av片在线观看野外av| 欧美一区二区国产精品久久精品 | 99久久精品国产亚洲精品| 九色国产91popny在线| www日本在线高清视频| 日本五十路高清| 日韩三级视频一区二区三区| 亚洲欧美日韩高清专用| 一本精品99久久精品77| 国产精品99久久99久久久不卡| 欧美在线黄色| 九九热线精品视视频播放| 毛片女人毛片| 欧美大码av| 国产精品一区二区三区四区免费观看 | 中亚洲国语对白在线视频| 老司机午夜十八禁免费视频| 黄色a级毛片大全视频| 午夜两性在线视频| 久久精品国产清高在天天线| 在线观看午夜福利视频| 国产高清videossex| 色哟哟哟哟哟哟| 国产精品一及| 亚洲av第一区精品v没综合| 亚洲欧美激情综合另类| 免费在线观看视频国产中文字幕亚洲| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区在线臀色熟女| 一进一出抽搐动态| 怎么达到女性高潮| 三级国产精品欧美在线观看 | 一进一出抽搐gif免费好疼| 午夜免费观看网址| 精品久久久久久久末码| 最近最新中文字幕大全电影3| 亚洲午夜精品一区,二区,三区| 一级a爱片免费观看的视频| 亚洲一码二码三码区别大吗| 非洲黑人性xxxx精品又粗又长| 日日夜夜操网爽| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 久99久视频精品免费| 日日夜夜操网爽| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 女警被强在线播放| 国产亚洲精品一区二区www| 午夜激情av网站| 亚洲成人免费电影在线观看| 99久久精品热视频| 最近最新免费中文字幕在线| 日韩欧美在线二视频| 天天一区二区日本电影三级| 一级a爱片免费观看的视频| 亚洲无线在线观看| 欧美3d第一页| 午夜久久久久精精品| 成年版毛片免费区| www日本黄色视频网| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 五月伊人婷婷丁香| 69av精品久久久久久| www.熟女人妻精品国产| 欧美成人午夜精品| 五月玫瑰六月丁香| a在线观看视频网站| 可以免费在线观看a视频的电影网站| 精品一区二区三区四区五区乱码| 91av网站免费观看| 五月伊人婷婷丁香| 女同久久另类99精品国产91| 91大片在线观看| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 国产精品免费一区二区三区在线| 国产亚洲av嫩草精品影院| 精品国产乱子伦一区二区三区| 日本免费一区二区三区高清不卡| 国产一区二区激情短视频| av片东京热男人的天堂| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 全区人妻精品视频| 黄片小视频在线播放| 成年人黄色毛片网站| 制服人妻中文乱码| 老司机靠b影院| 欧美日韩中文字幕国产精品一区二区三区| 三级毛片av免费| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 亚洲aⅴ乱码一区二区在线播放 | 特级一级黄色大片| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频 | 久久精品国产99精品国产亚洲性色| www日本在线高清视频| 男女做爰动态图高潮gif福利片| 麻豆av在线久日| 国产激情欧美一区二区| 亚洲av成人不卡在线观看播放网| 久久中文字幕一级| 狂野欧美激情性xxxx| 日本成人三级电影网站| 九色成人免费人妻av| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 国产精品爽爽va在线观看网站| 久久精品国产99精品国产亚洲性色| 手机成人av网站| 国产av不卡久久| 久久久久性生活片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲美女黄片视频| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 美女免费视频网站| 国产av又大| 天天一区二区日本电影三级| 亚洲18禁久久av| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲一级av第二区| 视频区欧美日本亚洲| 午夜福利成人在线免费观看| 日韩高清综合在线| 97超级碰碰碰精品色视频在线观看| 全区人妻精品视频| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 欧美日韩黄片免| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 一本一本综合久久| 超碰成人久久| 长腿黑丝高跟| 国产精品久久电影中文字幕| 亚洲全国av大片| a级毛片在线看网站| 久久久久久久久中文| 免费av毛片视频| 国产视频内射| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 欧美日韩乱码在线| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 亚洲最大成人中文| 久久久久久国产a免费观看| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| avwww免费| 国产麻豆成人av免费视频| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 又粗又爽又猛毛片免费看| 欧美 亚洲 国产 日韩一| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 精品少妇一区二区三区视频日本电影| 黄色视频,在线免费观看| 啦啦啦观看免费观看视频高清| 亚洲精品在线观看二区| 俺也久久电影网| 国产亚洲精品一区二区www| 久久这里只有精品中国| 国产成人一区二区三区免费视频网站| 日本成人三级电影网站| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 国产男靠女视频免费网站| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| avwww免费| 美女 人体艺术 gogo| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 热99re8久久精品国产| 中文亚洲av片在线观看爽| 九九热线精品视视频播放| 午夜精品一区二区三区免费看| 久久精品夜夜夜夜夜久久蜜豆 | 女人被狂操c到高潮| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 国产片内射在线| 美女午夜性视频免费| 国内精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 激情在线观看视频在线高清| 国产精品精品国产色婷婷| 亚洲在线自拍视频| 国产精品av视频在线免费观看| 欧美丝袜亚洲另类 | 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密| 国产成人av激情在线播放| 国产高清激情床上av| 无人区码免费观看不卡| 精品国产超薄肉色丝袜足j| 久久精品成人免费网站| 日韩国内少妇激情av| 久久人妻福利社区极品人妻图片| 波多野结衣巨乳人妻| 久久久久久久久久黄片| svipshipincom国产片| www日本黄色视频网| 亚洲免费av在线视频| 999久久久国产精品视频| 禁无遮挡网站| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 99久久99久久久精品蜜桃| 亚洲精品粉嫩美女一区| 国产精品一区二区免费欧美| 久久中文看片网| 国产v大片淫在线免费观看| 亚洲精品在线观看二区| 女警被强在线播放| 日韩欧美 国产精品| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 一级毛片女人18水好多| 欧美黄色片欧美黄色片| 级片在线观看| 久久中文看片网| 久久热在线av| 久久婷婷人人爽人人干人人爱| 老司机福利观看| 一a级毛片在线观看| 国产v大片淫在线免费观看| 无遮挡黄片免费观看| 99久久国产精品久久久| www.自偷自拍.com| 三级毛片av免费| 成人国产一区最新在线观看| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 日本一二三区视频观看| 国产亚洲av高清不卡| 又大又爽又粗| 婷婷精品国产亚洲av| 亚洲精华国产精华精| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 激情在线观看视频在线高清| 免费搜索国产男女视频| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| av免费在线观看网站| 啪啪无遮挡十八禁网站| 欧美精品亚洲一区二区| 麻豆av在线久日| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 国产熟女午夜一区二区三区| 91字幕亚洲| 老司机午夜十八禁免费视频| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 亚洲真实伦在线观看| 精品欧美一区二区三区在线| 国内揄拍国产精品人妻在线| 国产成人啪精品午夜网站| 丰满的人妻完整版| 高清在线国产一区| 丰满的人妻完整版| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 国产精品电影一区二区三区| 国产黄a三级三级三级人| 亚洲av片天天在线观看| 制服丝袜大香蕉在线| 免费在线观看视频国产中文字幕亚洲| 最近最新中文字幕大全免费视频| 亚洲午夜精品一区,二区,三区| av视频在线观看入口| 国产精品98久久久久久宅男小说| 黄片大片在线免费观看| 99久久久亚洲精品蜜臀av| 国产精品亚洲av一区麻豆| 久久亚洲精品不卡| www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出| 人人妻人人看人人澡|