• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Design of Time-Delay Impulsive Systems Subject to Actuator Saturation

    2024-01-27 06:48:44ChenhongZhuXiupingHanandXiaodiLi
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Chenhong Zhu ,,, Xiuping Han ,,, and Xiaodi Li ,,

    Abstract—This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation.When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays.Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses.Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem.Three examples are provided to demonstrate the validity of the main results.

    I.INTRODUCTION

    ALL actuators have limited capabilities in real control systems since practical control can only deliver limited magnitudes and rates of signals due to physical constraints.As is known to all, input saturation may cause performance deterioration and even instability [1].When input saturation is encountered, it makes sense to explore effective strategies to alleviate undesirable effects.Over the past decades many useful methods have been developed in this field.Recently, two types of methods to deal with the saturation function are widely applicable.In the first, polytopic differential inclusion is utilized to describe saturation nonlinearity [2], [3].The second main approach uses global/regional sector conditions which places saturation nonlinearity into a linear sector [4],[5].Stability analysis of nonlinear systems with input saturation has been extensively studied over the past years [6]–[9].

    Impulsive systems have been extensively investigated as they provide effective mathematical models to deal with plants with discontinuous input [10]-[13].For example,impulsive phenomenon is ubiquitous in biology [14], mechanics [15] and neural networks [16].In general, there are two main kinds of impulsive effects: impulsive control and impulsive disturbance.More specifically, the first kind of impulsive effects corresponds to the case where impulses are used to control the continuous dynamics, while the second one concerned with the case where the behaviour of the system is subject to impulsive disturbance.Over the past decades, a large amount of results concerning different impulsive effects can be found in [17]-[19].In the process of transmission and sampling of the information, time delays are always inevitable[20]–[22].For instance, in the application of neural networks,time delays in dynamical nodes expresses response time and coupling delays refer to communication delays; in a financing institution, the decision of an investor is often influenced by both current transaction information and past transaction information of other investors, as shown in [23]-[26].On the other hand, saturated impulse is ubiquitous in practical applications, such as impulsive synchronization of neural networks in which signal transmission is limited due to the inherent physical constraints and instantaneous acceleration of mechanical systems in which performance is constrained by digital implementation.However, the relevant theoretical results related to impulsive saturation has been relatively less developed [27]-[29] on account of the complex coupling effects between impulses dynamics and input saturation.Recently,existence of a solution for impulsive differential equations under saturation was studied in [27].Reference [28] developed a linear differential inclusion method for exponential stability of nonlinear impulsive system with input saturation.Impulsive control of a time-delay system under input saturation was investigated in [29].However, both continuous dynamics and discrete dynamics were required to be stable/stabilized in [29].In addition, input delay was excluded in afore mentioned works.More recently, delayed-impulses control for discrete systems with input saturation was addressed in [30], where two classes of impulses, i.e., stabilizing impulses and destabilizing impulses, were studied, respectively.Nevertheless, the estimation of the stability region was excluded in [30], which is essential to the research of saturated systems.Moreover, some limitations on impulse intervals and delays were imposed, which brings more conservativeness.Therefore, the existing literature on the problems of stability and performance analysis for nonlinear systems with delayed impulses and input saturation were not effectively solved.

    Motivated by the above discussion, we shall investigate the exponential stability of time-delay impulsive systems involving input saturation.With the help of Razumikhin-type technique, a relatively maximized estimate of the stability region is obtained by means of an optimization algorithm.The novelty and distinctiveness of the proposed results is that we remove the restriction on the length of input delays, i.e., the length of input delays has no implicit relationship with impulse intervals.Moreover we fully considered the relationship between impulsive actions, impulse intervals and stability region.

    The remainder of the paper is organized as follows.Section II introduces the model of impulsive systems under delayed impulses and input saturation.Main results including the problems of exponential stability/stabilization and estimation of the domain of attraction are investigated in Section III.In Section IV, three numerical simulations are proposed to demonstrate the applicability of our results.Section V summarizes this paper.

    II.PRELIMINARIES

    Consider the following nonlinear impulsive system with saturated delayed impulses:

    Consequently, s at(Kx) can be expressed as

    use.

    In this paper, our interests lie in stability and stabilization analysis, and the estimation of S.Specifically speaking, our objective is to establish exponential stability/stabilization criteria by Lyapunov function method and obtain a maximized estimate of S of system (1) involving saturated delayedimpulses.For this purpose, let us now employ state feedbacku(t)=Kx(t), whereK∈Rm×nis the gain matrix to be designed.

    III.MAIN RESULTS

    A. Stability and Stabilization Analysis of Nonlinear Systems Involving Delayed Impulses

    and

    then system (1) is LUES over the class Fmax(β).Moreover,M(P,?) is included inS.

    Proof: It follows from μ1+μ2<μ that there exist positive constants λ ,?,ξ andh∈(0,1-μ) such that μ1eλξ+μ2≤μ and:

    By the above analysis, according to Λ(t+θ)≤Λ(t)/μ,LML<δPand (5), we then get that

    Remark 1: The idea of the proof in Theorem 1 is based on the Razumikhin technique [34].In fact, one may find from the proof of Theorem 1 thatD+Λ(t)≤σΛ(t)(σ>0), when Λ(t+θ)≤?/μ≤Λ(t)/μ, θ ∈[-r,0].Note that σ>0 means that when the behavior of the system diverges, we stabilize the system through impulsive control.Recently, exponential stability/stabilization conditions for saturated discrete-time systems were derived in [30].However, delayed impulses, based on the saturated structure, were not essentially taken into consideration during the process of stability analysis.Moreover, it requires that the size of input delays should be less than the lower bound of the impulse intervals.In addition, we remove the restrictions imposed on the input delays and impulse intervals.

    and we have following corollary.

    Corollary 1: Given constant scalar?and matricesH,K∈Rm×n,L=diag(lj)∈Rn×n, if there existn×nmatrixP>0,n×ndiagonal matrixM>0 and positive constants γ,β,δ andμ<1, such that (3), E (P,?/μ)?L(H),LML<δP, and

    Remark 3: In general, the research on impulsive effects can be mainly divided into two categories: unstable continuous dynamics with stabilizing impulses (i.e., impulsive control)and stable continuous dynamics with destabilizing impulses(i.e., impulsive disturbance).From the perspective of impulsive control, Theorem 1 investigated the exponential stabilization problem of system (1).Note that a constraint on the upper bound of the impulsive interval length is imposed, i.e.,tk∈Fmax(β).It indicates that to guarantee the stabilization of the system, the interval length of contiguous impulse instants cannot be overlong.In addition, in the case of impulsive disturbance, Theorem 2 investigated exponential stability problem of system (1).To maintain the stability property of the system, a constraint on the lower bound of the impulsive intervals is imposed, i.e.,tk∈Fmin(β), which reveals that impulse sequences should not happen so frequently to destroy the stability of the system.

    Especially, in the absence of input delays, i.e., ξk=0, and considering a special case whereC=I, (1b) can then be replaced by

    As a special case, many applications involving impulses can be modelled by (23), such as multi-agent systems [35], network systems [36] and coupled dynamical systems [37].In what follows, we apply Theorem 2 to investigate the stability property of system (1) with impulse effects (23).

    Corollary 2: Given a constant scalar?and matricesH,K∈Rm×n,L=diag(lj)∈Rn×n, if there existn×nmatrixP>0,n×ndiagonal matrixM>0 and positive constantsγ,β,δ,μwith μ >1, such that (15), E (P,μ?)?L(H),LML<δP, and

    then system (1a) with impulse (23) is LUES over the class Fmin(β).

    B. Controller Design and Estimation of the Domain of Attraction

    In this section, we shall introduce an optimization approach to enlarge the estimation of the domain of attraction S by designing control gainKand choosing appropriate impulse sequences.

    whereg(μ)=μ if μ >1 andg(μ)=1/μ if μ ∈(0,1).

    Note that v) is bilinear since it contains two unknown decision variablesPandH, i.e., that is, it is a bilinear matrix inequality (BMI) problem.This fact makes it difficult to solve the optimization problem (24).To solve this problem, linear matrix inequality (LMI) algorithms are developed by performing a classical linearizing change of variables, which corresponds to the introduction of some auxiliary variables defined as follows.

    Let η=?/α2,Γ=KW,Z=HW,W=P-1,G=M-1, andei=then we rewrite (24) as follows:

    2) Given μ1,μ2, solve (25) for η,W,Z,Γ,Gas well as the maximal upper bound of the impulsive intervalβ.

    Remark 5: Recently, [29] studied locally asymptotic stability of time-delay impulsive systems with input saturation.Reference [38] presented some results concerning stabilization of nonlinear time-delay system subject to input saturation via Lyapunov-Krasovskii functional technique.However, the influence of impulsive actions upon the stability region was essentially neglected in their works.Moreover, the implicit connection among impulse action, system structure and the estimate of the stability region, which is crucial to saturation impulsive control, was not specified in their results.

    IV.EXAMPLES

    In this section, numerical simulations are given to show the validity of the proposed results.

    Example 1: Consider the following nonlinear time-delay system:

    where τ (t)∈[0,0.1], ξk∈[0,0.4],k∈Z+, and

    It is worth noting that in the absence of impulses, the continuous dynamics of system (26) is diverging (see Fig.1(a)).In this case, we shall stabilize system (26) with appropriate control gainKand estimate the maximal domain of attraction.Choose reference set Ξ=co{?1,-?1}, where ?1=(-0.8,0.8)T, and parameters γ=1.1,δ=0.5,μ=0.49,μ1=0.25 andμ2=0.2.Then by using the LMI Toolbox in Matlab, some feasible solutions for can be derived from the optimization problem (25).We have the admissible upper bound of β ≤0.2016, the optimum value α?=6.9881 and corresponding matrices

    By Theorem 1, for any bounded impulse input delayξ, system (26) is LUES within E (P?,1) over the class Fmax(0.2016).

    In simulations, let impulse interval β =0.2.Fig.1(b) shows the simulation result of system (26) with initial value φ(θ)=(2.4,0.8)T,(-2.7,1.6)T,(-0.7,-1.8)T,θ ∈[-0.4,0],respectively.It depicts that, under saturated impulsive control,the state trajectories starting from the initial state setE(P?,1)(the inner ellipsoid) may enter the permissive state set E(P?,1/u)?L(H) (the outer ellipsoid) keeping inside of it and finally converge to the origin.

    Fig.1.(a) State responses of system (26) in the absence of stabilizing impulses; (b) State responses of system (26) with saturated stabilizing impulses.

    Under same conditions, consider another case ofβ=0.23>0.2016 , we shall apply (25) to find the upper bound of μ1andμ2.One can verify that the maximum of μ1,μ2,μ is 0.1740,0.1859and 0.3786, respectively.By Theorem 1, for anyboundedimpulseinputdelayξ, system(26)isLUES with inE(P?′,1)overtheclassFmax(0.23) withcontrol gainK?′=(0.2616 0.1680), where

    Example 2: Consider another nonlinear system with destabilizing impulses

    where ξ ,τ ≥0 and

    Choose parameters δ=0.5, γ=1.1, μ=1.8, μ1=0.32, μ2=

    In simulations, let ξ=1, ?=0.1 and impulse interval β=0.9466, where the simulation of (27) with initial value φ(θ)=(3,3.5),θ ∈[0,1]is displayed in Fig.2.When the continuous dynamics of system (27) is stable (blue curve), it shows that the stability property can be still maintained with certain saturated delayed-impulses disturbance (red curve).

    Fig.2.State trajectory of system (27) under bounded delayed impulsive perturbation.

    Example 3: Consider a two-neuron network as follows:

    where τ =1 and

    It was shown in [39] that system (28) admits chaotic behavior withf(x(t))=(tanh(x1(t)),tanh(x2(t)))Tand initial condition φ=(0.4,0.6)T, see Fig.3(a).Reference [40] pointed out that the chaotic time-delay neural network (28) realizes synchronization under certain stabilizing impulses.In the case that the states are subjected to uncertain input delays, a novel impulsive control strategy was established to guarantee the synchronization of system (28).

    Consider the slave system

    Fig.3.(a) Chaotic phenomenon of system (28) with initial condition φ=(0.4,0.6)T; (b) State trajectory of error system (31) with initial condition φ=(2,1)Tunder saturated impulsive control.

    wherek∈Z+,ξ=0.2 andC,Dare two known parameter matrices given by

    Define synchronization error as U(·):=ν(·)-x(·).Then we have the following error system:

    wherek∈Z+,u(·)=KU(·).In fact, in view of impulsive saturation, system (30) can be modified as

    Choose parameters δ=0.1,γ=1,μ=0.8,μ1=0.3,μ2=0.4 and reference set Ξ=co{?1,-?1}, where ?1=(0.2, -0.2)T.By solving the optimization problem (25), we have the feasible solution η?=0.6944, β ≤βmax=0.364, and gain matrixK=[0.6489 0.5990].By Theorem 1 system (28) achieves exponential synchronization under saturated impulsive control over the class Fmax(0.364).In simulations, take the impulse time sequence {tk}∈Fmax(0.364) as follows:tk=0.36k-0.12,k∈Z+.State trajectoryof error system(31) with initial condition φ =(2,1)Tisdepicted in Fig.3(b).

    V.CONCLUSION

    In this paper, LUES of nonlinear systems with saturated delayed impulses have been considered.Our results show that under actuator saturation, the time-delay systems processing destabilizing continuous dynamics become stable by choosing appropriate impulsive time sequences.On the other hand,a nonlinear system subject to input saturation has robust stability with respect to sufficiently small impulsive disturbance.ThenLMI-based methods have been established for enlarging the estimation of the stability region as well as for control design in a convex optimization problem.Finally, the proposed control method was validated by simulation results.In the future, we will try to extend the obtained results to impulsive sequences satisfying average-type dwell time conditions or those with eventually uniformly bounded impulsive frequencies.

    熟女人妻精品中文字幕| 成人国产av品久久久| 免费av观看视频| 婷婷色麻豆天堂久久| 中文字幕人妻熟人妻熟丝袜美| 禁无遮挡网站| 久久午夜福利片| 久久人人爽av亚洲精品天堂 | 婷婷色麻豆天堂久久| 亚洲第一区二区三区不卡| 国产精品.久久久| 免费大片黄手机在线观看| 秋霞伦理黄片| 91狼人影院| 日韩电影二区| 伦精品一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲欧美中文字幕日韩二区| 狂野欧美白嫩少妇大欣赏| 在现免费观看毛片| 在线 av 中文字幕| 超碰97精品在线观看| 美女视频免费永久观看网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲久久久久久中文字幕| av在线老鸭窝| 99久久精品一区二区三区| 亚洲av中文字字幕乱码综合| 一个人看视频在线观看www免费| www.av在线官网国产| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区三区四区免费观看| 大话2 男鬼变身卡| 少妇被粗大猛烈的视频| 一级a做视频免费观看| 精品久久国产蜜桃| 91精品伊人久久大香线蕉| 亚洲精品国产av成人精品| 成年人午夜在线观看视频| av国产久精品久网站免费入址| 亚洲最大成人手机在线| 天堂网av新在线| 国产白丝娇喘喷水9色精品| 免费看av在线观看网站| 黄色视频在线播放观看不卡| 亚洲最大成人av| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 欧美+日韩+精品| 免费观看性生交大片5| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 久久久久久久久久久丰满| 天天一区二区日本电影三级| 精品久久久久久久久亚洲| 少妇人妻一区二区三区视频| 女人久久www免费人成看片| 不卡视频在线观看欧美| 精品久久久久久久久亚洲| 日韩成人av中文字幕在线观看| 91久久精品国产一区二区三区| 午夜福利视频1000在线观看| 夜夜爽夜夜爽视频| 在线观看av片永久免费下载| 久久ye,这里只有精品| 简卡轻食公司| 国产又色又爽无遮挡免| 国产精品成人在线| 国产一区二区亚洲精品在线观看| 亚洲成人久久爱视频| 日韩视频在线欧美| 日日啪夜夜撸| 精品少妇久久久久久888优播| 欧美丝袜亚洲另类| 内射极品少妇av片p| 国产黄频视频在线观看| 国产精品久久久久久av不卡| tube8黄色片| 高清午夜精品一区二区三区| 日韩av免费高清视频| 老司机影院成人| 精品久久久噜噜| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 久久精品夜色国产| 不卡视频在线观看欧美| 国产精品一及| 男人爽女人下面视频在线观看| 午夜精品一区二区三区免费看| 亚洲欧美精品自产自拍| 欧美另类一区| 一级av片app| 一个人看视频在线观看www免费| 精华霜和精华液先用哪个| 69人妻影院| 国产v大片淫在线免费观看| 不卡视频在线观看欧美| 国产精品一及| 最近2019中文字幕mv第一页| 中文资源天堂在线| 国产精品成人在线| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 国产成人免费观看mmmm| 99久国产av精品国产电影| 亚洲在线观看片| 亚洲电影在线观看av| 国产欧美另类精品又又久久亚洲欧美| 欧美xxxx性猛交bbbb| av专区在线播放| av.在线天堂| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 欧美潮喷喷水| 日日啪夜夜撸| 精品久久久久久久末码| 午夜免费观看性视频| 日产精品乱码卡一卡2卡三| 深爱激情五月婷婷| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 男女国产视频网站| 国产精品伦人一区二区| 成人亚洲欧美一区二区av| 国产成人免费观看mmmm| 99热全是精品| 岛国毛片在线播放| 国产av不卡久久| 最近2019中文字幕mv第一页| 五月开心婷婷网| www.色视频.com| 婷婷色综合www| 免费人成在线观看视频色| 亚洲激情五月婷婷啪啪| 欧美激情在线99| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 综合色av麻豆| 久久精品国产亚洲av天美| 日本免费在线观看一区| 综合色丁香网| 国产综合懂色| 亚洲真实伦在线观看| 免费观看性生交大片5| 又爽又黄a免费视频| 亚洲精品aⅴ在线观看| 国产亚洲最大av| 亚洲精品456在线播放app| 久久女婷五月综合色啪小说 | 大香蕉97超碰在线| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 少妇 在线观看| 不卡视频在线观看欧美| 97超视频在线观看视频| 麻豆乱淫一区二区| 伦精品一区二区三区| 亚洲怡红院男人天堂| 一个人观看的视频www高清免费观看| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 综合色丁香网| 精品视频人人做人人爽| 国产精品成人在线| 春色校园在线视频观看| 小蜜桃在线观看免费完整版高清| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 97超碰精品成人国产| 少妇人妻 视频| 在线 av 中文字幕| 三级经典国产精品| 亚洲精品国产成人久久av| 免费看日本二区| 精品国产一区二区三区久久久樱花 | 小蜜桃在线观看免费完整版高清| 国产成人91sexporn| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 国产av不卡久久| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 国产爽快片一区二区三区| 国产午夜福利久久久久久| 久久ye,这里只有精品| 久久精品国产亚洲av天美| 国产av码专区亚洲av| xxx大片免费视频| 久久精品国产亚洲网站| 亚洲电影在线观看av| 亚洲最大成人av| 内地一区二区视频在线| 国产黄频视频在线观看| 日韩免费高清中文字幕av| 中国美白少妇内射xxxbb| 久久99热这里只有精品18| 日韩亚洲欧美综合| 久久久久久久久久久免费av| 久久久精品欧美日韩精品| 欧美成人午夜免费资源| 男女边摸边吃奶| 黑人高潮一二区| 少妇人妻精品综合一区二区| 夜夜看夜夜爽夜夜摸| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久| 亚洲真实伦在线观看| 国产在视频线精品| www.av在线官网国产| 国产成人精品婷婷| 国产v大片淫在线免费观看| 身体一侧抽搐| 嫩草影院入口| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 九九爱精品视频在线观看| 男的添女的下面高潮视频| 免费观看性生交大片5| 精品视频人人做人人爽| 视频区图区小说| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区三区| 国产一级毛片在线| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 亚洲综合精品二区| 国产毛片a区久久久久| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的 | 日本一本二区三区精品| 日韩制服骚丝袜av| 在线免费观看不下载黄p国产| 色综合色国产| 日韩av免费高清视频| 国产精品久久久久久精品古装| 欧美日韩一区二区视频在线观看视频在线 | 最近的中文字幕免费完整| 亚洲av二区三区四区| 国产视频首页在线观看| 成人综合一区亚洲| 国产成人91sexporn| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 亚洲成色77777| 偷拍熟女少妇极品色| 国产成人a区在线观看| av免费观看日本| 国产精品久久久久久精品电影小说 | 制服丝袜香蕉在线| 精品久久久久久久末码| 人妻一区二区av| 亚洲av福利一区| 久久久久久久国产电影| 中文欧美无线码| 日韩亚洲欧美综合| 免费观看av网站的网址| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 午夜免费鲁丝| 赤兔流量卡办理| 亚洲国产精品专区欧美| 免费看av在线观看网站| 国产精品偷伦视频观看了| 好男人在线观看高清免费视频| 久久鲁丝午夜福利片| 亚洲欧洲日产国产| 真实男女啪啪啪动态图| 久久久成人免费电影| 国产一级毛片在线| 国产真实伦视频高清在线观看| 男人和女人高潮做爰伦理| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产v大片淫在线免费观看| 国产黄色免费在线视频| 熟女人妻精品中文字幕| 麻豆久久精品国产亚洲av| av卡一久久| 国产毛片在线视频| 狂野欧美激情性xxxx在线观看| 国产精品麻豆人妻色哟哟久久| 久久久久久久久大av| 免费看日本二区| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 国产成人免费无遮挡视频| 欧美变态另类bdsm刘玥| 色哟哟·www| 极品少妇高潮喷水抽搐| 深夜a级毛片| 少妇熟女欧美另类| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| 成年版毛片免费区| 欧美激情在线99| 特级一级黄色大片| 黄色怎么调成土黄色| 波多野结衣巨乳人妻| 久久久国产一区二区| 国产综合懂色| 一本色道久久久久久精品综合| 亚洲精品乱码久久久v下载方式| 久久久久久久午夜电影| 亚洲av成人精品一区久久| 亚洲欧美成人综合另类久久久| 欧美3d第一页| av播播在线观看一区| 在线免费观看不下载黄p国产| 午夜福利网站1000一区二区三区| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 亚洲精品国产av成人精品| 免费av不卡在线播放| 国产成人免费无遮挡视频| 日韩国内少妇激情av| 深爱激情五月婷婷| 亚洲在久久综合| 国产高清国产精品国产三级 | 国产高潮美女av| 国内精品宾馆在线| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 伦理电影大哥的女人| 综合色丁香网| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久 | 欧美性感艳星| 亚洲,欧美,日韩| 欧美性感艳星| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 人人妻人人爽人人添夜夜欢视频 | 日本午夜av视频| 建设人人有责人人尽责人人享有的 | 午夜福利在线观看免费完整高清在| 欧美日韩国产mv在线观看视频 | 99久久中文字幕三级久久日本| 亚洲不卡免费看| 日韩中字成人| 别揉我奶头 嗯啊视频| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲国产精品999| 在线观看国产h片| 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 国产成人午夜福利电影在线观看| 听说在线观看完整版免费高清| 午夜视频国产福利| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 激情 狠狠 欧美| 亚洲人成网站在线观看播放| 国产精品爽爽va在线观看网站| 午夜免费观看性视频| 久久久久久国产a免费观看| 99久久精品一区二区三区| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 欧美另类一区| 人妻一区二区av| 国产综合精华液| 久久久久久久久久成人| 99九九线精品视频在线观看视频| 高清毛片免费看| 男的添女的下面高潮视频| 国产精品不卡视频一区二区| 国产永久视频网站| 国产av国产精品国产| 欧美成人午夜免费资源| 免费高清在线观看视频在线观看| 一级毛片我不卡| 另类亚洲欧美激情| 高清日韩中文字幕在线| 简卡轻食公司| av天堂中文字幕网| 99热网站在线观看| 亚洲欧美一区二区三区国产| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 国内精品宾馆在线| 人妻 亚洲 视频| 少妇丰满av| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 国产片特级美女逼逼视频| 日韩国内少妇激情av| 高清日韩中文字幕在线| 成年人午夜在线观看视频| 精品视频人人做人人爽| 亚洲综合色惰| 国产人妻一区二区三区在| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 久久久久久九九精品二区国产| 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 欧美极品一区二区三区四区| 99久久中文字幕三级久久日本| 久久久久久久亚洲中文字幕| 精品久久国产蜜桃| 麻豆成人av视频| 久久6这里有精品| 五月开心婷婷网| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃 | 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 国产真实伦视频高清在线观看| 国产爽快片一区二区三区| 国产成人91sexporn| 伊人久久国产一区二区| xxx大片免费视频| 少妇的逼水好多| 观看美女的网站| 伊人久久精品亚洲午夜| 亚洲婷婷狠狠爱综合网| 欧美xxⅹ黑人| 麻豆精品久久久久久蜜桃| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕免费大全7| 成人美女网站在线观看视频| 日韩av免费高清视频| 欧美97在线视频| 激情 狠狠 欧美| 国产欧美亚洲国产| 99久久精品国产国产毛片| 又爽又黄无遮挡网站| 亚洲精品久久久久久婷婷小说| 干丝袜人妻中文字幕| 美女主播在线视频| 真实男女啪啪啪动态图| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| videossex国产| 成人毛片60女人毛片免费| 免费在线观看成人毛片| eeuss影院久久| 在线观看人妻少妇| 久久久久久国产a免费观看| 久久久久久久久久成人| 最后的刺客免费高清国语| 国内精品美女久久久久久| 少妇熟女欧美另类| 少妇人妻 视频| 黄色欧美视频在线观看| 久久综合国产亚洲精品| 国产老妇女一区| 精品一区二区三区视频在线| 国产真实伦视频高清在线观看| 久久精品国产a三级三级三级| 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 热re99久久精品国产66热6| 又爽又黄无遮挡网站| 欧美bdsm另类| 亚洲精品中文字幕在线视频 | 国产一区二区三区综合在线观看 | 卡戴珊不雅视频在线播放| 色综合色国产| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 国产高清不卡午夜福利| 好男人视频免费观看在线| 亚洲欧美日韩东京热| 日本爱情动作片www.在线观看| 插逼视频在线观看| 99热全是精品| 亚洲国产精品专区欧美| 赤兔流量卡办理| 丝袜美腿在线中文| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 国产精品久久久久久精品电影| 精品视频人人做人人爽| 久久97久久精品| av天堂中文字幕网| 国产成人aa在线观看| 亚洲精品日韩av片在线观看| 在线观看一区二区三区激情| 五月玫瑰六月丁香| 18+在线观看网站| 欧美成人a在线观看| 亚洲av日韩在线播放| 国产视频内射| 亚洲国产精品专区欧美| 成人午夜精彩视频在线观看| 男男h啪啪无遮挡| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 永久免费av网站大全| 日本黄色片子视频| 爱豆传媒免费全集在线观看| 18+在线观看网站| 少妇裸体淫交视频免费看高清| www.av在线官网国产| 天天躁日日操中文字幕| 99re6热这里在线精品视频| 午夜福利网站1000一区二区三区| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 久久精品久久久久久久性| 久久精品久久久久久噜噜老黄| 男人狂女人下面高潮的视频| 亚洲精品成人久久久久久| 别揉我奶头 嗯啊视频| 成人国产av品久久久| 久久热精品热| a级毛色黄片| 街头女战士在线观看网站| 成人二区视频| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 亚洲精品成人久久久久久| 性色av一级| 少妇人妻 视频| 中文在线观看免费www的网站| 又粗又硬又长又爽又黄的视频| 黄色欧美视频在线观看| 久久久国产一区二区| 一级毛片aaaaaa免费看小| 久久综合国产亚洲精品| 免费av观看视频| 成人国产麻豆网| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 99久久人妻综合| 99久久中文字幕三级久久日本| 国产 一区 欧美 日韩| 亚洲天堂av无毛| 久久99热6这里只有精品| 亚洲一区二区三区欧美精品 | 大陆偷拍与自拍| 亚洲国产色片| 日韩一本色道免费dvd| 99热全是精品| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 中文字幕av成人在线电影| 下体分泌物呈黄色| 婷婷色麻豆天堂久久| 三级国产精品片| av播播在线观看一区| 性色av一级| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 2022亚洲国产成人精品| 色视频www国产| 亚洲自拍偷在线| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 99久久精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美97在线视频| 女人十人毛片免费观看3o分钟| 亚洲av欧美aⅴ国产| 亚洲美女搞黄在线观看| 国产精品爽爽va在线观看网站| 插逼视频在线观看| 欧美 日韩 精品 国产| 一级毛片电影观看| 人体艺术视频欧美日本| 国产精品久久久久久久久免| 久久久久久久午夜电影| 欧美区成人在线视频| 香蕉精品网在线| 一级a做视频免费观看| 老司机影院毛片| 国产精品伦人一区二区| 精品久久久久久久久av| 免费av不卡在线播放| 亚洲精品中文字幕在线视频 | av在线观看视频网站免费| 国产精品麻豆人妻色哟哟久久| 国产成人免费无遮挡视频| 久久久亚洲精品成人影院| 丝袜喷水一区| 亚洲国产精品成人综合色| 亚洲真实伦在线观看| 免费少妇av软件| 国产免费一区二区三区四区乱码| 少妇人妻一区二区三区视频| 美女被艹到高潮喷水动态| 一本久久精品| 亚洲成人中文字幕在线播放| 80岁老熟妇乱子伦牲交|