• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種面向云計算非比例資源消耗特性的虛擬機(jī)放置算法

    2019-09-10 07:22:44羅香玉辛剛桂小林
    關(guān)鍵詞:云計算

    羅香玉 辛剛 桂小林

    摘 要:虛擬機(jī)放置是云計算中的一個基本問題。 通過將多臺虛擬機(jī)聚集在單臺物理機(jī)上,云計算可極大降低系統(tǒng)的資源以及能源消耗。虛擬機(jī)放置的目標(biāo)之一是開啟最少數(shù)量的物理機(jī)來滿足所有虛擬機(jī)的資源需求。一個重要的挑戰(zhàn)在于各虛擬機(jī)對不同類型資源消耗的比例往往與物理機(jī)所配備的各類資源的比例并不相同。一旦物理機(jī)上某類資源消耗殆盡,該物理機(jī)上其它類型的資源將無法得到利用,隨之導(dǎo)致所開啟物理機(jī)總數(shù)以及能耗成本增加。文中借助多種不同配置的物理機(jī)來解決上述問題。首先,虛擬機(jī)被劃分為若干子集合。劃分的約束條件是保證各個虛擬機(jī)子集合作為一個整體所消耗的各類資源恰與某一類型物理機(jī)各類資源的配置成比例。然后,利用同構(gòu)環(huán)境的虛擬機(jī)放置算法,完成各虛擬機(jī)子集合在相應(yīng)類型物理機(jī)上的放置。實驗結(jié)果表明,文中算法能夠協(xié)調(diào)各類資源的使用,從而有效減少物理機(jī)使用總量,降低能耗成本13.0%~57.6%.

    關(guān)鍵詞:虛擬機(jī)放置;非比例資源消耗;云計算;能耗節(jié)約;多維度資源

    中圖分類號:TP 393 ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A

    文章編號:1672-9315(2019)05-0889-09

    Abstract:Virtual machine placement is a basic problem in cloud computing.By consolidating several virtual machines onto one single physical machine,cloud computing reduces both resource costs and energy consumption.One of the optimization objectives of virtual machine placement is to use a minimum number of physical machines to accommodate all the virtual machines requested by customers.The challenge lies in that the multi-dimensional resources required by a virtual machine are typically not proportional to that provided by a physical machine.Once a single dimension of resource is exhausted in a physical machine,the rest of all the other dimensions of resources will stay unutilized,leading to a great amount of resource waste.This paper proposes a new virtual machine placement algorithm that mixes multiple kinds of physical machines to tackle the problem of unsufficientresource utilization.Firstly,virtual machines are divided into several subsets.For each subset as a whole,different dimensions of resources requested are approximately proportional to that provided by a kind of physical machine.Secondly,virtual machines in each subset are separately placed onto the corresponding kind of physical machines.Experimental results show that the proposed algorithm coordinates the utilization of different types of resources and achieves power reduction ranging from 13.0% to 57.6%.

    Key words:virtual machine placement;non-proportional resource consumption;cloud computing;power reduction;multidimensional resources

    0 INTRODUCTION

    Nowadays cloud computing is a popular way of offering computation services.It enables customers to enjoy computation services as conveniently as they enjoy electricity and water[1].Customers are typically served by virtual machines.By consolidating several virtual machines onto one single physical machine,the whole cloud computing system achieves both more efficient utilization of resources and lower power consumption.

    A cloud computing system is a large-scale distributed system composed of thousands of or even more physical machines[2].A basic problem is how to place the virtual machines such that the number of the consumed physical machines can be minimized while satisfying multiple resource constraints.

    To accommodate several virtual machines,a physical machine is required to provide available CPU,memory and other resources no less than that requested by the virtual machines.Once a single dimension of resource is exhausted in a physical machine,all the rest of the other dimensions of resources on it will stay unutilized[3].Therefore,an ideal virtual machine placement algorithm should assign each physical machine with several virtual machines that just use up each dimension of resource on it.

    However,the challenge lies in that different dimensions of resources required by a virtual machine are typically not proportional to that provided by a physical machine.Existing studies mainly aim to make the best-effort optimization of resource utilization under the assumption that the candidate physical machines are deterministic and unchangeable.They rarely investigate how to adaptively adjust the candidate physical machines’ configuration according to the virtual machines’ requirements to make further improvements.In the situations that the virtual machines differ significantly with the physical machines in the proportions of the multiple dimensions of resources,the best-effort optimization is usually unsatisfactory.

    Our contributions mainly include the following three aspects.Firstly,we redefine the virtual machine placement problem and divide it into two sub-problems.One is how to adaptively adjust the configuration of the physical machines according to the requirements of the virtual machines.The other is how to map the virtual machines to the candidate physical machines.Secondly,we propose an algorithm,namely CORE(COordinating multiple REsources),to resolve the problem.Finally,extensive experiments have been conducted to evaluate the efficiency of the algorithm.The results show that it can achieve power reduction ranging from 13.0% to 57.6%.

    The paper is organized as follows.Section 1 summarizes the related work.Section 2 explains the motivations of our work.Section 3 redefines the virtual machine placement problem.Section 4 elaborates the CORE algorithm.Section 5 gives the experimental results and Section 6 concludes the whole paper.

    1 RELATED WORK

    The virtual machine placement algorithm greatly affects the performance and the efficiency of clouds and attracts many researchers’ attention[4].

    According to the assumption for the resources,existing virtual machine placement algorithms could be classified into single dimensional resource oriented and multi-dimensional resource oriented algorithms.F.Pan et al.proposed a single resource oriented algorithm that only considers the CPU resource[5].L.Chen et al.proposed a multi-dimensional resource oriented algorithm RIAL that considers CPU,memory and the network resources[6].It assigns different weights to different resources and calculates the resource intensity of each physical machine based on the weights.By this way,the multi-dimensional problem is transformed into a single dimensional one.R.Li et al.proposed a true multidimensional solution which aims to keep balanced usage of each dimensional resource[7].However,the physical machines were assumed to be determined in advance and only best-effort utilization was provided.Besides,the relationships among the resource utilization,the characteristics of virtual machine requirements and the configuration of the physical machines were not investigated.

    According to the assumption for the characteristic of the workload,existing virtual machine placement algorithms can be classified into static and dynamic ones.Static algorithms assume that the workload of each virtual machine is constant.Many approximation algorithms for bin packing can be used for static virtual machine placement[8].Besides,genetic or other intelligent optimization algorithms can also work[9].Dynamic algorithms[10-11]migrate virtual machines from one physical machine to another as the workload changes.

    From the point of view of the optimization objectives,existing virtual machine placement algorithms can be classified into single-objective oriented and multi-objective oriented ones.The optimization objects include minimizing SLA violation,maximizing resource utilization,minimizing energy consumption,etc[12-13].W.Wang et al.proposed a single objective oriented algorithm that aims for energy minimization[14].J.Xu and J.Fortes proposed an algorithm that simultaneously minimizes resource wastage,power consumption and thermal dissipation costs[15].H.Zhao proposed an algorithm that ensures both low power consumption and high performance guarantee[16].

    Besides,the state-of-art research also addresses the virtual machine placement problem in edge cloud systems[17-19].

    However,to the best of our knowledge,existing literatures mainly concentrate on virtual machine placement optimization under the assumption that the candidate physical machines are determined in some artificial way.There is no solution that automatically changes the candidate physical machines according to the virtual machines’ resource requirements.

    2 MOTIVATIONS

    For economic and environmental reasons,cloud computing aims to employ a minimum number of physical machines to accommodate the virtual machines requested by customers,reducing both resource costs and power consumption.For a given set of virtual machines,both the resource costs and the power consumption are affected by not only the virtual machine placement algorithm itself,but also the configuration of the physical machines.

    Suppose that there are 500 virtual machines.For half of them,each one requires 3 cores CPU and 0.5 GB RAM.For the other half,each one requires 1 core CPU and 1.5 GB RAM.Therefore,the total amount of CPU required by the virtual machines equals 1 000 cores,and the total amount of required RAM equals 500 GB.With the physical machines configured with 4 cores CPU and 8 GB RAM,the least number of the powered-on physical machines cannot be smaller than 250 and the utilization efficiency of RAM cannot be greater than 25%,whatever virtual machine placement algorithm is adopted.However,with the physical machines configured with 4 GB RAM and 8 cores CPU,only 125 physical machines need to be powered on and both the two types of resources can be sufficiently utilized.

    For the above scenario,changing the physical machine’s configuration leads to more efficient resource utilization and lower power consumption.However,it is not always practical to do so in reality.Virtual machines are created and removed dynamically,and each of them may have different resource requirements.Hence the optimal physical machine configuration changes frequently.It is not practical to alter the physical machine’s configuration all the time.

    Therefore,we mix several kinds of physical machines to mimic physical machines with arbitrary kind of configuration.We assume that the cloud providers purchase several kinds of physical machines with different resource configurations and the number of each kind of physical machines is large enough.For a given set of virtual machines,the placement algorithm automatically adjusts the number of each kind of physical machines to power on,ensuring that the multiple resources provided by the whole powered-on physical machines always proportional to that requested by the whole virtual machines.For cloud providers,the most important thing is not to purchase but to power on the least number of physical machines,because the budget for power consumption is much higher than the infrastructure costs.

    In a word,for a given set of virtual machines,the efficiency of resource utilization is greatly affected by the physical machines’ configuration.With unsuitable physical machine configuration,resource waste is inevitable,whatever placement algorithm is adopted.We aim to mix several kinds of physical machines to keep the mimic configuration always suitable to the virtual machines,so that the placement results can be improved compared with those obtained with a deterministic configuration.

    3 PROBLEM STATEMENT

    Suppose that there are K kinds of physical machines with different resource configurations.The number of each kind of physical machine is large enough for accommodating an arbitrary set of virtual machines.The i th kind of physical machine is represented with a vector pi composed of C elements with each element pij corresponding to the amount of the j th type of resource provided by the i th kind of physical machine.There are N virtual machines to be placed onto the physical machines.Each virtual machine is expressed with a vector vi′ also composed of C elements,with each element vi′j representing the amount of the j th type of resource requested by the i′ th virtual machine.Here 1≤i≤K,1≤i′≤N,1≤j≤C,K,N and C are known numbers.

    The virtual machine placement problem is divided into two sub-problems.Firstly,for accommodating a given set of virtual machines,how many each kind of physical machines should be powered on? Secondly,how to map the virtual machines to the powered-on physical machines? The optimization objective is to minimize the total number of the powered-on physical machines while satisfying each virtual machine’s resource requirements.

    4 THE CORE ALGORITHM

    4.1 Basic idea

    Let ni denote the number of the powered-on physical machines with the i th kind of configuration and VSi denote the set of the virtual machines mapped to the i th kind of physical machines.Hence {VSi|1 ≤i≤K} defines a partitioning on the whole set of the virtual machines.

    Once we obtain a proper partitioning of the virtual machines,through placing the virtual machines in each subset VSi to the ith kind of physical machines,ni can be figured out.Therefore,the partitioning of the virtual machines is at the heart of the problem.

    The CORE algorithm works in three steps.Firstly,it partitions the whole virtual machine set into K subsets ensuring that each subset VSi consumes the multiple resources proportionally to the provisioning of the ith kind of physical machines.Secondly,it separately calculates the mappings between the virtual machines in each subset VSi and the ith kind of physical machines.Thirdly,it merges the results of the second step,the number of each kind of physical machines to be powered on(i.e.,ni)is obtained,and the mappings between the whole virtual machines and the whole powered-on physical machines are also figured out.

    4.2 Elaboration of the algorithm

    The CORE algorithm is depicted in Algorithm 1.In the algorithm,there are two inputs PS and VS.PS is the set of physical machine types with each element pi representing the configuration of the i th type of physical machine,and VS is the set of virtual machines with each element vi′ representing the resource requirements of the vi′ th virtual machine.Both pi and vi′are vectors composed of C elements.The j th element of pi denoted by pij represents the amount of the j th type of resource provided by the i th kind of a single physical machine,and the j th element of vi′ denoted by vi,j represents the amount of the j th type of resource requested by the i′th virtual machine.There are two outputs NS and MS.NS is a set of numbers with each element ni representing the number of the powered-on physical machines with the i th kind of configuration.MS is a set of tuples with each element indicating that the i′ th virtual machine is placed on the s(i′) th physical machine with the k(i′) th kind of configuration.Here k(i′) is a integer between 1 and K,and s(i′) is an integer between 1 and nk(i′).Recall that nk(i′) represents the number of the powered-on physical machines with the k(i′) th kind of configuration.

    Algorithm 1:The CORE algorithm

    The main body of the algorithm calls three sub-algorithms as shown in Algorithm 1.The partitioning sub-algorithm is responsible for partitioning the virtual machine set VS into K subsets,the placement sub-algorithm is responsible for placing the virtual machines in a subset VSi to the i th kind of physical machines,and the merging sub-algorithm is responsible for combining the placement results to obtain the number of the powered-on physical machine for each kind of configuration,and the mappings between the whole virtual machines and the whole powered-on physical machines.In the algorithm description,π represents the partition on VS and π={VSi|1 ≤ i ≤ K}.MSi represents the mapping of the virtual machines in subset VSi and the i th kind of physical machines.

    4.2.1 The partitioning sub-algorithm

    As discussed in the subsection 4.1,the partitioning of the virtual machines is at the heart of the problem.For the virtual machines as a whole,the multiple resources requested may be not proportional to any kind of the existing physical machines.With proper partitioning,the multiple resources requested by each virtual machine subset could be proportional to a certain kind of physical machines.

    Let Rij denote the amount of the j th type of resource requested by the virtual machines of the subset VSi.VSi satisfies proportional resource consumption means that for each j between 1 and C,Rij/pij is almost the same.We define θ to measure the degree of proportionality,with θ=min{Rij/pij|1≤j≤C}/max{Rij/pij|1≤j≤C}.θ is a number between 0 and 1.A larger θ means a higher degree of proportionality.It should be noted that max{Rij/pij|1≤j≤C} is a lower bound of the number of the ith kind of physical machines to power on.

    The partitioning sub-algorithm aims to guarantee that each virtual machine subset VSi satisfies proportional resource consumption,and the lower bound of the whole powered-on physical machines,i.e.,1≤i≤K(max{Rij/pij|1≤j≤C}),is minimized.The partitioning sub-algorithm adopts a greedy strategy described in Algorithm 2.For each virtual machine,the algorithm assigns it to the subset that makes the least increase of 1≤i≤K(max{Rij/pij|1≤j≤C}).

    4.2.2 The placement sub-algorithm

    The placement sub-algorithm is responsible for placing the virtual machines in a subset VSi to the ith kind of physical machines.Although other placement strategies also work,we adopt the FirstFit strategy for simplicity.Since the partitioning sub-algorithm ensures that the multiple resources requested by the virtual machine subset VSi are approximately proportional to that provided by the ith kind of physical machines,even if the FirstFit strategy is qualified to generate ideal placement results.Experimental results also validate the conjecture,as exposed in Section 5.The placement sub-algorithm is described in Algorithm 3.In the description, means that the k th virtual machine in VSi is placed onto the s(k)th physical machine with the i th kind of configuration satisfying 1≤k≤|VSi| and 1≤s(k)≤ ni.

    The results indicate that,the 2nd configuration can lead to high utilization of the two types of resources as well as low power consumption.Moreover,the number of the consumed physical machines(.i.e.,266)is very near to nmin(i.e.,253).Therefore,as long as the configuration of the physical machines is suitable to the virtual machines,even if the First Fit algorithm can generate near-optimal placement results.More complex placement algorithms are not very necessary.

    The results also indicate that,with unsuitable configuration,at least one type of resource generates a great amount of waste.Meanwhile,there is little room for further optimization by improving placement strategy,since the number of physical machines consumed already approaches the lower bound nmin.With the 1st configuration,the number of the consumed physical machines equals 507 while nmin equals 496.With the 3rd configuration,the number of the consumed physical machines equals 530 while nmin equals 506.Whatever virtual machine placement algorithm is adopted,the reduction of the number of the consumed physical machines cannot be greater than 4.5%.

    In summary,compared to the placement strategy,the configuration of the physical machine really matters.The most important thing is to make the configuration always suitable to the virtual machines.Once the configuration is determined,there is little room for further optimization whatever placement strategy is adopted.Meanwhile,the requirements of the virtual machines are dynamic,and any single kind of physical machine configuration can not always meet the virtual machines’ requirements.Therefore,the CORE algorithm adaptively adjusts the number of each kind of physical machines powered on to make the different kinds of physical machines as a whole always suitable to the requirements of the virtual machines.

    5.3 Evaluation of CORE’s performance

    In the experiment,we use the synthetic virtual machine generator to obtain 1 000 virtual machines’ resource requirements.The parameters are set as follows:a1=1,b1=7,a2=1 and b2=19.In the experiment,the total amount of CPU requirement equals 4 046 cores,and the total amount of RAM requirement equals 9 887 GB.

    We adopt the First Fit algorithm to place the virtual machines onto the physical machines with each kind of configuration respectively and adopt the CORE algorithm to place them onto the three kinds of physical machines as well.Besides,we calculate the optimal value of the power consumption and the resource utilization for the three configurations.The results are shown in TABLE Ⅳ.

    The results show that,through properly mixing the three kinds of physical machines,the CORE algorithm reduces the power consumption and improves the resource utilization efficiency.The power consumption reduction ranges from 13.0% to 57.6%.

    For further analysis,we calculate the degree of proportionality θ.We have θ(1)=0.15,θ(2)=0.61 and θ(3)=0.41 respectively with the three different configurations.It means that the second configuration fits the requirements of the virtual machines best,while the first configuration is the worst.Therefore,the situation where only the physical machines with the first configuration are adopted leads to the maximum power consumption,and the CORE reduces the power consumption with the highest ratio(i.e.,57.6%).

    6 CONCLUSION

    The efficiency of virtual machine placement is affected by not only the placement strategy itself but also the configuration of the physical machines.The improper configuration leads to a waste of both resource costs and energy consumption.This paper proposes the idea of mixing several kinds of physical machines to mimic a new kind of configuration that properly fits the resource requirements of the virtual machines.Furthermore,we devise the algorithm CORE to realize the idea.It divides the virtual machines into several subsets,with each subset satisfying proportional resource consumption to a certain kind of physical machines.Experimental studies show that the algorithm achieves 13.0% to 57.6% energy reduction compared with those adopt any single kind of physical machines.

    REFERENCES:

    [1] Zhao L,Lu L,Jin Z,et al.Online virtual machine placement for increasing cloud provider's revenue[J].IEEE Transactions on Services Computing,2017,10(2):273-285.

    [2]Chaisiri S,Lee B,Niyato D.Optimization of resource provisioning cost in cloud computing[J].IEEE Transactions on Services Computing,2012,5(2):164-177.

    [3]Zhang J,He Z,Huang H,et al.SLA aware cost efficient virtual machines placement in cloud computing[C]//Proceedings of IEEE International Conference on Performance,Computing and Communications,2014:1-8.

    [4]Masdari M,Nabavi S,Ahmadi V.An overview of virtual machine placement schemes in cloud computing[J].Journal of Network & Computer Applications,2016,66(C):106-127.

    [5]Pan F,Jiang C,Xu X,et al.Placement strategy of virtual machines based on workload characteristics[J].Journal of Chinese Computer Systems,2013,34(3):520-524.

    [6]Chen L,Shen H,Sapra K.RIAL:resource intensity aware load balancing in clouds[C]//Proceedings of IEEE Conference on Computer Communications(INFOCOM),2014:1294-1302.

    [7]Li R,Zheng Q,Li X,et al.A novel multi-objective optimization scheme for rebalancing virtual machine placement[C]//Proceedings of IEEE International Conference on Cloud Computing,2016:710-717.

    [8]Bansal N,Caprara A,Sviridenko M.Improved approximation algorithms for multidimensional bin packing problems[C]//Proceedings of IEEE Symposium on Foundations of Computer Science,2006:697-708.

    [9]Kaaouache M,Bouamama S.Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud[J].Procedia Computer Science,2015,60(1):1061-1069.

    [10]Zhang M,Ren H,Xia C.A dynamic placement policy of virtual machine based on MOGA in cloud environment[C]//Proceedings of IEEE ISPA/IUCC,2017:885-891.

    [11]Hyser C,Mckee B,Gardner R,et al.Autonomic virtual machine placement in the data center[R].HP Labs Technical Report,HPL-2007-189,2007.

    [12]Gaggero M,Caviglione L.Model predictive control for energy-efficient,quality-aware,and secure virtual machine placement[J].IEEE Transactions on Automation Science and Engineering,2019,16(1):420-432.

    [13]Guerrero C,Lera I,Bermejo B,et al.Multi-objective optimization for virtual machine allocation and replica placement in virtualized hadoop[J].IEEE Transactions on Parallel and Distributed Systems,2018,29(11):2568-2581.

    [14]Wang W,Jiang Y,Wu W.Multiagent-based resource allocation for energy minimization in cloud computing systems[J].IEEE Transactions on Systems Man & Cybernetics Systems,2017,47(2):205-220.

    [15]Xu J,F(xiàn)ortes J.Multi-objective virtual machine placement in virtualized data center environments[C]//Proceedings of IEEE International Conference on Green Computing and Communications,2010:179-188.

    [16]Zhao H,Wang J,Liu F,et al.Power-aware and performance-guaranteed virtual machine placement in the cloud[J].IEEE Transactions on Parallel & Distributed Systems,2018,29(6):1385-1400.

    [17]Li K,Nabrzyski J.Networked virtual machine placement in edge cloud systems[C]//Proceedings of IEEE International Symposium on Parallel and Distributed Computing,2019:23-31.

    [18]Tziritas N,Koziri M,Bachtsevani A,et al.Data replication and virtual machine migrations to mitigate network overhead in edge computing systems[J].IEEE Transactions on Sustainable Computing,2017,2(4):320-332.

    [19]Tao Z,Xia Q,HAO Z,et al.A survey of virtual machine management in edge computing[J].Proceedings of the IEEE,2019,107(8):1482-1499.

    [20]Calheiros R,Ranjan R,Beloglazov A,et al.CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Software Practice & Experience,2011,41:23-50.

    猜你喜歡
    云計算
    云計算虛擬化技術(shù)在電信領(lǐng)域的應(yīng)用研究
    基于云計算的醫(yī)院信息系統(tǒng)數(shù)據(jù)安全技術(shù)的應(yīng)用探討
    談云計算與信息資源共享管理
    志愿服務(wù)與“互聯(lián)網(wǎng)+”結(jié)合模式探究
    云計算與虛擬化
    基于云計算的移動學(xué)習(xí)平臺的設(shè)計
    基于云計算環(huán)境下的ERP教學(xué)改革分析
    科技視界(2016年22期)2016-10-18 14:33:46
    基于MapReduce的故障診斷方法
    實驗云:理論教學(xué)與實驗教學(xué)深度融合的助推器
    云計算中的存儲虛擬化技術(shù)應(yīng)用
    科技視界(2016年20期)2016-09-29 13:34:06
    久久精品国产亚洲av高清一级| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| 国产熟女午夜一区二区三区| 欧美97在线视频| 下体分泌物呈黄色| 国产精品欧美亚洲77777| 老鸭窝网址在线观看| 久久久欧美国产精品| 9热在线视频观看99| 99国产精品99久久久久| 操美女的视频在线观看| 51午夜福利影视在线观看| 久热这里只有精品99| 国产精品免费视频内射| 中文字幕av电影在线播放| 欧美日韩亚洲国产一区二区在线观看 | 水蜜桃什么品种好| 欧美久久黑人一区二区| 一区在线观看完整版| 天堂中文最新版在线下载| 免费在线观看完整版高清| 狂野欧美激情性bbbbbb| 亚洲精品久久午夜乱码| 亚洲精品乱久久久久久| 国产免费福利视频在线观看| av天堂在线播放| 国产亚洲一区二区精品| 50天的宝宝边吃奶边哭怎么回事| 欧美成狂野欧美在线观看| 亚洲av日韩精品久久久久久密| 精品亚洲乱码少妇综合久久| 狂野欧美激情性bbbbbb| 亚洲中文日韩欧美视频| 欧美少妇被猛烈插入视频| 中国国产av一级| 亚洲伊人久久精品综合| 亚洲黑人精品在线| 免费少妇av软件| 韩国精品一区二区三区| 动漫黄色视频在线观看| 国产1区2区3区精品| 久久久国产一区二区| 国产黄频视频在线观看| 性高湖久久久久久久久免费观看| 亚洲国产毛片av蜜桃av| 黑人巨大精品欧美一区二区mp4| 欧美大码av| 中文字幕色久视频| 国产精品久久久久久人妻精品电影 | 各种免费的搞黄视频| 性色av乱码一区二区三区2| 国产一区二区激情短视频 | 亚洲国产中文字幕在线视频| 国产熟女午夜一区二区三区| 免费观看人在逋| av视频免费观看在线观看| 在线观看人妻少妇| 国产亚洲一区二区精品| 久久久久网色| 窝窝影院91人妻| 高清av免费在线| 最近最新中文字幕大全免费视频| 一区二区日韩欧美中文字幕| 国产野战对白在线观看| 欧美+亚洲+日韩+国产| 三上悠亚av全集在线观看| 免费在线观看影片大全网站| av免费在线观看网站| 国产成+人综合+亚洲专区| 国产精品 欧美亚洲| 日本wwww免费看| 中亚洲国语对白在线视频| 人妻一区二区av| 国产欧美日韩一区二区三区在线| 99国产精品一区二区三区| 老司机影院成人| av不卡在线播放| 精品少妇一区二区三区视频日本电影| 中文字幕制服av| 欧美国产精品va在线观看不卡| 午夜91福利影院| 啦啦啦视频在线资源免费观看| av一本久久久久| 亚洲欧洲精品一区二区精品久久久| 欧美国产精品一级二级三级| 免费av中文字幕在线| 大片电影免费在线观看免费| 午夜激情久久久久久久| 一本色道久久久久久精品综合| 日本av免费视频播放| 亚洲色图 男人天堂 中文字幕| 欧美日韩一级在线毛片| 女警被强在线播放| cao死你这个sao货| 亚洲九九香蕉| 国产伦理片在线播放av一区| 巨乳人妻的诱惑在线观看| 韩国精品一区二区三区| 丰满饥渴人妻一区二区三| 免费一级毛片在线播放高清视频 | 老汉色∧v一级毛片| 狂野欧美激情性bbbbbb| 精品卡一卡二卡四卡免费| 精品一区二区三区av网在线观看 | 丝袜美腿诱惑在线| 欧美日本中文国产一区发布| 午夜影院在线不卡| 亚洲少妇的诱惑av| 男人舔女人的私密视频| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 亚洲少妇的诱惑av| 自线自在国产av| 12—13女人毛片做爰片一| 啦啦啦啦在线视频资源| 人人妻,人人澡人人爽秒播| 成人国产一区最新在线观看| 黄色 视频免费看| 国产精品国产三级国产专区5o| 老司机影院成人| 99国产精品一区二区三区| 日韩一区二区三区影片| 精品少妇一区二区三区视频日本电影| 欧美日韩av久久| 99热全是精品| 老司机靠b影院| 国产精品影院久久| 男人添女人高潮全过程视频| 他把我摸到了高潮在线观看 | 精品亚洲成a人片在线观看| 日韩视频在线欧美| 在线观看一区二区三区激情| 考比视频在线观看| 日韩欧美一区视频在线观看| 另类亚洲欧美激情| 久久精品人人爽人人爽视色| 老司机影院毛片| 天天操日日干夜夜撸| 99热国产这里只有精品6| 精品欧美一区二区三区在线| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 国产精品一区二区在线不卡| 法律面前人人平等表现在哪些方面 | 国产又爽黄色视频| 两人在一起打扑克的视频| 一区二区日韩欧美中文字幕| 97精品久久久久久久久久精品| 又黄又粗又硬又大视频| 日日夜夜操网爽| av片东京热男人的天堂| 久久性视频一级片| 中国美女看黄片| 在线看a的网站| 精品久久久久久久毛片微露脸 | 久久精品人人爽人人爽视色| 亚洲精品粉嫩美女一区| 国产av一区二区精品久久| 国产精品麻豆人妻色哟哟久久| 午夜精品国产一区二区电影| 国产深夜福利视频在线观看| 亚洲国产成人一精品久久久| 欧美日韩黄片免| 欧美成人午夜精品| 天天躁日日躁夜夜躁夜夜| 黄色a级毛片大全视频| 免费久久久久久久精品成人欧美视频| 少妇的丰满在线观看| 精品国产一区二区久久| 久久精品亚洲av国产电影网| 中国美女看黄片| 免费高清在线观看视频在线观看| 69精品国产乱码久久久| 又大又爽又粗| 日韩人妻精品一区2区三区| 大型av网站在线播放| 51午夜福利影视在线观看| 国产免费福利视频在线观看| 免费观看人在逋| 日韩欧美免费精品| 性色av乱码一区二区三区2| av有码第一页| av有码第一页| 午夜福利在线免费观看网站| 国产精品一区二区在线观看99| 亚洲av日韩精品久久久久久密| 啦啦啦 在线观看视频| 日韩,欧美,国产一区二区三区| 国产精品二区激情视频| 精品人妻熟女毛片av久久网站| av网站在线播放免费| 操美女的视频在线观看| e午夜精品久久久久久久| 女警被强在线播放| 精品国产一区二区久久| 夜夜夜夜夜久久久久| 18禁裸乳无遮挡动漫免费视频| 少妇的丰满在线观看| 午夜久久久在线观看| 国产精品一区二区在线不卡| 久久影院123| 天堂8中文在线网| 亚洲精品av麻豆狂野| 少妇猛男粗大的猛烈进出视频| 少妇猛男粗大的猛烈进出视频| 9191精品国产免费久久| 99国产精品一区二区三区| 欧美 亚洲 国产 日韩一| www日本在线高清视频| 老熟女久久久| 91字幕亚洲| 亚洲精品一区蜜桃| 国产一区有黄有色的免费视频| 欧美97在线视频| 精品人妻在线不人妻| 国产又色又爽无遮挡免| 18禁国产床啪视频网站| 99精品欧美一区二区三区四区| 久久久久精品人妻al黑| 日韩熟女老妇一区二区性免费视频| 亚洲人成77777在线视频| 久久中文字幕一级| 久久99一区二区三区| 一级片免费观看大全| 久久久久国内视频| 中文欧美无线码| 久久精品久久久久久噜噜老黄| 日韩制服骚丝袜av| 老司机午夜福利在线观看视频 | 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 69av精品久久久久久 | 国产免费现黄频在线看| 俄罗斯特黄特色一大片| 男女免费视频国产| 视频在线观看一区二区三区| 欧美成狂野欧美在线观看| 日本一区二区免费在线视频| 菩萨蛮人人尽说江南好唐韦庄| 成人国语在线视频| 多毛熟女@视频| 精品国内亚洲2022精品成人 | 久久久久久久国产电影| videos熟女内射| 午夜福利一区二区在线看| 搡老乐熟女国产| 午夜久久久在线观看| 久久99热这里只频精品6学生| 精品国产国语对白av| 老司机影院成人| 日韩中文字幕欧美一区二区| av线在线观看网站| 久热这里只有精品99| 精品人妻熟女毛片av久久网站| 叶爱在线成人免费视频播放| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区精品| 国产97色在线日韩免费| 国产高清国产精品国产三级| 窝窝影院91人妻| 色婷婷久久久亚洲欧美| 性色av一级| 女人高潮潮喷娇喘18禁视频| 一区福利在线观看| 亚洲精品国产精品久久久不卡| 久久人妻熟女aⅴ| 超色免费av| 少妇人妻久久综合中文| 多毛熟女@视频| 热re99久久国产66热| 777久久人妻少妇嫩草av网站| 日韩欧美国产一区二区入口| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区综合在线观看| 精品国产乱码久久久久久男人| 久久天躁狠狠躁夜夜2o2o| 久久这里只有精品19| av一本久久久久| 欧美久久黑人一区二区| 啦啦啦视频在线资源免费观看| 手机成人av网站| 久久久久久久大尺度免费视频| 搡老岳熟女国产| 成年人免费黄色播放视频| 精品福利永久在线观看| 国产欧美日韩综合在线一区二区| 亚洲综合色网址| 一级毛片精品| 久久精品国产综合久久久| 一级黄色大片毛片| 欧美97在线视频| 青草久久国产| 黑人操中国人逼视频| h视频一区二区三区| 最近中文字幕2019免费版| 亚洲av国产av综合av卡| 极品人妻少妇av视频| 国产片内射在线| 天天躁日日躁夜夜躁夜夜| 一边摸一边做爽爽视频免费| 18禁观看日本| 久久av网站| 精品免费久久久久久久清纯 | 亚洲欧美一区二区三区久久| 九色亚洲精品在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲av美国av| 91av网站免费观看| 久久久国产成人免费| 多毛熟女@视频| 亚洲欧美一区二区三区久久| 天堂俺去俺来也www色官网| 久久av网站| 国产免费福利视频在线观看| 99热国产这里只有精品6| 国产高清videossex| 大片免费播放器 马上看| 日韩一区二区三区影片| 搡老岳熟女国产| 成人免费观看视频高清| 国产成人影院久久av| 99久久国产精品久久久| 亚洲国产精品一区三区| 老司机影院成人| 老熟女久久久| 人妻一区二区av| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 下体分泌物呈黄色| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 99国产精品一区二区蜜桃av | av免费在线观看网站| tube8黄色片| 国产精品一区二区在线观看99| 一区二区三区精品91| 婷婷丁香在线五月| 丁香六月欧美| 亚洲一区中文字幕在线| 不卡av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 不卡一级毛片| 日韩欧美一区二区三区在线观看 | 欧美日韩福利视频一区二区| 久久影院123| 亚洲国产精品成人久久小说| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 亚洲美女黄色视频免费看| 男女国产视频网站| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 91成年电影在线观看| 成人手机av| 91大片在线观看| 狂野欧美激情性bbbbbb| 日韩精品免费视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 两人在一起打扑克的视频| 丝袜美足系列| 亚洲国产欧美日韩在线播放| 热99久久久久精品小说推荐| 国产免费现黄频在线看| 精品熟女少妇八av免费久了| 人人妻人人添人人爽欧美一区卜| 一级黄色大片毛片| 欧美变态另类bdsm刘玥| 男女免费视频国产| 精品欧美一区二区三区在线| 中文字幕精品免费在线观看视频| 韩国精品一区二区三区| 五月开心婷婷网| 亚洲五月婷婷丁香| 9色porny在线观看| 黑人巨大精品欧美一区二区mp4| 欧美午夜高清在线| 1024视频免费在线观看| 黑人猛操日本美女一级片| 亚洲一区中文字幕在线| 亚洲国产看品久久| 永久免费av网站大全| 一本色道久久久久久精品综合| 咕卡用的链子| 一个人免费看片子| 成年美女黄网站色视频大全免费| 啦啦啦在线免费观看视频4| 午夜福利一区二区在线看| 亚洲黑人精品在线| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 少妇被粗大的猛进出69影院| 麻豆av在线久日| 中文字幕最新亚洲高清| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 丝袜人妻中文字幕| 9色porny在线观看| 蜜桃国产av成人99| 国产欧美日韩精品亚洲av| 免费在线观看黄色视频的| 精品少妇内射三级| 精品人妻一区二区三区麻豆| 成在线人永久免费视频| 亚洲成国产人片在线观看| 欧美 亚洲 国产 日韩一| 欧美在线黄色| 久久久久久久久久久久大奶| 精品一区在线观看国产| 国产精品一二三区在线看| 在线天堂中文资源库| 人人妻人人澡人人看| 精品久久久精品久久久| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 一级片'在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品人妻熟女毛片av久久网站| 久久香蕉激情| 中文字幕高清在线视频| 黑人巨大精品欧美一区二区蜜桃| 成在线人永久免费视频| av又黄又爽大尺度在线免费看| 久久精品亚洲熟妇少妇任你| 欧美激情久久久久久爽电影 | 婷婷丁香在线五月| 九色亚洲精品在线播放| 热99久久久久精品小说推荐| 亚洲美女黄色视频免费看| 男男h啪啪无遮挡| 少妇精品久久久久久久| 亚洲一码二码三码区别大吗| 男女国产视频网站| 不卡一级毛片| 日韩视频一区二区在线观看| 免费在线观看日本一区| 一边摸一边做爽爽视频免费| 久久亚洲国产成人精品v| 一区在线观看完整版| 少妇猛男粗大的猛烈进出视频| 亚洲精品一区蜜桃| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 女人被躁到高潮嗷嗷叫费观| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 亚洲欧美日韩另类电影网站| 久久精品熟女亚洲av麻豆精品| 免费看十八禁软件| 黄色毛片三级朝国网站| 韩国精品一区二区三区| 国产精品.久久久| 亚洲第一欧美日韩一区二区三区 | 日韩中文字幕视频在线看片| a 毛片基地| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看. | 在线观看免费日韩欧美大片| 99国产精品99久久久久| 精品一区二区三卡| 日韩大码丰满熟妇| 久久热在线av| 丝瓜视频免费看黄片| 亚洲九九香蕉| 成人影院久久| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 国产高清国产精品国产三级| 嫩草影视91久久| 亚洲av欧美aⅴ国产| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 国产成人影院久久av| 亚洲av片天天在线观看| 一区二区日韩欧美中文字幕| 99精品久久久久人妻精品| 国产精品熟女久久久久浪| 天天添夜夜摸| 欧美少妇被猛烈插入视频| 成年av动漫网址| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 亚洲少妇的诱惑av| 18在线观看网站| 黑人操中国人逼视频| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 制服人妻中文乱码| 国产成人系列免费观看| 日韩大码丰满熟妇| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 日韩欧美一区视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品成人在线| 超碰成人久久| 黄色视频不卡| 欧美国产精品一级二级三级| 亚洲av成人不卡在线观看播放网 | 欧美人与性动交α欧美软件| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 免费看十八禁软件| 一区二区三区乱码不卡18| 国产精品二区激情视频| 一级片'在线观看视频| 日韩欧美国产一区二区入口| 丝袜人妻中文字幕| 不卡av一区二区三区| 啦啦啦 在线观看视频| 2018国产大陆天天弄谢| 久久精品国产a三级三级三级| a在线观看视频网站| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 天天影视国产精品| 最黄视频免费看| 麻豆乱淫一区二区| 国产亚洲精品久久久久5区| 精品国内亚洲2022精品成人 | 国产精品久久久久久人妻精品电影 | 视频在线观看一区二区三区| 精品国产国语对白av| 99国产精品免费福利视频| 夫妻午夜视频| 巨乳人妻的诱惑在线观看| 精品熟女少妇八av免费久了| 国产亚洲av高清不卡| 69av精品久久久久久 | 亚洲精品av麻豆狂野| 黄片小视频在线播放| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 久久av网站| 国产精品 欧美亚洲| 亚洲第一av免费看| 一进一出抽搐动态| 老汉色∧v一级毛片| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 一个人免费在线观看的高清视频 | 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 啦啦啦视频在线资源免费观看| 亚洲男人天堂网一区| 欧美大码av| 国产精品久久久人人做人人爽| 中文字幕色久视频| 久久精品国产a三级三级三级| 国产av又大| 激情视频va一区二区三区| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区 | 免费在线观看黄色视频的| 亚洲精品国产区一区二| 这个男人来自地球电影免费观看| a 毛片基地| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲 | cao死你这个sao货| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜| 免费一级毛片在线播放高清视频 | 亚洲情色 制服丝袜| 国产av一区二区精品久久| 高清av免费在线| 啦啦啦免费观看视频1| 日韩中文字幕视频在线看片| 久久久国产欧美日韩av| 两人在一起打扑克的视频| 十八禁高潮呻吟视频| 久久这里只有精品19| 嫩草影视91久久| 久久久精品国产亚洲av高清涩受| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区av在线| 韩国高清视频一区二区三区| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| av超薄肉色丝袜交足视频| 国产精品99久久99久久久不卡| 永久免费av网站大全| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 人妻人人澡人人爽人人| 国产av精品麻豆| 一本大道久久a久久精品| 男女之事视频高清在线观看| av不卡在线播放| 久久99一区二区三区| 亚洲一区中文字幕在线| 在线看a的网站| 亚洲一区中文字幕在线|