• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    通過g-C3N4擔載MNi12 (Fe, Co, Cu, Zn)納米團簇調節(jié)甲烷化反應性能

    2019-09-03 09:20:18韓萌茹周亞男周旋儲偉
    物理化學學報 2019年8期
    關鍵詞:周旋四川大學工程學院

    韓萌茹 ,周亞男 ,周旋 ,儲偉 ,2,*

    1四川大學化學工程學院,成都 610065

    2四川大學新能源與低碳技術研究院,成都 610065

    1 Introduction

    In recent years, increasing carbon dioxide (CO2) emissions have been produced due to the continuous utilization of fossil fuels, which caused severe energy shortage and environmental threats1,2. To relieve the issue, lots of advanced technologies have been proposed3-5. Among them, CO2methanation6is an attractive way to produce recycle synthetic natural gas (SNG).Extensive studies7-9have been reported to use different heterogeneous catalysts for improving the CO2conversion technology.

    Among heterogeneous catalysts, noble metal catalysts generally show higher reactivity and stability10, but the high cost and scarce resource limit their applications. Thus, tremendous non-precious metal catalysts11,12have been investigated for the replacement of noble metal catalysts. Among them, nickel (Ni)-based catalysts are commonly used in industry. Which is earthabundant, but still inferior promising in CO2methanation reaction13,14. It has been reported that Ni nanoparticles (NPs)supported on substrate can further enhance the stability and activity of catalysts15,16due to the strong metal-support interaction (SMSI)17.

    Two-dimensional (2D) materials are excellent substrates for their large surface area, outstanding electronic and physicochemical properties18,19. Graphitic carbon nitride (g-C3N4), a unique 2D material, has drawn extensive attentions due to its high chemical stability, low cost and appropriate electronic structure20. Compared with other 2D materials (graphene21and h-BN22), g-C3N4has an inherent triangular porous structure,which is formed by six edge nitrogen atoms. The big defect site can be used as an anchoring point for the growth of metal atoms/NPs, influencing the structural stability of the material,and potentially improving surface reactivity. Li et al.23concluded that suitable transition metal doping (Cu and Mo)loading on g-C3N4(001) surface can efficiently reduce the energy barrier and control reaction route along the CO2conversion process. Liu et al.24synthesized fibrous Ag NPs/g-C3N4aerogel, which exhibits selectively photocatalytic dehydrogenation of pure methanol without undesirable byproducts (CO, CO2, etc.) formation at room temperature.

    Apart from monometallic nanoclusters, bimetallic alloy nanoparticles (NPs) tune the surface electronic properties due to the formation of the hetero-atom bonds, thus enhancing their catalytic reactivities25-27. Specially, core-shell alloy nanoparticles exhibit more superior catalytic performances due to the expected core-shell interaction. Yang et al.28have suggested that icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stabilities than that of the monometallic Fe and Ni particles. Feng et al.29demonstrated that the synergistic effect between Au and Pd as well as the strong interactions of AuPd nanoclusters (NCs) with g-C3N4endow AuPd NCs/g-C3N4as a potential electrocatalyst in oxygen reduction and hydrogen evolution.

    Motivated by these studies, Ni-based core-shell alloy supported on g-C3N4substrate are designed in this work, which is expected to tune the catalytic reactivity in CO2methanation.The reactivity of CO on the slab is a critical descriptor30scaling with the catalytic activity in CO2methanation. From the“volcano relationship”31, it can be seen that CO is bonding tightly on Ni-based materials, which hinders the CO dissociation, thus, the new designed catalysts are desired to reduce the higher adsorption ability of CO, enhancing the efficiency of methanation reaction. To our knowledge, there is lack of theoretical and experimental investigations about it.

    The objectives of this study are the following: (1) to discuss the effect of substituted core atom on the interaction of core-shell NPs; (2) to systematically investigate the influence of g-C3N4substrate on the properties of the Ni-based core-shell structures;(3) to explore the change of catalytic reactivity of MNi12NPs/g-C3N4composites toward the adsorption of CO.

    2 Computational methods and Models

    All the calculations were carried out in DMol3package32of Materials Studio based on density functional theory (DFT). The exchange-correlation interaction was treated with the generalized gradient approximation (GGA) using Perdew-Burke-Ernzerhof (PBE) functional33. With the aim to describe the van der Waals (vdW) interaction more accurately, DFT with the empirical dispersion correction (DFT-D) method was applied to the systems34. A Monkhorst pack of 3 × 3 × 1 k-points mesh was used for the Brillouin zone, which ensured the accuracy of geometry optimizations, as presented in Table S1 (Supporting Information). The double numerical atomic orbital was augmented by a polarization p-function (DNP), and orbital cutoff quality was set at fine. Furthermore, the core electrons were treated with DFT semi-core pseudopotentials (DSPPs)35.A 0.005 Ha of smearing was applied to improve the convergence,and we used a convergence criterion of 0.004 Ha·?-1(1 ? = 0.1 nm) on force, 0.005 ? on displacement, and 2 × 10-5Ha on the total energy in geometry optimization. Spin-polarization was considered in all calculations.

    The structure of single layer of g-C3N4was obtained by cleaving the unit cell of bulk g-C3N4along the (001) direction.One layer of 2 × 2 × 1 unit cell of g-C3N4(001) on the x-y plane was employed to achieve the periodicity, and a vacuum region of 1.5 nm was introduced along the z-direction for avoiding interactions between the slab and its repeated images, this vacuum is suitable for this work, as shown in Table S2(Supporting Information).

    According to “magic numbers” of transition-metal clusters,the icosahedral (Ih) Ni13cluster was chosen for higher geometric stability36. The alloy MNi12NPs were formed by substituting the centeral Ni atom with other metals. To illustrate the influence of substituted M atom for isolated MNi12NPs in the gas phase,the cohesive energy (Ecoh) is calculated according to Eq. (1)

    where, ENiand EMrefers to the total energy of isolated Ni atom and substituted atom, ENPsdenotes the total energy of MNi12NPs, and n defines the number of Ni atoms in the MNi12NPs.

    In order to understand the influence of replacing central Ni atoms with other metal atoms, the change of cohesive energy(ΔEcoh) is computed using the following formula:

    By this definition, a higher positive value of ΔEcohindicates a lower stability. On the contrary, a negative ΔEcohsuggests a higher stability.

    To describe the interaction between MNi12NPs and g-C3N4nanosheet, the binding energy (Eb) is defined as following equation

    where, E(total)is the total energy of MNi12NPs adsorbed on g-C3N4, E(g-C3N4)is the total energy of pure g-C3N4.

    The adsorption energy of CO (ECO) on isolated MNi12NPs and MNi12NPs/g-C3N4composites is denoted according to Eq. (4)

    where, Eslabcorresponds to the total energy of each stable slab,namely MNi12NPs and MNi12NPs/g-C3N4composites, ECOis the energy of isolated CO molecule and Eslab+COrefer to the total energy of CO adsorbed on the stable slab. By the definition, a negative value corresponds to an exothermic process, while the positive one means endothermic.

    To further investigate the deformation of the cluster and its effect on the CO adsorption energy, the deformation energy(Edef) are discussed, the expression of Edefas follows

    where Efixis the total energy of CO on the deformed NPs without g-C3N4(keep NPs fixed), and Efreeis the total energy of CO adsorbed on isolated MNi12NPs.

    The deformation charge density Δρ(r) of CO on MNi12and MNi12/g-C3N4are computed, which is defined as37

    where ρtotal(r), ρads(r) and ρslab(r) are electron density of the CO adsorbed on the stable slab (MNi12and MNi12/g-C3N4system),isolated CO molecule and the stable slab (MNi12and MNi12/g-C3N4system), respectively.

    3 Results and discussion

    3.1 g-C3N4 substrate and freestanding MNi12 NPs

    It is reported that tri-s-triazine based g-C3N4is more energetically favorable than triazine one38. Hence, the tri-striazine based g-C3N4is chosen as the pristine model. After optimization, the lattice parameter of g-C3N4is 0.720 nm, which is agree well with previous theoretical calculation values of 0.715 nm39, 0.714 nm40and experiment value of 0.713 nm41.As Fig. 1a shown, three kinds of C―N bonds are included in this sheet: d1is in the middle of tri-s-triazine units, d2connects three tri-s-triazine units as bridges, and other C―N bonds are labelled as d3. The optimized bond lengths are in good consists with previous results42-44. To gain a deep insight of g-C3N4nanosheet, the partial density of states (PDOS) of N atoms are explored, as presented in Fig. 1b. It can be observed that N 2p orbital has a high intensity on the Fermi surface due to existence of sp2dangling bonds, which results in superior stability for trapping MNi12NPs.

    Fig. 1 (a) Optimized structure of g-C3N4 nanosheet;(b) the PDOS of N atoms in g-C3N4.

    The geometrical structures of isolated alloy MNi12NPs are optimized, as presented in Fig. 2. Corresponding structural parameters and cohesive energy (Ecoh) of isolated MNi12NPs are calculated and shown in Table 1.

    From Table 1, it can be seen that the Ecohof isolated alloy MNi12NPs range from -39.90 to -34.82 eV, which indicates that these alloy are all favorable formed in thermodynamics. Besides,it can be observed that the central M atoms with less filled dshell interact more strongly with surface Ni atoms. Compared with freestanding Ni13nanoparticles, the substitution of Fe and Co atom with ΔEcoh< 0 results in higher stability, but Cu and Zn replace the central Ni atoms with ΔEcoh> 0 leading to lower stability. According to results of Min/Max dM-Niand Min/Max dNi-Ni, it can be seen that the sizes of freestanding FeNi12NP and CoNi12NP are similar to isolated Ni13NP, but the size of MNi12NPs substituted with Cu and Zn are slightly larger than that of the Ni13nanocluster due to their bigger atomic radius. The difference between high spin states and low states are expressed using ΔE, the results demonstrate that high spin configurations are more stable than low spin state energetically (details are presented in the Supporting Information).

    3.2 Interaction between MNi12 NPs and g-C3N4

    According to tremendous of previous studies45-47, the center of big-hollow site is the most stable adsorption site among all the possible adsorption behaviours. Therefore, this adsorption site is chosen as the anchoring point for MNi12NPs in the current work.Considering different atomic numbers and locations of MNi12NPs interfacing with the g-C3N4surface, six initial adsorption models are studied, as shown in Fig. S1. The preferredoptimizing configurations of MNi12NPs on g-C3N4are presented in Fig. 3. Different from initial configuration, the g-C3N4plane distorts into corrugated structure after MNi12NPs loading, which is in good consistent with previous results48,49.The configurations of MNi12NPs have also changed because of different central atoms. In terms of CoNi12NP and ZnNi12NP deposited on g-C3N4, the Ih structures of nanoclusters still exist.Three shell Ni atoms form a plane, bonding with the neighboring six N atoms near the big defect site of g-C3N4substrate to saturate the sp2dangling bonds. But for the other MNi12NPs (Fe,Ni, Cu), the configurations of NPs have been reconstructed, and six interfacial Ni atoms have been displaced slightly. These atoms are not only attached to adjacent C atoms, but also bonded with neighboring N atoms near the big vacancy site of g-C3N4substrate.

    Fig. 2 Optimzed geometrical structures of isolated alloy MNi12 NPs: (a) FeNi12 NPs, (b) CoNi12 NPs, (c) Ni13 NPs, (d) CuNi12 NPs,(e) ZnNi12 NPs.

    Corresponding structural parameters, binding energy (Eb) and the Hirshfeld charge of MNi12NPs (Q) are presented in Table 2.When MNi12NPs supported on g-C3N4substrate, Ebvaries from-9.40 to -8.39 eV, indicating that the interaction between MNi12NPs and g-C3N4are strong. In order to further investigate the deformation of clusters, the deformation energies (Edef) are calculated, as presented in Table 2. The results reveal that the deformation of NPs further weakens the CO adsorption energy.Besides, Edefof CoNi12-C3N4and ZnNi12-C3N4are the smallest,which is in accordance the little change of CoNi12and ZnNi12NPs (Fig.3b, d). According to the results of Min/Max dM-Niand Min/Max dNi-Ni, the configurations of MNi12NPs have little transformation attributing to the introduction of g-C3N4nanosheet. Besides, the positive values of Hirshfeld charge transfer indicates that MNi12NPs donating their electrons to g-C3N4. MNi12NPs acts as Lewis acids, while g-C3N4serves as Lewis base. To further understand the interaction of MNi12NPsand g-C3N4substrate, the PDOS of isolated MNi12NPs and MNi12NPs on g-C3N4are analysed, as presented in Fig. 4. The dashed lines plot the electronic properties of isolated MNi12NPs.It can be seen that 3d states of other central atoms overlap with the surface Ni-3d orbital, indicating the strong hybridization between them. But for ZnNi12NP, the energy level of Zn-3d is less compatible with the shell Ni-3d orbital. Hence, the interaction between central Zn atom and shell Ni atoms is less effective, which is the most unstable configuration among all studied isolated MNi12NPs. The solid lines describe the electronic properties of MNi12NPs supported on g-C3N4. In terms of surface Ni atoms, the peak of 3d orbital only has slight transformation after deposited on g-C3N4substrate. However, as for 3d states of central atoms, the peaks become wider and lower in comparison with the narrow and sharp speaks of isolated MNi12NPs, revealing the overlap between central atoms and surface Ni atoms reduce, the interaction between them is thus weakened.

    Table 1 Structural parameters, cohesive energy (Ecoh) of freestanding MNi12 NPs and Hirshfeld charge of central M atom.

    Table 2 Structural parameters, binding energy (Eb) of MNi12 NPs/g-C3N4 composites and Hirshfeld charge transfer for MNi12 NPs on g-C3N4.

    Fig. 4 PDOS of isolated MNi12 NPs (dashed line) and MNi12 NPs on g-C3N4 (solid line).

    According to the PDOS, it can be seen the effect of support mainly attributing to the overlap region between C-2p, N-2p and the 3d states of MNi12NPs near the Fermi level, C-2s and N-2s states show little hybridization with MNi12NPs. Compared with C-2p state, the area and height of PDOS for N-2p orbital increase due to the sp2dangling bonds of N atoms near the big vacancy site, which is in good accordance with the PDOS analysis of pure g-C3N4.

    3.3 Catalytic reactivity of MNi12 NPs/g-C3N4 composites

    In order to explore the effect of g-C3N4on catalytic reactivity of MNi12NPs, the binding strength of CO on MNi12NPs and MNi12NPs/g-C3N4composites are investigated respectively.Three adsorption sites are considered: top (T), the top of Ni atom;bridge (B), the midpoint of the Ni―Ni bond and center (C), the center of the triangular plane formed by three Ni atoms, as described in Fig. 5. Through DFT calculations, when the CO molecule is parallelly adsorbed on MNi12NPs/g-C3N4composites, the adsorption orientation of CO will move to vertical. Therefore, only vertical orientation of CO adsorption is selected finally. Considering distinct atoms of CO molecule close to surfaces, two adsorption configurations of CO are studied for each adsorption site, including C atoms attach to catalysts (O-C) and O atom point to catalysts (C-O). Hence, each MNi12NPs or MNi12NPs/g-C3N4composites have six possible adsorption situations for CO molecule, which are systematically calculated in the present work.

    Fig. 5 Different adsorption configurations and adsorption sites for CO adsorption on MNi12 NPs and MNi12 NPs/g-C3N4 composites.

    Fig. 6 (a) Eads of CO (eV) and (b) C―O bond lengths (nm) on isolated MNi12 NPs (black) and MNi12 NPs/g-C3N4 composites (red).

    Corresponding ECOand structural parameters of all the possible adsorption behaviors are concluded in Table S1. It can be observed that the ECOof C-O configuration ranging from-0.53 to -0.10 eV, indicating physical adsorption. While the ECOwith O-C model vary from -2.68 to -2.13 eV, the strong adsorption energies suggest chemical adsorption. It reveals that the CO gas adsorb on catalysts with O-C configuration is more stable. Fig. S2 shows the most stable configurations of CO adsorbed on isolated MNi12NPs and MNi12/g-C3N4composites.

    Fig. 6a, b show the curve of ECOand dC―O(the average C―O bond lengths) with different catalysts. It is worth mentioning that the ECOof CO on MNi12/g-C3N4composites all reduce in comparison with that of CO on isolated MNi12NPs, and the dC―Oin CO/MNi12/g-C3N4are shorter than that in CO/MNi12NPs system. The decreasing ECOand dC―Osuggest the weakening adsorption capacity with MNi12/g-C3N4complexes. What’s more, the weakening ability of Ni13/g-C3N4is lowest among MNi12/g-C3N4catalysts, indicating the synergistic reaction in alloy NPs. The little difference of dCOin ZnNi12NPs andZnNi12/g-C3N4have also verified previous analysis of PDOS.

    Table 3 Hirshfeld electron transfer of CO on isolated MNi12 NPs and MNi12 NPs-C3N4 composites.

    To get a deep insight into the new designed catalysts,electronic properties of Hirshfeld charge, electrostatic potential(ESP) and deformation charge density are explored. The system of CO adsorbed on FeNi12/g-C3N4composite is taken as the illustrative example.

    The detail charge distribution is presented in Table 3. Positive value denotes lose electrons, while negative value represents gain electrons. The results demonstrate that CO and g-C3N4gains electrons, acting as electron acceptors, while MNi12NPs loses electrons and acts as electron donator. Because the g-C3N4substrate gains electrons from MNi12NPs, the electron number of CO obtained from MNi12/g-C3N4composites are reduced in comparison with CO on isolated MNi12NPs, which results in decreased ECOand dC―O.

    For ESP analysis, the isosurfaces were constructed at 0.05 a.u.Red lobes indicate electron loss, blue lobes electron excess. As shown in the Fig. 7, the negative charge is enriched in the region of C and O atoms, positive charge accumulates in the region MNi12NPs, indicating that the C, O and MNi12NPs are activated obviously. When g-C3N4substrate is introduced, some positive charge gathers in the big defect of g-C3N4. The electron accumulates in CO molecule decrease, indicating that the catalytic activity of CO is weakened. This phenomenon is in accordance with the trends manifested by ECO, dC―Oand the Hirshfeld charge analyses.

    In order to further investigate the metal-support interaction,the deformation charge density is analysed, as shown in Fig.8. In both plot, around the C atom in CO is a charge depletion region,which is in consistent with Hirshfeld charge analyses for CO molecule. In CO-MNi12system, only charge accumulation is discerned around NPs. But for the system of CO-MNi12-C3N4,charge accumulation and depletion are observed obviously in the interface between NPs and g-C3N4.This charge redistribution suggests the strong metal-support interaction , which further reduce the CO adsorption energy.

    Fig. 7 The electrostatic potential of CO adsorbed on (a) isolated MNi12 NPs, and (b) MNi12 NPs-C3N4 composites.

    Fig. 8 The deformation charge density analysis of CO adsorbed on(a) isolated MNi12 NPs, and (b) MNi12 NPs-C3N4 composites.

    In summary, MNi12NPs/g-C3N4composites reduce the adsorption potential towards CO, tuning the surface reactivity.

    4 Conclusions

    Based on DFT calculation, alloy MNi12NPs supported on g-C3N4substrate were studied. The values of ΔEcohindicate the central M atom with less filled d-shell interacts more strongly with surface Ni atoms. When the MNi12NPs is deposited on g-C3N4, strong binding energies verify the high stability of these composites, which originates from the strong hybridization between these NPs and the sp2dangling bonds of N atoms in g-C3N4substrate. Furthermore, the SMSI also changes the electronic properties of catalysts. When MNi12NPs is anchored on g-C3N4, the Hirshfeld charge and ESP analysis indicate that some electrons transfer from MNi12NPs to g-C3N4substrate,leading to the decreasing electrons from MNi12NPs to CO. Thus,these new catalysts of MNi12NPs/g-C3N4composites weaken the adsorption capacity for CO, which lower surface reactivity and enhance the efficiency of methanation. This work suggests that g-C3N4is a promising material for improving the stability of deposited MNi12NPs and tuning catalytic reactivity for CO2methanation.

    Acknowledgment: The authors highly appreciate the useful discussions and helps of Colleagues: Wenjing Sun, Liqiong Huang and Huan Li. The Analytical & Testing Center Sichuan University is acknowledged for providing Dmol3module.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    周旋四川大學工程學院
    和自己周旋
    領導文萃(2023年17期)2023-09-12 00:05:19
    福建工程學院
    和自己周旋
    福建工程學院
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    北方人(2019年21期)2019-11-08 12:30:32
    福建工程學院
    福建工程學院
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    四川大學華西醫(yī)院
    嘟嘟电影网在线观看| 亚洲av国产av综合av卡| 人妻夜夜爽99麻豆av| 免费观看在线日韩| 国产极品天堂在线| 一区在线观看完整版| 人妻制服诱惑在线中文字幕| 国产av一区二区精品久久| 国产成人精品一,二区| 91成人精品电影| 欧美日韩亚洲高清精品| 中文字幕制服av| 国产深夜福利视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 成年av动漫网址| 国产在线一区二区三区精| 在线观看人妻少妇| 欧美精品高潮呻吟av久久| 精品久久久噜噜| 一级毛片aaaaaa免费看小| 国产色婷婷99| 91精品三级在线观看| 成年美女黄网站色视频大全免费 | 国产精品一区www在线观看| 国产精品久久久久久久久免| 精品人妻在线不人妻| 欧美三级亚洲精品| 久久久国产一区二区| 精品国产国语对白av| 特大巨黑吊av在线直播| 女性生殖器流出的白浆| 蜜桃在线观看..| 熟女电影av网| 日韩伦理黄色片| 伦理电影免费视频| 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 大陆偷拍与自拍| 最新中文字幕久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 中国美白少妇内射xxxbb| 久久免费观看电影| 国产精品一区二区在线不卡| 99热全是精品| 人妻 亚洲 视频| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 热re99久久国产66热| 亚洲欧美日韩另类电影网站| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 爱豆传媒免费全集在线观看| 欧美精品亚洲一区二区| 亚洲欧美成人精品一区二区| 18在线观看网站| 国国产精品蜜臀av免费| 熟女人妻精品中文字幕| 久久毛片免费看一区二区三区| 狠狠婷婷综合久久久久久88av| 3wmmmm亚洲av在线观看| 99久久综合免费| 蜜桃久久精品国产亚洲av| 免费大片黄手机在线观看| 母亲3免费完整高清在线观看 | 91精品国产九色| 另类精品久久| 在线观看人妻少妇| 少妇精品久久久久久久| 亚洲第一av免费看| 精品一区二区三卡| 亚洲在久久综合| 秋霞伦理黄片| 在线精品无人区一区二区三| 国产成人精品久久久久久| 国产男女超爽视频在线观看| 久久久亚洲精品成人影院| 一区二区三区精品91| 亚洲精品日韩在线中文字幕| 综合色丁香网| 日韩三级伦理在线观看| 国产亚洲最大av| 国产高清有码在线观看视频| 青青草视频在线视频观看| 免费观看的影片在线观看| 最近手机中文字幕大全| 一边摸一边做爽爽视频免费| 久久精品国产亚洲网站| 亚洲三级黄色毛片| 久久久久久久久久成人| 最近中文字幕2019免费版| 大香蕉久久成人网| 男女边摸边吃奶| 日韩三级伦理在线观看| 国产精品女同一区二区软件| 一级毛片我不卡| 国产精品久久久久久av不卡| 天堂俺去俺来也www色官网| 三级国产精品片| 人妻系列 视频| 亚洲精品一区蜜桃| 97超碰精品成人国产| 欧美日韩综合久久久久久| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 久久久精品94久久精品| 亚洲av电影在线观看一区二区三区| 美女福利国产在线| 一本大道久久a久久精品| 久久久久国产精品人妻一区二区| 嘟嘟电影网在线观看| 国产淫语在线视频| 亚洲中文av在线| 伊人亚洲综合成人网| 3wmmmm亚洲av在线观看| 国产精品免费大片| 国语对白做爰xxxⅹ性视频网站| 一边摸一边做爽爽视频免费| 日韩视频在线欧美| 18+在线观看网站| 一个人看视频在线观看www免费| 91精品三级在线观看| 边亲边吃奶的免费视频| 91aial.com中文字幕在线观看| 少妇的逼好多水| 午夜91福利影院| 如何舔出高潮| 在线播放无遮挡| 在线天堂最新版资源| 最黄视频免费看| 黄色怎么调成土黄色| 在线观看www视频免费| 亚洲av成人精品一区久久| 人妻一区二区av| 欧美三级亚洲精品| 色婷婷av一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 婷婷成人精品国产| 97超碰精品成人国产| 亚洲精品aⅴ在线观看| 日韩不卡一区二区三区视频在线| 美女xxoo啪啪120秒动态图| 欧美日韩av久久| 精品亚洲成国产av| 亚洲三级黄色毛片| 精品少妇黑人巨大在线播放| 亚洲av二区三区四区| 亚洲精品日韩在线中文字幕| 国产国拍精品亚洲av在线观看| 欧美精品亚洲一区二区| 日韩熟女老妇一区二区性免费视频| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 日韩精品免费视频一区二区三区 | 久热久热在线精品观看| 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 大码成人一级视频| 老司机亚洲免费影院| 精品亚洲成国产av| 女性生殖器流出的白浆| 亚洲精品久久久久久婷婷小说| 精品午夜福利在线看| 国产精品熟女久久久久浪| 乱人伦中国视频| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 天天躁夜夜躁狠狠久久av| 99久久中文字幕三级久久日本| 我的老师免费观看完整版| 乱码一卡2卡4卡精品| 九草在线视频观看| 视频区图区小说| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 欧美激情 高清一区二区三区| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 熟妇人妻不卡中文字幕| 不卡视频在线观看欧美| 亚洲一区二区三区欧美精品| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 精品国产露脸久久av麻豆| 精品国产乱码久久久久久小说| 久久精品久久精品一区二区三区| 欧美3d第一页| 国产精品人妻久久久久久| 母亲3免费完整高清在线观看 | 免费观看性生交大片5| 国产片特级美女逼逼视频| 精品人妻一区二区三区麻豆| www.av在线官网国产| 亚洲熟女精品中文字幕| 天美传媒精品一区二区| 国产成人aa在线观看| 久久久国产欧美日韩av| 国产男女超爽视频在线观看| 69精品国产乱码久久久| 中文字幕最新亚洲高清| 国产片特级美女逼逼视频| 亚洲图色成人| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 成人二区视频| 成年美女黄网站色视频大全免费 | a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 亚洲精品美女久久av网站| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 男女啪啪激烈高潮av片| av国产精品久久久久影院| 如何舔出高潮| 国产在线一区二区三区精| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品古装| 日日啪夜夜爽| 色网站视频免费| 看非洲黑人一级黄片| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 母亲3免费完整高清在线观看 | 中文字幕精品免费在线观看视频 | 男女边摸边吃奶| 嫩草影院入口| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 香蕉精品网在线| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 日本午夜av视频| 最近手机中文字幕大全| 国产免费现黄频在线看| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 久热久热在线精品观看| 亚洲一区二区三区欧美精品| 五月天丁香电影| 亚洲精品美女久久av网站| 精品久久久久久久久av| 丁香六月天网| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区国产| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 亚洲精华国产精华液的使用体验| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 成人手机av| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 久久久久久伊人网av| 青春草国产在线视频| 全区人妻精品视频| 一区二区三区免费毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美bdsm另类| 国产午夜精品一二区理论片| 伊人亚洲综合成人网| 中文字幕最新亚洲高清| 欧美97在线视频| 亚洲精品视频女| 在线观看国产h片| 嘟嘟电影网在线观看| 国产av码专区亚洲av| 一级a做视频免费观看| 美女视频免费永久观看网站| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 国产精品国产av在线观看| 久久99蜜桃精品久久| 99久久综合免费| 老女人水多毛片| av网站免费在线观看视频| 国产视频首页在线观看| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 国产精品一国产av| 午夜福利视频精品| 国产精品一二三区在线看| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 精品国产国语对白av| 新久久久久国产一级毛片| 国产av码专区亚洲av| 久久久久久久久大av| 亚洲综合精品二区| 在线观看免费视频网站a站| 男女边摸边吃奶| 黄片播放在线免费| 老熟女久久久| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲网站| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 国内精品宾馆在线| 午夜福利在线观看免费完整高清在| 美女福利国产在线| 国产白丝娇喘喷水9色精品| 国产综合精华液| 精品一品国产午夜福利视频| 大码成人一级视频| 国产免费又黄又爽又色| 国产精品人妻久久久影院| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 丝袜在线中文字幕| 日本av免费视频播放| 九色亚洲精品在线播放| 美女大奶头黄色视频| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 国产日韩一区二区三区精品不卡 | 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 亚洲人成77777在线视频| 亚洲,一卡二卡三卡| 伦精品一区二区三区| 日韩强制内射视频| 两个人免费观看高清视频| 97超视频在线观看视频| 久久精品国产a三级三级三级| 日韩中字成人| 国产爽快片一区二区三区| 成人手机av| 日韩一区二区三区影片| 大香蕉久久成人网| 亚洲av综合色区一区| av在线观看视频网站免费| 亚洲国产色片| a级毛片在线看网站| 美女国产高潮福利片在线看| 日本黄大片高清| 99久久精品国产国产毛片| 大陆偷拍与自拍| 丝袜美足系列| 99精国产麻豆久久婷婷| 亚洲精品国产av成人精品| 国产高清不卡午夜福利| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| 国精品久久久久久国模美| 99re6热这里在线精品视频| 成人影院久久| 国产精品人妻久久久久久| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 久久精品熟女亚洲av麻豆精品| 最黄视频免费看| 老司机影院成人| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 美女国产高潮福利片在线看| 日日摸夜夜添夜夜添av毛片| 又大又黄又爽视频免费| 国产精品一区二区在线观看99| 亚洲激情五月婷婷啪啪| 中文字幕最新亚洲高清| 特大巨黑吊av在线直播| 插逼视频在线观看| 夫妻午夜视频| a级毛色黄片| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 在线观看www视频免费| 黑丝袜美女国产一区| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 国产免费视频播放在线视频| 考比视频在线观看| 亚洲综合色惰| 亚洲人与动物交配视频| 亚洲无线观看免费| 国产一区二区在线观看av| 国产片特级美女逼逼视频| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 久久国产精品大桥未久av| 2018国产大陆天天弄谢| 麻豆精品久久久久久蜜桃| videosex国产| av一本久久久久| 999精品在线视频| 日本-黄色视频高清免费观看| 丰满迷人的少妇在线观看| 99久久人妻综合| 欧美人与性动交α欧美精品济南到 | 精品久久国产蜜桃| 在线亚洲精品国产二区图片欧美 | 美女国产高潮福利片在线看| 成人亚洲精品一区在线观看| a级毛片免费高清观看在线播放| 亚洲精品国产av蜜桃| 天天躁夜夜躁狠狠久久av| 王馨瑶露胸无遮挡在线观看| 色5月婷婷丁香| 七月丁香在线播放| 少妇熟女欧美另类| 波野结衣二区三区在线| 黑人猛操日本美女一级片| 亚洲少妇的诱惑av| 免费高清在线观看视频在线观看| 久久国内精品自在自线图片| 九草在线视频观看| 制服人妻中文乱码| videos熟女内射| 精品一区二区免费观看| 精品久久久噜噜| 色哟哟·www| 国产不卡av网站在线观看| 日韩强制内射视频| 久久鲁丝午夜福利片| 精品少妇内射三级| 国产成人精品久久久久久| 91久久精品国产一区二区成人| 岛国毛片在线播放| 国产在视频线精品| 久久热精品热| 人妻系列 视频| av免费观看日本| 黑人巨大精品欧美一区二区蜜桃 | 91精品国产国语对白视频| 黄色一级大片看看| 中文字幕精品免费在线观看视频 | 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| av电影中文网址| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 少妇丰满av| 国产亚洲精品第一综合不卡 | 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 久久久国产精品麻豆| 一本大道久久a久久精品| 91久久精品电影网| 婷婷色av中文字幕| 国产精品秋霞免费鲁丝片| 午夜影院在线不卡| av天堂久久9| 黄色配什么色好看| 99久久精品国产国产毛片| 日韩人妻高清精品专区| 免费看av在线观看网站| 亚洲怡红院男人天堂| 一个人免费看片子| 多毛熟女@视频| 伦精品一区二区三区| 91久久精品国产一区二区成人| 高清午夜精品一区二区三区| 久久久久国产精品人妻一区二区| 亚洲色图 男人天堂 中文字幕 | 国产免费又黄又爽又色| 国产日韩一区二区三区精品不卡 | 制服人妻中文乱码| 看十八女毛片水多多多| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 纯流量卡能插随身wifi吗| 99久久中文字幕三级久久日本| 久久这里有精品视频免费| 色视频在线一区二区三区| 波野结衣二区三区在线| 人妻少妇偷人精品九色| 美女主播在线视频| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 不卡视频在线观看欧美| 高清欧美精品videossex| 久久热精品热| 18禁动态无遮挡网站| 草草在线视频免费看| 高清毛片免费看| 欧美bdsm另类| 嘟嘟电影网在线观看| 午夜av观看不卡| 国产精品99久久99久久久不卡 | 丝袜脚勾引网站| 午夜av观看不卡| 久久精品国产鲁丝片午夜精品| 日韩av免费高清视频| 91精品一卡2卡3卡4卡| 午夜福利视频精品| 欧美精品一区二区大全| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 亚洲精品久久成人aⅴ小说 | 久久这里有精品视频免费| 青青草视频在线视频观看| 最近中文字幕2019免费版| 狂野欧美激情性bbbbbb| 人人妻人人澡人人看| 日韩电影二区| 国产高清有码在线观看视频| 狠狠婷婷综合久久久久久88av| 国产黄色视频一区二区在线观看| 最新中文字幕久久久久| 丝袜喷水一区| 中文字幕最新亚洲高清| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄| 中文字幕久久专区| 国产高清国产精品国产三级| 伦理电影大哥的女人| 免费观看的影片在线观看| 国产黄色免费在线视频| 18禁观看日本| 国产国拍精品亚洲av在线观看| 人人妻人人爽人人添夜夜欢视频| 久久韩国三级中文字幕| 午夜福利网站1000一区二区三区| 如何舔出高潮| 人人妻人人澡人人看| 亚洲不卡免费看| av又黄又爽大尺度在线免费看| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 国产成人精品无人区| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 久久精品国产亚洲av天美| 久久久久久久久大av| 一级爰片在线观看| 精品久久久久久久久av| 免费人成在线观看视频色| 亚洲欧洲精品一区二区精品久久久 | 久久午夜综合久久蜜桃| 人妻一区二区av| 精品一区在线观看国产| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 精品视频人人做人人爽| 色哟哟·www| 少妇被粗大的猛进出69影院 | 免费观看a级毛片全部| 亚洲精品国产av蜜桃| 18禁裸乳无遮挡动漫免费视频| 一区二区日韩欧美中文字幕 | 国产一区二区三区av在线| a 毛片基地| 天天躁夜夜躁狠狠久久av| 狂野欧美白嫩少妇大欣赏| freevideosex欧美| 狂野欧美白嫩少妇大欣赏| 91国产中文字幕| 欧美 日韩 精品 国产| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 国产成人免费观看mmmm| 成年av动漫网址| 久久久久久伊人网av| av专区在线播放| 最近中文字幕高清免费大全6| 熟女电影av网| 狂野欧美激情性bbbbbb| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| www.色视频.com| 在线观看免费视频网站a站| 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99| 在线 av 中文字幕| 中文欧美无线码| 欧美日韩亚洲高清精品| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲综合色网址| 91精品一卡2卡3卡4卡| 日本av手机在线免费观看| 波野结衣二区三区在线| 亚洲精品日本国产第一区| 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 亚洲精品乱码久久久v下载方式| 国产成人免费观看mmmm| 欧美97在线视频| av一本久久久久| 免费看光身美女| 人妻人人澡人人爽人人| 伊人亚洲综合成人网| 婷婷成人精品国产| 国产成人91sexporn| 在线观看免费视频网站a站| 国产成人av激情在线播放 | 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 国产欧美日韩综合在线一区二区| 少妇精品久久久久久久| 日韩强制内射视频| 国产精品一区二区三区四区免费观看| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 国产精品一区www在线观看| 国产精品成人在线| av黄色大香蕉| 国产片内射在线|