• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    缺陷TiO2-x中空微球的制備及光催化降解亞甲基藍性能

    2019-09-03 09:20:26章家偉王晟劉福生付小杰馬國權侯美順唐卓
    物理化學學報 2019年8期
    關鍵詞:林業(yè)大學微球光催化

    章家偉,王晟,*,劉福生,付小杰,馬國權,侯美順,唐卓

    1南京工業(yè)大學化工學院,南京 210009

    2南京林業(yè)大學理學院化學與材料科學系,南京 210037

    1 lntroduction

    Semiconductor photocatalysis has attracted much more attention because it is a potential technology for solving environmental and energy problems including such as photocatalytic degradation of organic pollutants1-3, H2production by photocatalytic water splitting4-6and so on. It is well known that an efficient photocatalyst is very important in the photocatalysis process. Among various semiconductor photocatalysts, TiO2has been widely used because of its relatively high photocatalytic activity and photostability, cost effectiveness and non-toxic nature7. However, the large band gap of TiO2limits its utilization of sunlight energy because the UV region possesses only 3%-5% of the sunlight spectrum. To overcome this problem, great efforts such as metal or nonmetal doping8,9, dye photosensitization10,11and coupled semiconductors12-16have been devoted approach a high photocatalytic activity under visible light irradiation17.Recently, it has been proved that the intrinsic defects such as oxygen vacancy in TiO2can trigger the visible light activity.Naldoni et al.18have proved that the band gap narrowing of TiO2with oxygen vacancy is dictated by the synergistic presence of oxygen vacancy and surface disorder. TiO2with oxygen vacancy has shown a strongly enhanced photocatalytic performance in methylene blue and phenol degradation as well as in hydrogen evolution under visible light17,19-21. The morphology of the semiconductors, such as one-dimensional nanotubes and nanowires22,23, two dimensional nanoplates and threedimensional nanospheres, hollow microspheres and inverse opal photonic crystal24,25, is one of the crucial factors that affect their photocatalytic activities. Among these structures, hollow microspheres are most attractive in terms of the outstanding light absorption, easy fabrication and separation26. TiO2hollow microspheres with large surface area have shown the high photocatalytic efficiency in the degradation of environmental pollutants27-29.

    The degradation rate of organic dye is strongly influenced by the initial dye concentration, and it decreases with the increasing of dye concentration because a significant amount of visible light is absorbed by dye molecules rather than photocatalyst resulting in a decrease in the photocatalytic activity. The kinetics of photocatalytic degradation of organic dye usually is depicted by pseudo-first order equation30. However, the effect of dye on light absorption property is not considered.

    In this study, the defective TiO2-xhollow microspheres (x in TiO2-xis a level of oxygen deficiency) were prepared to effectively promote the photocatalytic activity under visible light irradiation. And the mechanism and kinetics of MB degradation were also investigated systematically.

    2 Experimental

    2.1 Synthesis of TiO2 hollow microspheres

    The TiO2hollow microspheres were synthesized by a template method using carbon spheres as template according to the literature reported procedure31,32. The details of the typical experiment are as follows. 60 mL of glucose aqueous solution(0.5 mol·L-1) was heated at 180 °C for 8 h in 100 mL stainless steel autoclave and then cooled to room temperature. The obtained carbon spheres were collected and washed by deionized water, ethanol and acetone for several times, and then dried at 80°C for 8 h. 1.0 mL of TiCl3and 1.0 mL of HCl solution (6.0 mol·L-1) were added in 60 mL of ethanol dispersed with 0.1 g of carbon spheres under magnetic stirring. After stirring for 1 h, the mixture was heated at 98 °C for 1 h. The products collected and washed by deionized water, then dried at 105 °C for 10 h under vacuum, and finally calcined at 550 °C for 2 h to remove carbon spheres to obtain TiO2hollow microspheres. For comparison,TiO2was prepared without carbon spheres as template according to the same method.

    2.2 Synthesis of defective TiO2-x hollow microspheres

    The defective TiO2-xhollow microspheres were prepared by hydrogen reduction process18. The as-prepared TiO2hollow microspheres were reduced at 550 °C for 3 h in an H2atmosphere to obtain defective TiO2-xhollow microspheres. The defective TiO2-xwas obtained also by reducing TiO2at 550 °C for 3 h in an H2atmosphere.

    2.3 Characterization

    The morphology and size of the samples were carried out using scanning electron microscopy (SEM, Hitachi S4800) and transmission electron microscopy (TEM, JEM-2010 UHR). The structure of the samples was analyzed by X-ray powder diffraction (XRD, Rigaku Smartlab), X-ray photoelectron spectroscopy (XPS, Shimadzu AXIS UltraDLD), Raman spectrometer (Horiba Labram HR800) and Electron spinresonance (ESR, Bruker EMX-10/12 spectrometer). The Brunauer-Emmett-Teller (BET) specific surface area was determined by nitrogen adsorption using a BEL Belsorp II apparatus. Photophysical properties of the samples were determined by UV-visible diffuse reflectance spectroscopy (UVVis DRS, Perkin Elmer LAMBDA 950).

    Photoelectrochemical experiments were carried out in a threeelectrode system with a Pt plate as counter electrode, a saturated calomel electrode (SCE) as reference electrode, and an indium tin oxide (ITO) glass coated with the thin films of the photocatalyst samples as the working electrode. Transient photocurrent response plots, Mott-Schottky plots and electrochemical impedance spectra were measured in 0.1 mol·L-1Na2SO4aqueous solution with a potentiostat/galvanostat electrochemical analyzer (Shanghai Chenhua CHI660E).

    Fig. 1 SEM photographs of (a) carbon sphere, (b) TiO2-x hollow microsphere, (c) TiO2-x, and (d) TEM images of TiO2-x hollow microsphere.

    2.4 Photocatalytic experiments

    The photocatalytic activities of the as-synthesized samples were evaluated by testing the photocatalytic degradation of methylene blue (MB) in aqueous solution. 20 mg of sample was added to 100 mL of MB solution (10 mg·L-1) placed in a 150 mL quartz beaker. A 250W Xe lamp (Nanjing Jianyingzhanchi Photoelectronic Science and Technology MCL-300X) with the average light power density being 4.0 mW·cm-2was used as light source with a filter to remove light of wavelength below 400 nm. The reaction temperature was controlled at 30 °C.Before irradiation, the suspension was stirred for 90 min in the dark to establish adsorption-desorption equilibrium. After irradiation, 5 mL samples of the suspension were taken and centrifuged at 3000 r·min-1to remove the photocatalyst at a given irradiation time interval. The MB concentration in the supernate was analyzed by the variation of absorbance at 664 nm using a visible spectrophotometer (Shanghai Precision and Scientific Instrument Company Type 721). The percentage of degradation was calculated using the following equation:

    where c0and c are the concentration of MB solution before and after illumination, respectively.

    3 Results and discussion

    3.1 Characterization of TiO2-x hollow microspheres

    3.1.1 Morphology characterization

    The SEM photograph of carbon spheres is shown in Fig. 1a.It can be seen from the figure that every carbon sphere has a smooth surface with a clear edge. The diameter of carbon spheres are between 150-250 nm. The morphologies of the TiO2-xhollow microspheres are shown in Fig. 1b. Fig. 1b reveals the hollow structure of TiO2-xspheres composed of nanoparticles with the diameter in the range of 100 to 200 nm,which are the replica of the carbon sphere templates. The particle size of the TiO2-xhollow microspheres is a certain degree of reduction compared with that of carbon sphere due to the shrinkage during the process of calcination. The representative TEM image of TiO2-xhollow microsphere presented in Fig. 1d.Fig. 1d reveals a hollow-like structure of TiO2spheres with a diameter around 240 nm, which is in a good correspondence with the result of SEM. It can be observed that the shell of the TiO2-xhollow microsphere is composed of nanoparticle. From Fig. 1c,the defective TiO2-xsamples are approximately spherical nanoparticles with an average diameter of about 50 nm.

    3.1.2 Structure characterization

    Fig. 2 displays the XRD patterns of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere samples. As shown in Fig. 2, all of the diffraction peaks of TiO2and TiO2hollow microsphere samples are assigned to the crystal phases of anatase TiO2(JCPDS Card No. 21-1272). The mainly diffraction peaks of TiO2-xand TiO2-xhollow microsphere samples are assigned to the crystal phases of rutile TiO2(JCPDS Card No.21-1276). Besides, the peak at 25.3° and 48.1° ascribing to the crystal phases of anatase are also observed, which implies the existence of rutile phase with a small fraction of anatase phase in TiO2-xand TiO2-xhollow microsphere samples. And this suggests that the process of calcined at 550 °C in an H2atmosphere changes the crystal phase.

    Structural properties of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere samples were further examined by measuring Raman scattering. The five Raman-active modes (140, 193, 393, 512 and 636 cm-1) of anatase phase33,17,18are detected in the four samples shown in Fig. 3a. TiO2-xand TiO2-xhollow microsphere samples also show rutile phase Raman-active modes (239, 436 and 605 cm-1)18. This is consistent with the results characterized by XRD. Compared with TiO2and TiO2hollow microsphere, TiO2-xand TiO2-xhollow microsphere display a varying degree of blueshift in Raman bands (from 140 to 144 cm-1for TiO2-xand from 140 to 146 cm-1for TiO2-xhollow microsphere) indicating that the original symmetry of TiO2lattice is broken down due to the oxygen vacancies formed by calcined at 550 °C in an H2atmosphere19.

    Fig. 2 XRD patterns of TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere.

    Fig. 3 (a) Raman spectra of TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere, and (b) ESR spectra of TiO2,TiO2-x and TiO2-x hollow microsphere.

    The presence of oxygen vacancies in the TiO2-xand TiO2-xhollow microspheres is further supported by ESR spectroscopy.Fig. 3b shows the ESR spectrum of TiO2, TiO2-xand TiO2-xhollow microsphere. From Fig. 3b, TiO2-xand TiO2-xhollow microspheres show a very strong ESR signal at g-value of 2.003 caused by electrons trapped on surface oxygen vacancies indicating the presence of oxygen vacancies20. However, the representative signal of Ti3+at g-value of 1.9417,21is not appeared.

    In order to further investigate the surface chemical composition and bonding configuration, the TiO2, TiO2-xand TiO2-xhollow microsphere were characterized by XPS. Fig. 4a shows two strong peaks with slightly difference for TiO2, TiO2-xand TiO2-xhollow microsphere, respectively. The two strong peaks are assigned to the binding energy of the Ti 2p1/2and Ti 2p3/2electrons corresponded to oxidation state of Ti4+17,19. The Ti 2p signals are highly symmetric without shoulders appeared at the lower energy side suggesting that Ti3+does not exist in TiO2-xand TiO2-xhollow microsphere21. As reported, the reduction of TiO2is usually accompanied by the appearance of Ti3+species18,19,34. That the ESR and XPS results do not suggest that Ti3+do exist in TiO2-xand TiO2-xhollow microsphere may be for the extremely low defect concentration because of the hydrogen reduction process occurring mainly on the surface of TiO2. As shown in Fig. 4b, the O 1s primary spectrum peaks for TiO2, TiO2-xand TiO2-xhollow microsphere are wide and asymmetric and can be fitted by three components located around 529.4, 531.9 and 533.4 eV, respectively. The high binding energy component is usually attributed to the presence of surface-adsorbed molecular water H2O. The low binding energy component is attributed to surface Ti-O-Ti(OTi). The medium binding energy component is associated with surface hydroxylation35,36.

    Fig. 4 XPS analysis of the TiO2, TiO2-x and TiO2-x hollow microsphere: (a) Ti 2p and (b) O 1s.

    Fig. 5a, b show the N2adsorption-desorption isotherms and corresponding Barrett-Joyner-Halenda (BJH) pore size distribution plots to further investigate the porous nature and the specific surface area of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere samples. The inset shows magnified view for Barrett-Joyner-Halenda (BJH) pore size distribution plots of TiO2hollow microsphere and TiO2-xhollow micro sphere samples. As shown in Fig. 5a, according to IUPAC classification, the isotherms of TiO2and TiO2-xsamples show a shape close to type IV containing a hysteresis loop. The hysteresis loop shows a mixed feature of type H1 and H2 corresponding to mesopores. The isotherms of TiO2hollow microsphere and TiO2-xhollow microsphere samples exhibit a type IV isotherm with a type H3 hysteresis loop in the relative pressure range of 0.8-1.0 corresponding to slit-shaped pores37.As shown in Fig. 5b, most of the pores are around 13.9 nm for the TiO2and TiO2-xsamples, and there is a little peak at about 20 nm for TiO2hollow microsphere and TiO2-xhollow microsphere. This suggests that TiO2hollow microsphere and TiO2-xhollow microsphere samples mainly contain slit-shaped pores between nanoparticles, which aggregate into a microsphere. The results for each BET analysis are listed in Table 1. As shown in Table 1, the BET surface area of hollow microsphere increases from 46.06 m2·g-1(TiO2) to 63.34 m2·g-1(TiO2hollow microsphere) and from 48.98 m2·g-1(TiO2-x) to 64.28 m2·g-1(TiO2-xhollow microsphere), suggesting that the shape of hollow microsphere can increase the specific surface area and make the defective TiO2-xhollow microsphere suitable for photocatalysis application.

    Fig. 5 (a) N2 absorption-desorption isotherms and (b) pore size distributions of TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere samples. The inset shows magnified view for pore size distribution plots of TiO2 hollow microsphere andTiO2-x hollow microsphere samples.

    Table 1 Summary of calculated data of samples

    3.1.3 Photophysical properties

    The optical properties of as-prepraed samples were characterized by UV-visible DRS. As shown in Fig. 6a, TiO2and TiO2hollow microsphere only have the photoresponsiveness in the ultraviolet region at 200-400 nm. TiO2-xand TiO2-xhollow microsphere have also exhibited strong absorption peaks in the ultraviolet region. In the visible region with a wavelength of 400-800 nm, the values of absorbance are about 35% for TiO2-xand in the range of 40%-50% for TiO2-xhollow microsphere,indicating that TiO2-xand TiO2-xhollow microsphere have a certain absorption capacity in visible regions.

    Fig. 6 (a) UV-Vis DRS spectra and (b) (αhv)1/2 vs hv plots for band-gap calculations of TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere.

    Kubelka-Munk function by the linear equation (αhv)1/2= A(hv -Eg) is applied to calculate the band gap (Eg) of the semiconductors, where α, h, v, A and Egare the absorption coefficient, Planck constant, light frequency, a constant and band gap energy, respectively. Constant n is 1/2 for TiO238. The calculating results are shown in Fig. 6b. From Fig. 6b, the values of band gap of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere are obtained and listed in Table 1.

    As shown in Table 1, the values of band gap of TiO2-xand TiO2-xhollow microsphere are lower than that of TiO2and TiO2hollow microsphere, respectively. This is for the reason that the oxygen vacancy can generate the electronic states vacancy band between the valence band and the conduction band of pure TiO217.39, which decreases the values of band gap. As a result,TiO2-xand TiO2-xhollow microsphere can be excited by visible light.

    3.1.4 Photoelectrochemical properties

    Fig. 7 shows Mott-Schottky plots of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere. According to the Mott-Schottky equation, the flat band potentials of TiO2,TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere are obtained. Then the conduction band potential (ECB) can be calculated according to the flat band potentials36, and the valence band potential (EVB) can also be calculated according to the values of conduction band potential and band gap. All of the values of ECBand EVBof as-prepared four samples are listed in Table 1.

    Fig. 7 Mott-Schottky cures for (a)TiO2 and TiO2 hollow microsphere and (b) TiO2-x and TiO2-x hollow microsphere film in 0.1 mol·L-1 Na2SO4 solution (f = 500 Hz).

    Fig. 8a shows the transient photocurrent response plots of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere. Blank experiments conducted on bare ITO produce no obvious photocurrent under similar illumination conditions.The photocurrent has a sequence as follows: TiO2-xhollow microsphere > TiO2-x> TiO2hollow microsphere > TiO2. This implies that TiO2with oxygen vacancies deposited on the ITO electrode more effectively transfers charge to the electrode surface under illumination than pure TiO2. The TiO2-xhollow microsphere/ITO electrode exhibits a highest photocurrent among the samples.

    The electrochemical impedance spectra (EIS) of the samples were measured to illustrate the transferring ability and separation efficiency of photogenerated charge. Fig. 8b shows the EIS Nyquist plots of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere. The smaller radius of the arc on the EIS spectra reveals the better separation efficiency of photogenerated electron-hole pairs. The arc semicircle diameter of the four samples is in the order of TiO2> TiO2hollow microsphere > TiO2-x> TiO2-xhollow microsphere, indicating the charge transferring resistance is in the order of TiO2> TiO2hollow microsphere > TiO2-x> TiO2-xhollow microsphere40.The arc semicircles of TiO2-xand TiO2-xhollow microsphere samples significantly decrease revealing an obviously decreasing of the electron-hole separation resistance after forming oxygen vacancies. TiO2-xhollow microsphere displays the smallest arc semicircle suggesting the smallest charge transferring resistance. This result indicates that TiO2with oxygen vacancies efficiently enhances the separation efficiency of photogenerated electron-hole pairs.

    Fig. 8 (a) Transient photocurrent response plots and (b) Nyquist plots of TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere in 0.1 mol·L-1 Na2SO4 aqueous solution.

    3.2 Photocatalytic properties

    3.2.1 Photocatalytic degradation of methylene blue

    The photocatalytic activities of TiO2, TiO2-x, TiO2hollow microsphere and TiO2-xhollow microsphere were evaluated by photocatalytic decomposition of MB in aqueous solution. Fig. 9a shows the photocatalytic degradation curves of MB over 0.2 mg?mL-1of as-prepared samples. TiO2and TiO2hollow microsphere have the poorer photocatalytic activity due to the large band gap making their photoresponsiveness only in the UV range. About 12%-15% of the MB molecules are adsorbed by TiO2-xand TiO2-xhollow microsphere upon stirring for 90 min in the dark. The activity of TiO2-xhollow microspheres is higher than that of TiO2-x. And the degradation rate over it reaches 92.5% under visible light irradiation for 420 min.

    Fig. 9b shows the UV-Vis spectra of MB solution (10 mg·L-1)by TiO2-xhollow microsphere (0.2 mg·mL-1) at different irradiation times. From Fig. 9b, MB has four absorption peaks centered at 247, 292, 614 and 664 nm. The absorbance at the four absorption peaks gradually decreases with the increasing of the time, suggesting the MB has been oxidized.

    Fig. 9 (a) Photocatalytic degradation curves of MB (10 mg·L-1)over TiO2, TiO2-x, TiO2 hollow microsphere and TiO2-x hollow microsphere at a catalyst loading of 0.2 mg?mL-1; (b) UV-Vis absorption spectra of the MB solution by TiO2-x hollow microsphere.

    Considering all the above Raman and EPR results, the photocatalytic performance of TiO2-xand TiO2-xhollow microsphere under visible light irradiation can benefit from the presence of oxygen vacancies on the surface, which increases the absorption of visible light by providing inter-band gap states41,42.The oxygen vacancies might cause the generation of Ti3+and bound electrons on Ti4+18,19,34, although the ESR and XPS results do not suggest that Ti3+exists in TiO2-xand TiO2-xhollow microsphere for the extremely low concentration. The synergistic presence of oxygen vacancy and surface disorder makes TiO2-xand TiO2-xhollow microsphere exhibit good photocatalytic activity under visible light irradiation18. The reason for that the activity of TiO2-xhollow microsphere is better than that of TiO2-xis ascribed to the formation of hollow structures. On the one hand, TiO2-xhollow microspheres have a higher specific surface area (shown in Table 1), which increases not only the adsorption of MB (shown in Fig. 9a) but also the number of active sites for catalytic reaction. One the other hand,from Fig. 3b, the ESR signal of TiO2-xhollow microspheres at g-value of 2.003 is stronger than that of TiO2-x, indicating the amount of oxygen vacancies in TiO2-xhollow microsphere is larger than that in TiO2-x. This is for the reason that the formation of hollow microspheres increases the contact areas between H2and TiO2facilitating the hydrogen reduction reaction. As a result, the more oxygen vacancies are formed.

    3.2.2 Photocatalytic mechanism

    A photocatalytic degradation process over catalysts usually includes two steps. One step is the photoinduced generation of electrons and holes due to excitation of electrons from valence band to conductance band upon irradiation. The other is the formed active species such as electrons, holes, superoxide radicals (?O2-) and hydroxyl radicals (?OH) attacking on MB. In order to figure out the contributions of the active species h+, ?O2-and ?OH, isopropanol and methanol have been used as the best hydroxyl radical and hole scavenger43, because they have the high-rate-constant to react with hydroxyl radical and hole,repectively.

    Form Fig. 10a, the extensive inhibitions in MB degradation are observed when 10% (volume fraction, φ) isopropanol is added to the MB solution to quench ?OH, which suggests that?OH plays an essential role in degradation of MB. The degradation rate of MB containing 10% (φ) methanol to quench the photogenerated holes is smaller than that of MB containing 10% (φ) isopropanol implying that h+can oxidize MB. When both 10% (φ) isopropanol and 10% (φ) methanol are added to the MB solution to quench h+and ?OH, the degradation rate of MB is close to that of MB containing 10% (φ) methanol at the first 180 min. This implies that ?OH radicals are produced from the photogenerated holes. But the degradation rate of MB containing 10% (φ) isopropanol and 10% (φ) methanol is smaller than that of MB containing 10% (φ) methanol after 180 min. To investigate the reason for the slightly decreasing of degradation rate, the photocatalyst after photocatalytic reaction was collected by centrifugation and washed with deionized water for several times. The FTIR spectra of TiO2-xhollow microsphere before and after used were recorded between 500 and 4000 cm-1. As shown in Fig. 10b, the evidence for the existence of the oxidation intermediate product on the surface of TiO2-xhollow microsphere after reaction in MB aqueous solution containing 10% (φ) isopropanol and 10% (φ) methanol comes from FTIR spectra. This implies that the slightly decreasing of degradation rate after 180 min is caused by that the part of the oxidation intermediate product adsorbed on the surface of TiO2-xhollow microsphere inhibits the absorption of light by the photocatalyst surface leading to the decreasing of the amount of photoinduced generation of electrons and holes.

    Fig. 10 (a) Effects of different scavenger addition in the photocatalytic degradation of MB; (b) FTIR spectra of TiO2-x hollow microsphere before and after photocatalytic reaction.

    Therefore the mechanisms occurring on TiO2-xhollow microsphere surfaces under visible light during MB photodegradation are summarized as follows44. When light interacts with the photocatalyst to generate electrons and holes(Eq. (2)), the holes can react with H2O to generate hydroxyl radicals ?OH because the holes locate at more positive potential positions than the H2O/?OH(E0(H2O/?OH) = +1.99 eV/NHE)45,46(Eq. (3)). The electrons in conduction band can be captured by oxygen in the system to produce reactive superoxide radical ?O2-(Eq. (4)). And the MB molecules are degradated by h+, ?O2-and?OH (Eqs. (5-7)). These reactions are expressed as follows:

    3.2.3 Effect of initial MB concentration

    The effects of different initial MB concentration on the photocatalytic performance over TiO2-xhollow microsphere (0.2 mg·mL-1) were evaluated under visible light irradiation. As show in Fig. 11a, the degradation rate decreases with increasing MB concentration from 2 to 12 mg·L-1. This is for the reason that a significant amount of visible light absorbed by MB molecules rather than by TiO2-xhollow microsphere leading to the decreasing of the amount of photoinduced generation of electrons and holes30.

    The kinetics of photocatalytic degradation of MB usually can be depicted by Langmuir-Hinshelwood model:

    where kris the photodegradation rate of MB, t is the illumination time and K is the adsorption coefficient of MB. The Langmuir-Hinshelwood model can be simplified to a pseudo-first-order kinetic equation:

    where kappis the apparent rate constant of the pseudo-first-order reaction. Fig.11b shows the plot of ln(c0/c) vs irradiation time t for different initial concentration of MB. As shown in Fig. 11b,it is clear that the data estimated by Eq. (9) do not fit well with the experimental data with R2values from 0.94 to 0.99. This is for the reason that the pseudo-first-order reaction model does not consider the effect of visible light absorbed by MB molecules.The values of kappfor the photocatalytic degradation reactions of MB over TiO2-xhollow microsphere can be estimated from the linear fitting of ln(c0/c) versus t, shown in Fig. 11c. From Fig.11c, the values of kappdecreases with increasing the initial concentration of MB. It is reported that kappis directly proportional to photon fluence and can be estimated by the Lambert-Beer equation:

    Fig. 11 (a) Photocatalytic degradation of MB over TiO2-x hollow microsphere at different initial concentration of MB with a catalyst loading of 0.2 mg·mL-1; (b) The plot of ln(c0/c) vs time (t);(c) The relation between c and rate constant.

    where I0is the incident light intensity. The coefficient β is determined by Lambert-Beer equation.

    Substituting Eq. (10) into Eq. (9):

    Fig. 12 (a) Recycled testing of photocatalytic activity over 0.2 mg·mL-1 of TiO2-x hollow microsphere; (b) Transient photocurrent response plots before and after photocatalytic reaction.

    It is difficult to obtain the solution of Eq. (11). So, Runge-Kutta method was used to obtain the numerical solution of Eq.(11). Fig. 11a shows the calculated results by Eq. (11) at different initial concentration of MB. It is clear that the data estimated by Eq. (11) fit well with the experimental data. The values of the rate constant kaare also shown in Fig. 11c. From Fig. 11c, it can be seen that kappdecreases with the increasing of initial concentration of MB, while kadoes not change with the initial concentration of MB. This indicates that kappis affected by the light absorption properties of MB because the increasing of initial concentration of MB will lead to the increasing of the amount of visible light absorbed by MB molecules rather than by TiO2-xhollow microsphere. This results in a reducing in the TiO2-xhollow microsphere photocatalytic activity and the rate constant kapp30. The rate constant kais different from kapp, which does not relate to the light absorption properties of MB. The reason is that the effect of visible light absorbed by MB molecules has been represented by Eq. (11). The result shows that Eq. (11) can estimate the photocatalytic degradation process of dye more preferable than pseudo-first-order kinetic equation.The rate constant kadescribes the process of photocatalytic degradation of dye more effectively because it does not depend on the initial concentration of dye.

    3.3 Stability of TiO2-x hollow microsphere

    The recyclability of the photocatalysts is also an important factor to measure their practical application potential. The stability of TiO2-xhollow microsphere was evaluated by recycling test of photocatalytic activity over 0.2 mg·mL-1of TiO2-xhollow microsphere under visible light irradiation. As shown in Fig. 12a, the degradation efficiency of MB decreases from 92.5% to 87.1% after four recycles, and the photocurrent of TiO2-xhollow microsphere after four cycles is close to that before used shown in Fig. 12b. All these indicate a good stability of TiO2-xhollow microsphere during the photocatalytic reaction.But the color of the catalyst is slight blue after the reaction indicating that MB has been adsorbed on the surface of TiO2-xhollow microsphere. The slight decrease in the photodegradation rate may result from the MB adsorbed on the surface of the catalyst reducing the absorption amount of light by TiO2-xhollow microsphere.

    4 Conclusions

    The defective TiO2-xhollow microspheres were prepared by reducing TiO2hollow microspheres in an H2atmosphere. The photocatalytic performances of as-prepared samples were evaluated based on photocatalytic degradation of MB solution under visible light. The mechanisms for enhancing the photocatalytic activity and the degradation of MB occurring on the TiO2-xhollow microspheres surface were discussed, and the kinetic model of photocatalytic degradation of dye was proposed. The results show that the higher photocatalytic performance of TiO2-xhollow microsphere should benefit from the presence of oxygen vacancies on the surface. Compared to TiO2-x, the better activity of TiO2-xhollow microsphere is ascribed to the formation of hollow structures with more active sites and higher specific surface area. TiO2-xhollow microsphere also exhibits the good stability, which can be recycled several times. The MB molecules are photodegraded by the photogenerated h+, ?O2-and ?OH, and ?OH caused only by photogenerated holes plays an essential role in degradation of MB. Compared to the pseudo-first-order kinetic model, the proposed kinetic model of photocatalytic degradation of dye gives a more realistic description in the process of photocatalytic degradation of MB because the calculating results fit better with the experimental data. The rate constant in the proposed model describes the process of photocatalytic degradation of dye more effectively because it does not depend on the initial concentration of dye.

    猜你喜歡
    林業(yè)大學微球光催化
    《南京林業(yè)大學學報(自然科學版)》征稿簡則
    《南京林業(yè)大學學報(自然科學版)》征稿簡則
    《南京林業(yè)大學學報(自然科學版)》征稿簡則
    《南京林業(yè)大學學報(自然科學版)》征稿簡則
    懸浮聚合法制備窄尺寸分布聚甲基丙烯酸甲酯高分子微球
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    可見光光催化降解在有機污染防治中的應用
    TiO2/PPy復合導電微球的制備
    可吸收止血微球在肝臟部分切除術中的應用
    91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| 亚洲av免费高清在线观看| 久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 国产精品一区二区在线不卡| 婷婷色综合www| 久久精品久久久久久久性| 国产免费又黄又爽又色| 两个人的视频大全免费| 欧美精品国产亚洲| 成年人午夜在线观看视频| 精品亚洲成a人片在线观看| 日韩熟女老妇一区二区性免费视频| 日本av免费视频播放| 久久ye,这里只有精品| 最后的刺客免费高清国语| 中文乱码字字幕精品一区二区三区| 午夜福利影视在线免费观看| av电影中文网址| 狂野欧美激情性bbbbbb| 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 国产在线免费精品| 久久人妻熟女aⅴ| av播播在线观看一区| 亚洲综合色惰| 91久久精品国产一区二区三区| 免费观看无遮挡的男女| 老司机影院成人| 热re99久久精品国产66热6| 久久精品国产鲁丝片午夜精品| 久久久国产欧美日韩av| 久久国产精品男人的天堂亚洲 | 亚洲国产成人一精品久久久| 中文字幕制服av| 美女视频免费永久观看网站| 亚洲av综合色区一区| 丝袜在线中文字幕| 亚洲人成网站在线播| 另类精品久久| 中文字幕亚洲精品专区| 老熟女久久久| 如何舔出高潮| 精品亚洲成国产av| 午夜福利视频在线观看免费| 大又大粗又爽又黄少妇毛片口| 国产色爽女视频免费观看| av在线app专区| 丁香六月天网| 少妇被粗大的猛进出69影院 | 免费人成在线观看视频色| 亚洲第一区二区三区不卡| av免费在线看不卡| 亚洲国产色片| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 亚洲内射少妇av| 人妻少妇偷人精品九色| 99久久人妻综合| 91精品一卡2卡3卡4卡| 黄色怎么调成土黄色| 最近手机中文字幕大全| 99热全是精品| 人妻 亚洲 视频| 国产熟女欧美一区二区| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 中文字幕最新亚洲高清| 久久影院123| 成人漫画全彩无遮挡| 国产亚洲午夜精品一区二区久久| 中国国产av一级| 免费观看性生交大片5| 欧美日韩国产mv在线观看视频| 热re99久久国产66热| 中文乱码字字幕精品一区二区三区| 日韩 亚洲 欧美在线| 特大巨黑吊av在线直播| 精品亚洲成国产av| 久久精品熟女亚洲av麻豆精品| 国产精品不卡视频一区二区| 五月开心婷婷网| 亚洲av国产av综合av卡| 国产男女内射视频| 国产69精品久久久久777片| 亚洲久久久国产精品| 街头女战士在线观看网站| 亚洲情色 制服丝袜| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| av免费在线看不卡| 一级黄片播放器| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 国模一区二区三区四区视频| 日韩欧美一区视频在线观看| 成人黄色视频免费在线看| 久久99热这里只频精品6学生| 特大巨黑吊av在线直播| 九九在线视频观看精品| 欧美另类一区| 婷婷色av中文字幕| 高清午夜精品一区二区三区| 男女国产视频网站| 亚洲人成网站在线播| 久久久久久久久久人人人人人人| 亚洲精品色激情综合| 亚洲国产色片| 97超碰精品成人国产| 成人手机av| 校园人妻丝袜中文字幕| 欧美精品高潮呻吟av久久| 交换朋友夫妻互换小说| 成人18禁高潮啪啪吃奶动态图 | 少妇的逼水好多| 国产精品国产三级专区第一集| 丰满迷人的少妇在线观看| 嘟嘟电影网在线观看| 波野结衣二区三区在线| 亚洲综合色网址| 亚洲人与动物交配视频| 国产成人精品在线电影| 国产男女内射视频| 亚洲人成网站在线播| 日本免费在线观看一区| 在线观看国产h片| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 九色亚洲精品在线播放| 亚洲中文av在线| 亚洲av.av天堂| 在现免费观看毛片| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 国产在视频线精品| av专区在线播放| 在线观看免费日韩欧美大片 | 国产探花极品一区二区| 中文字幕人妻丝袜制服| 久久久久精品性色| 乱人伦中国视频| 91精品三级在线观看| 大香蕉久久成人网| 免费av中文字幕在线| 人妻少妇偷人精品九色| 伊人久久国产一区二区| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 高清黄色对白视频在线免费看| 99热国产这里只有精品6| 久久久久久久久大av| xxx大片免费视频| 精品少妇内射三级| 欧美xxxx性猛交bbbb| 蜜桃国产av成人99| 日韩一本色道免费dvd| 男的添女的下面高潮视频| 亚洲国产精品专区欧美| 亚洲综合精品二区| 久久久a久久爽久久v久久| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 少妇人妻久久综合中文| 麻豆精品久久久久久蜜桃| 亚洲av二区三区四区| 亚洲内射少妇av| 成人二区视频| 午夜福利在线观看免费完整高清在| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 亚洲第一区二区三区不卡| 久久影院123| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 综合色丁香网| 国产成人精品一,二区| 亚洲精品久久久久久婷婷小说| 高清不卡的av网站| 欧美变态另类bdsm刘玥| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 黑人猛操日本美女一级片| 99热这里只有精品一区| freevideosex欧美| 欧美日韩国产mv在线观看视频| 午夜视频国产福利| 99热网站在线观看| 亚洲成人一二三区av| 全区人妻精品视频| 久久影院123| av黄色大香蕉| 午夜日本视频在线| 国内精品宾馆在线| 亚洲中文av在线| 日本猛色少妇xxxxx猛交久久| 香蕉精品网在线| 久久精品熟女亚洲av麻豆精品| 欧美日韩成人在线一区二区| 美女cb高潮喷水在线观看| 日韩成人伦理影院| 最近最新中文字幕免费大全7| 亚洲国产色片| 黄色配什么色好看| 国产亚洲最大av| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 日日摸夜夜添夜夜添av毛片| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| av视频免费观看在线观看| 婷婷色麻豆天堂久久| 国国产精品蜜臀av免费| 啦啦啦中文免费视频观看日本| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| 日本av免费视频播放| 91精品国产国语对白视频| 九色亚洲精品在线播放| 久久久久久久久久成人| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 国产乱人偷精品视频| 国产精品 国内视频| 久久久精品94久久精品| 婷婷成人精品国产| 女性生殖器流出的白浆| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 成人手机av| 国产成人免费无遮挡视频| videos熟女内射| 免费大片黄手机在线观看| 蜜臀久久99精品久久宅男| av免费在线看不卡| 日韩成人av中文字幕在线观看| 少妇 在线观看| 亚洲第一av免费看| 日本免费在线观看一区| 3wmmmm亚洲av在线观看| 视频中文字幕在线观看| 亚洲精品第二区| 亚洲av成人精品一区久久| 你懂的网址亚洲精品在线观看| 日日撸夜夜添| 黄色毛片三级朝国网站| 国产视频内射| 免费看不卡的av| 日韩一本色道免费dvd| 日韩强制内射视频| 亚洲美女搞黄在线观看| 最黄视频免费看| 日韩 亚洲 欧美在线| 熟女电影av网| 男男h啪啪无遮挡| 中国美白少妇内射xxxbb| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 国产 一区精品| 简卡轻食公司| 高清黄色对白视频在线免费看| 国产成人a∨麻豆精品| 蜜桃在线观看..| 亚洲综合色惰| 亚洲av在线观看美女高潮| 国产精品无大码| 国内精品宾馆在线| 久久女婷五月综合色啪小说| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 国产在线一区二区三区精| 制服诱惑二区| 99热这里只有是精品在线观看| 人成视频在线观看免费观看| 日本欧美国产在线视频| 免费观看av网站的网址| 春色校园在线视频观看| 国产高清不卡午夜福利| av卡一久久| 伦精品一区二区三区| 久久久精品94久久精品| 日韩欧美一区视频在线观看| 免费久久久久久久精品成人欧美视频 | 美女主播在线视频| 成人二区视频| 制服诱惑二区| 亚洲成人一二三区av| 亚洲一区二区三区欧美精品| 欧美精品亚洲一区二区| 午夜福利网站1000一区二区三区| 在现免费观看毛片| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 久久精品人人爽人人爽视色| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 在线观看美女被高潮喷水网站| 成人午夜精彩视频在线观看| 精品久久久久久久久av| 久久这里有精品视频免费| 97超视频在线观看视频| 一个人免费看片子| 97超视频在线观看视频| 亚洲欧美色中文字幕在线| 亚洲综合色惰| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 国产欧美日韩一区二区三区在线 | 亚洲精品一区蜜桃| 国产伦精品一区二区三区视频9| 成人二区视频| 亚洲精品日韩av片在线观看| 国产精品蜜桃在线观看| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 国产精品无大码| 人妻系列 视频| 日韩av在线免费看完整版不卡| a级毛片黄视频| 高清午夜精品一区二区三区| 免费观看的影片在线观看| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 少妇被粗大的猛进出69影院 | 日本av手机在线免费观看| 熟女av电影| 日韩强制内射视频| 久久av网站| 国产精品一区二区在线不卡| 色5月婷婷丁香| 青春草亚洲视频在线观看| 亚洲精品久久成人aⅴ小说 | 老女人水多毛片| 草草在线视频免费看| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 免费看av在线观看网站| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 内地一区二区视频在线| 亚洲国产av新网站| 国产亚洲精品第一综合不卡 | 春色校园在线视频观看| 人妻夜夜爽99麻豆av| 五月天丁香电影| 久久人妻熟女aⅴ| 美女国产视频在线观看| 免费黄频网站在线观看国产| 欧美精品国产亚洲| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| av在线播放精品| 大香蕉久久网| 嫩草影院入口| av.在线天堂| 中文字幕精品免费在线观看视频 | 黑人高潮一二区| 在线观看人妻少妇| 2018国产大陆天天弄谢| 国产亚洲精品第一综合不卡 | 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 天堂中文最新版在线下载| 在现免费观看毛片| 亚洲激情五月婷婷啪啪| 另类精品久久| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 精品午夜福利在线看| 久久狼人影院| 久久久久人妻精品一区果冻| 欧美激情 高清一区二区三区| 99九九线精品视频在线观看视频| 久久久久国产网址| 欧美日韩国产mv在线观看视频| 高清午夜精品一区二区三区| 久久久久精品性色| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 欧美精品一区二区免费开放| 狠狠精品人妻久久久久久综合| 亚洲怡红院男人天堂| videos熟女内射| 大码成人一级视频| av视频免费观看在线观看| 久久影院123| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 久久精品人人爽人人爽视色| 欧美 亚洲 国产 日韩一| 大话2 男鬼变身卡| 99热全是精品| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 精品午夜福利在线看| 日韩欧美一区视频在线观看| 国产综合精华液| 精品酒店卫生间| 国产免费一区二区三区四区乱码| 三级国产精品欧美在线观看| 一边摸一边做爽爽视频免费| 看非洲黑人一级黄片| 亚洲精品一区蜜桃| 久久久国产一区二区| 热99久久久久精品小说推荐| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 99久久精品国产国产毛片| 久久久久久久久久久久大奶| 亚洲av综合色区一区| 成人国产麻豆网| 在线观看人妻少妇| 欧美少妇被猛烈插入视频| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 亚洲欧美精品自产自拍| 99热全是精品| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 黑人猛操日本美女一级片| 国产精品99久久久久久久久| 一区二区三区免费毛片| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 69精品国产乱码久久久| 久久久国产欧美日韩av| 伦理电影免费视频| 日韩,欧美,国产一区二区三区| 一区二区三区免费毛片| 国产日韩欧美视频二区| 日本黄大片高清| 欧美xxxx性猛交bbbb| 亚洲色图 男人天堂 中文字幕 | 日韩电影二区| 9色porny在线观看| 国产精品99久久久久久久久| 99九九在线精品视频| 国产女主播在线喷水免费视频网站| 国产乱来视频区| 五月伊人婷婷丁香| 欧美精品高潮呻吟av久久| 伦理电影免费视频| 成人免费观看视频高清| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| 18禁观看日本| 国产亚洲欧美精品永久| 欧美人与善性xxx| 一区二区三区免费毛片| 22中文网久久字幕| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄| 国产色婷婷99| 综合色丁香网| 国产精品久久久久久久电影| 一边摸一边做爽爽视频免费| 国产精品秋霞免费鲁丝片| 大又大粗又爽又黄少妇毛片口| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 丝袜在线中文字幕| 婷婷色综合大香蕉| 欧美亚洲日本最大视频资源| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 日本黄大片高清| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| 亚洲婷婷狠狠爱综合网| 久久久久国产网址| 免费观看性生交大片5| 一个人看视频在线观看www免费| 国产成人av激情在线播放 | 91午夜精品亚洲一区二区三区| 简卡轻食公司| 亚洲av欧美aⅴ国产| 曰老女人黄片| 美女大奶头黄色视频| 国产 精品1| 中文天堂在线官网| a 毛片基地| 一级,二级,三级黄色视频| a 毛片基地| a级毛片在线看网站| av女优亚洲男人天堂| 成人毛片a级毛片在线播放| a级毛片黄视频| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| 国产精品 国内视频| 99热这里只有是精品在线观看| 亚洲伊人久久精品综合| 97超碰精品成人国产| 久久午夜福利片| 日韩av在线免费看完整版不卡| 国产爽快片一区二区三区| 亚洲内射少妇av| 黄色一级大片看看| 国产片特级美女逼逼视频| 欧美日韩在线观看h| tube8黄色片| 久久影院123| 人体艺术视频欧美日本| 国产精品一二三区在线看| 国产成人免费观看mmmm| 尾随美女入室| 免费观看的影片在线观看| 两个人的视频大全免费| 午夜激情福利司机影院| 亚洲天堂av无毛| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲日产国产| kizo精华| 日本爱情动作片www.在线观看| 国产精品久久久久久久电影| 妹子高潮喷水视频| 国产欧美另类精品又又久久亚洲欧美| av视频免费观看在线观看| 18禁在线无遮挡免费观看视频| 母亲3免费完整高清在线观看 | 啦啦啦视频在线资源免费观看| 天天操日日干夜夜撸| 国产爽快片一区二区三区| 黑人猛操日本美女一级片| 波野结衣二区三区在线| 日韩一区二区三区影片| 亚洲精品乱久久久久久| 国产成人freesex在线| av女优亚洲男人天堂| 成人国产麻豆网| 国产精品国产av在线观看| 午夜老司机福利剧场| 成人手机av| 欧美一级a爱片免费观看看| 久久精品久久精品一区二区三区| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃 | 国产精品国产三级国产专区5o| 99久久中文字幕三级久久日本| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 国产一区二区在线观看日韩| 午夜视频国产福利| 一区二区三区乱码不卡18| 如日韩欧美国产精品一区二区三区 | 精品一品国产午夜福利视频| 男男h啪啪无遮挡| 久久久午夜欧美精品| 一个人免费看片子| av在线播放精品| 日韩av不卡免费在线播放| 涩涩av久久男人的天堂| 校园人妻丝袜中文字幕| 美女大奶头黄色视频| 久久精品国产鲁丝片午夜精品| 美女xxoo啪啪120秒动态图| 国产免费福利视频在线观看| 亚洲人成网站在线播| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 一边摸一边做爽爽视频免费| 黑人高潮一二区| 大香蕉久久网| 久久精品国产亚洲网站| 大码成人一级视频| 伦理电影大哥的女人| 国产日韩欧美视频二区| 777米奇影视久久| 性高湖久久久久久久久免费观看| 亚洲精品成人av观看孕妇| 日韩三级伦理在线观看| 久久鲁丝午夜福利片| 熟女人妻精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 18+在线观看网站| 2021少妇久久久久久久久久久| 观看av在线不卡| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 99热国产这里只有精品6| a级片在线免费高清观看视频| 国内精品宾馆在线| 草草在线视频免费看| 亚洲久久久国产精品| 国产黄色视频一区二区在线观看| 国产成人91sexporn| 国产一区二区三区综合在线观看 |