俞準(zhǔn) 周亞蘋 李郡 黃余建 張國強
摘 ? 要:準(zhǔn)確預(yù)測建筑用戶在室行為可顯著提高建筑能耗模擬精度,并進一步幫助建筑設(shè)計及運行控制優(yōu)化. 當(dāng)前進行在室行為預(yù)測時所采用的主要是基于隱馬爾可夫鏈方法的數(shù)學(xué)模型,該模型考慮了在室行為的時間關(guān)聯(lián)性,可平穩(wěn)有效地預(yù)測在室行為. 然而現(xiàn)有隱馬爾科夫模型難以準(zhǔn)確描述在室行為動態(tài)變化規(guī)律以及在室行為與可觀測參數(shù)之間的關(guān)聯(lián),降低了模型預(yù)測精度. 針對該問題,本文提出一種基于狀態(tài)轉(zhuǎn)移的時變隱馬爾科夫模型. 該模型采用時變狀態(tài)轉(zhuǎn)移概率矩陣量化不同時刻在室行為的動態(tài)變化特征及關(guān)聯(lián),同時該模型基于狀態(tài)轉(zhuǎn)移計算可觀測參數(shù)的概率分布以定量描述在室行為對可觀測參數(shù)的影響. 本文采用比利時某辦公室在室行為數(shù)據(jù)庫進行了相關(guān)建模和驗證,結(jié)果表明該模型可更有效地捕捉在室狀態(tài)變化,從而提高了在室行為預(yù)測精度.
關(guān)鍵詞:在室行為;人行為;預(yù)測;隱馬爾可夫模型;建筑模擬
中圖分類號:TU201.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼:A
Abstract: Accurate prediction of occupancy in buildings can significantly improve the performance of building energy simulation and further facilitate building design and system operation. Considering the temporal dependency of occupancy, Hidden Markov Model has been widely used to effectively predict occupancy behavior. However, the traditional Hidden Markov model that uses time-independent transition probability matrix is difficult to accurately describe the dynamic variation of occupancy as well as its correlation with environmental parameters. Such a model would greatly reduce occupancy prediction accuracy. To address this issue, an inhomogeneous Hidden Markov Model based on state transition was proposed. In this model, time-dependent transition probability matrices were calculated to capture the temporal dependency of occupancy at different time periods. Meanwhile, probability distribution of environmental parameters was calculated based on state transition instead of state only, aiming at rationally describing the correlation between occupancy and environmental parameters. The method was applied to predict the occupancy of a Belgian office. The results demonstrated that the effectiveness of the proposed approach and the prediction accuracy were improved significantly.
Key words: occupancy;occupant behavior;prediction;hidden Markov model;building simulation
建筑用戶在室行為主要包括在室狀態(tài)和時長、用戶位置、在室人數(shù)和用戶活動[1]. 對其進行準(zhǔn)確預(yù)測并進一步與建筑能耗模擬軟件(如EnergyPlus和DeST)集成,可顯著提高建筑能耗模擬精度,同時有助于建筑性能評估和建筑系統(tǒng)運行優(yōu)化控制[2-5]. 現(xiàn)有在室行為預(yù)測方法主要是在測量多種室內(nèi)環(huán)境相關(guān)數(shù)據(jù)(如CO2濃度和溫濕度)基礎(chǔ)上,通過選取合適的環(huán)境特征參數(shù)建立相應(yīng)模型,所采用的數(shù)學(xué)方法主要是隱馬爾科夫法. 例如,Dong等人基于溫濕度、CO2濃度和噪音數(shù)據(jù),采用該方法建立了隱馬爾科夫模型(Hidden Markov Model,HMM)對辦公室的在室人數(shù)進行預(yù)測[6]. Candanedo等人基于CO2濃度、溫濕度和照度數(shù)據(jù),采用HMM對住戶的在室狀態(tài)進行預(yù)測[7]. 上述研究表明HMM通過引入狀態(tài)轉(zhuǎn)移概率矩陣參數(shù),定量描述了在室行為的時間關(guān)聯(lián)性,因此可平穩(wěn)有效地預(yù)測在室行為. 然而現(xiàn)有HMM模型還存在一定局限性,主要表現(xiàn)在以下兩點:第一,忽略了不同時刻在室行為動態(tài)變化的差異性,導(dǎo)致在室行為動態(tài)變化規(guī)律與實際情況存在較大差異;第二,無法考慮過去的在室行為對當(dāng)前可觀測的環(huán)境特征參數(shù)的影響,導(dǎo)致在基于環(huán)境數(shù)據(jù)預(yù)測在室行為時難以得到滿意的精確度.
為了解決上述問題,本文在HMM的基礎(chǔ)上,建立了一種基于狀態(tài)轉(zhuǎn)移的時變隱馬爾科夫模型(Inhomogeneous Hidden Markov Model based on State Transitions,TIHMM)對在室行為進行預(yù)測,并且采用比利時某辦公室在室行為數(shù)據(jù)庫對該預(yù)測模型進行了驗證.
1 ? 在室行為預(yù)測方法
1.1 ? TIHMM模型基本原理
3.3 ? 結(jié)果和討論
3.3.1 ? 特征參數(shù)選擇分析
表3給出了不同環(huán)境特征參數(shù)與在室狀態(tài)之間的相對信息增益計算結(jié)果. 從表中可知,CO2濃度、照度和溫度的相對信息增益較大,即這3類環(huán)境因素與在室狀態(tài)的相關(guān)性較大. 同時,相對于其他特征類型,二階差分與在室狀態(tài)相關(guān)性最小. 本文最終選擇的模型輸入特征參數(shù)包括CO2濃度的原始特征、一階差分和一階移動差分以及照度和溫度的原始特征.
3.3.2 ? 模型比較
為驗證提出方法的有效性,本文基于上述環(huán)境特征參數(shù)建立了TIHMM在室行為預(yù)測模型,并與傳統(tǒng)HMM和IHMM分別進行了比較.
圖2~圖4分別給出了采用TIHMM、IHMM和HMM預(yù)測的在室狀態(tài)變化曲線圖. 由圖可見,相對于IHMM和HMM,TIHMM的預(yù)測結(jié)果更加符合實際的在室狀態(tài)變化曲線,尤其是用戶最先到達時間和最后離開時間這兩項信息. 考慮到在進行建筑系統(tǒng)運行控制優(yōu)化時,系統(tǒng)啟停時間主要取決于用戶最先到達和最后離開時間,對這兩項信息進行準(zhǔn)確預(yù)測有助于提高系統(tǒng)運行效率,具有顯著的實際意義[16]. 從圖中還可看到,當(dāng)發(fā)生的狀態(tài)變化持續(xù)一段時間時(如圖中13:00~14:00),采用TIHMM預(yù)測的狀態(tài)變化與實際變化相同,而IHMM和HMM的預(yù)測結(jié)果均出現(xiàn)了不同程度的延遲. 這證明和IHMM以及HMM相比,TIHMM由于采用了不均勻狀態(tài)轉(zhuǎn)移概率矩陣,且同時考慮了在室狀態(tài)變化對當(dāng)前環(huán)境特征參數(shù)的影響,因此減弱了在室行為的隨機特性和環(huán)境數(shù)據(jù)的延遲特性(如用戶呼出的CO2均勻擴散到室內(nèi)需要一定響應(yīng)時間)對在室狀態(tài)預(yù)測的影響程度,從而能夠更準(zhǔn)確地反映在室狀態(tài)的動態(tài)變化規(guī)律.
值得注意的是,對8:00~10:00和12:00~13:00兩個期間出現(xiàn)的短時間在室狀態(tài)變化,TIHMM、IHMM和HMM這3種模型均未能進行有效預(yù)測. 一個可能的原因是該類變化產(chǎn)生的環(huán)境特征參數(shù)變化小,與不發(fā)生狀態(tài)變化的環(huán)境特征參數(shù)相近. 需要指出的是,在實際應(yīng)用過程中,為避免系統(tǒng)的頻繁啟停,該類預(yù)測誤差變化往往被忽略[17].
為進一步比較模型預(yù)測性能,表4給出了這3種模型的整體、“在室”狀態(tài)和“離開”狀態(tài)的預(yù)測精度. 結(jié)果表明,3種檢驗指標(biāo)下TIHMM的預(yù)測效果均為最優(yōu). 同時,3種模型對“離開”狀態(tài)的預(yù)測精度均高于對“在室”狀態(tài)的預(yù)測精度,其主要原因是在非工作時間段(如圖2~圖4中12:00~7:00),用戶在室狀態(tài)相對穩(wěn)定且均為“離開”,因此將實際“在室”狀態(tài)誤判為“離開”狀態(tài)的可能性較小;在工作時間段,由于模型難以捕捉到短時間的狀態(tài)變化,且該類變化通常是“離開”狀態(tài),因此,將實際“離開”狀態(tài)誤判為“在室”狀態(tài)的可能性較大.
4 ? 結(jié)論和未來展望
本文提出了一種基于TIHMM預(yù)測在室行為的新方法. 該方法從兩方面克服了現(xiàn)有HMM的缺陷:第一,通過采用隨模擬步長變化的狀態(tài)轉(zhuǎn)移概率矩陣,可更準(zhǔn)確地反映在室行為動態(tài)變化規(guī)律;第二,基于狀態(tài)轉(zhuǎn)移計算環(huán)境特征參數(shù)的輸出概率,從而量化了過去在室行為對當(dāng)前環(huán)境特征參數(shù)的影響. 本文采用包括環(huán)境和在室狀態(tài)數(shù)據(jù)的比利時某辦公室在室行為數(shù)據(jù)庫,分別建立了TIHMM、HMM和IHMM對在室狀態(tài)進行預(yù)測,并對這3種模型從趨勢變化和總體性能兩方面進行了比較. 結(jié)果顯示相對于其它兩種模型,TIHMM預(yù)測結(jié)果更符合實際在室狀態(tài)變化趨勢,預(yù)測精度更高.
本文研究主要針對多人單區(qū)域進行在室狀態(tài)預(yù)測,在此基礎(chǔ)上,未來應(yīng)進一步建立多人多區(qū)域的在室行為預(yù)測模型,以獲取在室人數(shù)和用戶位置等更全面的在室行為相關(guān)信息,并將其有效應(yīng)用于建筑系統(tǒng)設(shè)計及運行控制優(yōu)化中.
參考文獻
[1] ? ?YAN D,O′BRIEN W,HONG T,et al. Occupant behavior modeling for building performance simulation: Current state and future challenges[J]. Energy & Buildings,2015,107:264—278.
[2] ? ?周亞蘋,俞準(zhǔn),李郡,等. 建筑用戶在室行為測量方法及預(yù)測模型綜述[J]. 暖通空調(diào),2017,47(9):11—18.
ZHOU Y P,YU Z,LI J,et al. Review of measuring methods and prediction models of building occupancy[J]. Journal of HV&AC,2017,47(9):11—18.(In Chinese)
[3] ? ?YU Z,HAGHIGHAT F,F(xiàn)UNG B C M. Advances and challenges in building engineering and data mining applications for energy-efficient communities[J]. Sustainable Cities & Society,2016,25:33—38.
[4] ? ?GUO X,TILLER D K,HENZE G P,et al. The performance of occupancy-based lighting control systems:A review[J]. Lighting Research & Technology,2010,42(1):415—431.
[5] ? ?楊昌智,文潔,蔣新波. 熱濕環(huán)境參數(shù)對 PMV及空調(diào)能耗的影響研究[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2015,42(1):104—108.
YANG C Z,WEN J,JIANG X B. Study on the influence of thermal environmental parameters on PMV and energy consumption[J].Journal of Hunan University(Natural Sciences),2015,42(1):104—108.(In Chinese)
[6] ? ?DONG B,ANDREWS B,LAM K P,et al. An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network[J]. Energy & Buildings,2010,42(7):1038—1046.
[7] ? ?CANDANEDO L M,F(xiàn)ELDHEIM V,DERAMAIX D. A methodology based on Hidden Markov Models for occupancy detection and a case study in a low energy residential building[J]. Energy & Buildings,2017,148:327—341.
[8] ? ?GRIMMETT G R,STIRZAKER D R. Probability and random processes second edition[J]. Oxford Science Publications,1992(1):164—165.
[9] ? ?何磊,馬伯祥,宗長富,等. 基于意圖辨識的線控汽車緊急轉(zhuǎn)向控制方法[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2014,41(1):81—86.
HE L,MA B X,ZONG C F,et al. Emergency steering control based on driver steering intention recognition for steer-by-wire vehicle[J]. Journal of Hunan University(Natural Sciences),2014,41(1):81—86.(In Chinese)
[10] ?RABINER L R. A tutorial on hidden markov models and selected applications in speech recognition[J]. Readings in Speech Recognition,1990,77(2):267—296.
[11] ?ZHOU Y,YU Z,LI J,et al. The effect of temporal resolution on the accuracy of predicting building occupant behavior based on markov chain models[J]. Procedia Engineering,2017,205:1698—1704.
[12] ?LAM K P,HOYNCK M,DONG B,et al. Occupancy detection through an extensive environmental sensor network in an open-plan office building[C]//Eleventh International Ibpsa Conference.Glasgow,Scotland:IBPSA Conference,2009:1452—1459.
[13] ?CHEN Z,ZHU Q,MASOOD M,et al. Environmental sensors based occupancy estimation in buildings via IHMM-MLR[J]. IEEE Transactions on Industrial Informatics,2017,99:1—1.
[14] ?MOZER M C. The neural network house: an environment that adapts to its inhabitants[R]. Boulder:Unviersity of Colorado Boulder,1998:110—114.
[15] ?CANDANEDO L M,F(xiàn)ELDHEIM V. Accurate occupancy detection of an office room from light,temperature,humidity and CO2,measurements using statistical learning models[J]. Energy & Buildings,2016,112:28—39.
[16] ?CHEN Z,MASOOD M K,SOH Y C. A fusion framework for occupancy estimation in office buildings based on environmental sensor data[J]. Energy & Buildings,2016,133:790—798.
[17] ?GHOFRANI A,JAFARI M A. Distributed air conditioning control in commercial buildings based on a physical-statistical approach[J]. Energy & Buildings,2017,145:106—118.