張志田 譚卜豪 陳添樂
摘 ? 要:根據(jù)測風塔和當?shù)貧庀笳緮?shù)據(jù),對江底河大橋橋址處深切峽谷的風場特性進行研究. 基于數(shù)據(jù)統(tǒng)計分析得到橋址處風場的平均風速、風向、湍流強度、湍流積分尺度和湍流的功率譜密度函數(shù). 結(jié)果表明:該橋所在的深切峽谷地形對風向有鎖定作用、對風速有加速作用、并且對各個風向下的湍流特性有明顯的影響;深切峽谷順風向湍流強度與平均速度的關(guān)系用反比例型函數(shù)擬合,擬合效果良好且高風速下接近規(guī)范值;豎風向湍流強度明顯高于規(guī)范推算值. 順風向?qū)崪y風譜與Kaimal譜相差較大而與von Karman譜吻合較好 ;豎風向?qū)崪y風譜明顯大于Panofsky風譜而與von Karman譜比較接近. 橫風向?qū)崪y風譜與Panofsky譜、von Karman譜都比較接近.
關(guān)鍵詞:深切峽谷;平均風速;湍流強度;湍流積分尺度;湍流的功率譜密度
中圖分類號:P412.16;P425.2 ? ? ? ? ? ? ? ? 文獻標志碼:A
Abstract: Based on the data obtained from a tower and a local meteorological station, the wind properties at the Jiangdihe Bridge site, located at a deep-cut valley,were investigated. According to statistical data processing, the mean wind properties, wind directions, turbulence integral scales, as well as wind spectra were obtained. The results show that the deep canyon terrain in which the bridge is located plays roles in locking the wind direction and accelerating the wind speed, and shows obvious influence on the turbulence characteristics. The relationship between the turbulent intensity and mean wind speed was obtained by fitting with inverse example functions, resulting in good fitting effect and high wind speed close to the standard value. The vertical turbulence intensities are much higher than those values specified in the China wind-resistant design specification for highway bridges. The wind spectra from the measured wind are quite different from the Kaimal spectrum, but in good agreement with the von Karman spectrum. The wind spectra of the vertical wind fluctuations are obviously larger than the Panofsky wind spectrum, but close to the von Karman spectrum. The measured across-wind spectra are quite close to both the Panofsky spectrum and the von Karman spectrum.
Key words: deep-cut canyon;mean wind speed;turbulence intensity;turbulence integral scale;power spectrum density of turbulence
隨著我國經(jīng)濟以及高速公路網(wǎng)的發(fā)展,在西部多山地區(qū)將架設(shè)越來越多的跨峽谷大橋. 為確保大橋在風荷載的作用下能夠滿足行車安全、舒適的要求,需要對山區(qū)峽谷地形的風特性進行細致的研究. 張對禹門口黃河大橋西部谷口橋址處風場特性研究[1]得出:湍流強度隨風速增大而減小;湍流積分尺度隨風速增大而增大等結(jié)論. 朱樂東等對壩陵河大橋橋址處深切峽谷風場進行研究[2-4]得出:峽谷地區(qū)湍流強度脈動風譜高于平原地區(qū);峽谷風主要改變了風譜的低頻成分;各個方向湍流強度關(guān)系與規(guī)范給出較為接近等結(jié)論. 龐加斌等人對四渡河峽谷大橋橋位處的風譜特性研究[5]得到:水平向湍流積分尺度相對于平坦地貌減小等結(jié)論. 李永樂等對龍江大橋橋址處風場特性研究[6]表明:峽谷對風速有5%~15%的加速效果. 本文通過對江底河大橋橋址處深切峽谷風場特性的觀測,分析風場的平均風速、風向、湍流強度、湍流積分尺度受峽谷地形影響的變化規(guī)律;基于Kármán[7]、Kaimal[8]、Davenport[9]等人通過理論和經(jīng)驗推導(dǎo)出的風譜,分析峽谷風場的風譜特性.
1 ? 工程概況
1.1 ? 峽谷地形特點
江底河大橋擬建于距云南省楚雄市永仁縣西南25 km左右的深切峽谷中. 如圖1、圖2所示峽谷近似東西走向,南部海拔約1 712 m,北部海拔大約1 640 m,谷底海拔約為1 393 m,測風塔位于峽谷北側(cè)海拔約1 610 m的平臺上. 峽谷兩岸的植被以低矮灌木為主,整體來看兩岸屬連綿起伏的丘陵地形.
1.2 ? 風觀測方案
如圖3所示采用2層風速儀進行觀測,分別位于離地10 m高度及30 m高度處. 其中10 m高度風觀測層安裝2臺進口Young05103二維機械式風速儀,2風速儀水平間距為2.5 m,其連線走向為正南北方向(基本平行于橋軸線);30 m高度風觀測層安裝1臺進口YOUNG81000三維超聲風速儀以及1臺Young05103二維機械式風速儀,二者水平間距以及連線走向與10 m高度處相同(三維風速儀更靠近峽谷測). 4臺風速儀的采樣頻率均設(shè)置為1.0 Hz. 三維風速儀測試精度為±0.05 m/s,風速范圍為0~40 m/s,風向范圍0~360°,仰角范圍±60°內(nèi). 二維風速儀測量風速精度為±0.3 m/s,測量范圍為0~100 m/s,風向精度及測量范圍分別為±3°與0~360°.
采用CR1000信號采集儀將風速信號轉(zhuǎn)化為數(shù)字信號,再通過485模塊即將RS235轉(zhuǎn)化成RS485之后通過GPRS無限傳輸模塊將風速數(shù)據(jù)遠程傳輸?shù)綄嶒炇覍iT用于采集數(shù)據(jù)的計算機中,完成數(shù)據(jù)的收集工作. 三維風速儀采集數(shù)據(jù)正方向判定是正東風向、正北風向和正下方來流風向為正. 由于風向與風速方向相反,所以定義正西、正南、正上為x軸、y軸、z軸正方向.
2 ? 平均風特性
由式(11)和b的性質(zhì)可得:由于外界因素不可控,所以每一個樣本中的b值都是不同的,在低風速下b值對湍流強度影響大所以可以如實反映出湍流強度離散性大的情況;隨著風速的增加b值對湍流強度的影響越來越小進而趨于穩(wěn)定.
由于b值不確定性,只能通過樣本按照式(11)形式擬合湍流強度曲線,如圖8~圖10所示. 由圖可知:擬合的效果比一次函數(shù)擬合效果更好,并且高風速下湍流強度趨于平穩(wěn)這一性質(zhì)也與實際現(xiàn)象相符合;規(guī)范中給出的湍流強度值在高風速下才可與實測值進行對比. 表2為擬合的反比例型函數(shù)分別在8 m/s、10 m/s風速下湍流強度計算結(jié)果. 可以看出:當平均風速U由8 m/s增加到10 m/s時湍流強度減少3%,并且達到了理想湍流強度的82%~85%. 圖12為反比例型函數(shù)擬合湍流強度曲線與規(guī)范[11]曲線對比. 可以看出:湍流強度在高風速下慢慢接近Ⅱ類粗糙度對應(yīng)湍流強度規(guī)范取值. Ⅱ類地形為平坦開闊地形與當?shù)氐匦伪容^接近. 所以,針對平原區(qū)的湍流強度規(guī)范值在深切峽谷地形中同樣較為適用.
由湍流強度均值比值(見表3)可知:Iv /Iu比規(guī)范要求略小4%左右;Iw /Iu結(jié)果實際值比規(guī)范值要大15%左右;ESE、ES風向Iw /Iu均值比WNW、WN風向要大.
根據(jù)以上現(xiàn)象可以認為湍流強度受地形影響較大:在順峽谷風向下,峽谷對順風向不存在太多阻塞,所以順風向湍流強度Iu結(jié)果與平原區(qū)得出的規(guī)范值基本相同;橫風向受到北側(cè)峽谷的一定阻塞,所以Iv相對減少,進而Iv /Iu比規(guī)范要求略小;豎風向由于峽谷具有一定深度,相比于平原地區(qū)豎向阻塞減小,所以Iw相對比較大,進而Iw /Iu比規(guī)范大.
3.3 ? 湍流積分尺度
4 ? 結(jié) ? 論
本文對江底河大橋近深切峽谷橋址處風觀測數(shù)據(jù)進行收集、采樣和分析,得出以下結(jié)論:
1)深切峽谷對風向有比較強的鎖定作用;并且對風速有一定加速效果. 盡管如此,峽谷風場與當?shù)貧庀髷?shù)據(jù)存在著明顯的相關(guān)性.
2)深切峽谷中各個風向的湍流強度相差較大.?湍流強度隨著風速變化使用反比例型函數(shù)擬合與實際結(jié)果吻合較好;在風速超過8 m/s時湍流強度基本穩(wěn)定接近規(guī)范值的特性.
3)基于實測結(jié)果推測,在高風速、風向為順峽谷方向時,峽谷在順風向不存在太多阻塞,所以順風向湍流強度Iu結(jié)果與平原區(qū)得出的規(guī)范值基本相同;橫風向與順風向湍流強度的比值Iv /Iu比規(guī)范要求小約3%;豎向與順風向湍流強度比值Iw /Iu比規(guī)范大15%左右.
4)順峽谷方向湍流積分尺度小于其他方向湍流積分尺度;湍流積分尺度大小隨風速增大而增大.
5)高、低風速下實測風譜與Kaimal譜有很大的差別,而與von Karman譜吻合程度更好.
6)實測橫風向風譜在低頻區(qū)域和Panofsky譜吻合較好,在高頻區(qū)域明顯高于Panofsky譜;豎風向風譜明顯高于Panofsky譜. 實測橫風向、豎風向風譜在低頻段與von Karman譜吻合很好,但在高頻段存在一些偏高和離散.
參考文獻
[1] ? ?張. 西部山區(qū)谷口處橋位風特性觀測與風環(huán)境數(shù)值模擬研究[D]. 西安:長安大學公路學院,2009:64—93.
ZHANG Y. Field investigation and wind-environment numerical simulation of bridge site in the western gap of valley areas[D].
Xi′an:Highway College,Chang′an University,2009:64—93.(In Chinese)
[2] ? ?朱樂東,王繼全,陳偉,等. 壩陵河大橋橋位風速觀測及設(shè)計基準風速的計算[J].石家莊鐵道大學學報(自然科學版),2010,23(4):5—9.
ZHU L D,WANG J Q,CHEN W,et al. Analysis of turbulent wind characteristics at the Balinghe Valley[J]. Journal of Shijiazhuang Railway Institute(Natural Science),2010,23(4):5—9.(In Chinese)
[3] ? ?朱樂東,任鵬杰,陳偉,等. 壩陵河大橋橋位深切峽谷風剖面實測研究[J]. 實驗流體力學,2011,25(4):15—21.
ZHU L D,REN P J,CHEN W,et al. Investigation on wind profiles in the deep gorge at the Balinghe bridge site via field measurement[J]. Journal of Experiments in Fluid Mechanics,2011,25(4):15—21.(In Chinese)
[4] ? ?朱樂東,周成,陳偉,等. 壩陵河峽谷脈動風特性實測研究[J].山東建筑大學學報,2011,26(1):27—34.
ZHU L D,ZHOU C,CHEN W,et al. Analysis of turbulent wind characteristics at the Balinghe Valley[J]. Journal of Shandong Jianzhu University,2011,26(1):27—34.(In Chinese)
[5] ? ?龐加斌,宋錦忠,林志興. 四渡河峽谷大橋橋位風的湍流特性實測分析[J]. 中國公路學報,2010,23(3):42—47.
PANG J B,SONG J Z,LIN Z X. Field measurement analysis of wind turbulence characteristics of sidu river valley bridge site[J].China Journal of Highway and Transport,2010,23(3):42—47.(In Chinese)
[6] ? ?李永樂,唐康,蔡憲棠,等. 深切峽谷區(qū)大跨度橋梁的復(fù)合風速標準[J]. 西南交通大學學報,2010,45(2):167—173.
LI Y L,TANG K,CAI X T,et al. Integrated wind speed standard for long-span bridges over deep-cutting gorge[J]. Journal of Southwest Jiaotong University,2010,45(2):167—173.(In Chinese)
[7] ? K?魣RM?魣N T V. Progress in the statistical theory of turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America,1948,34(11):530—539.
[8] ?KAIMAL J C,WYNGAARD J C,IZUMI Y,et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society,1972,98(417):563—589.
[9] ? ?DAVENPORT A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society,2010,88(376):197—198.
[10] ?樓文娟,劉萌萌,李正昊,等.峽谷地形平均風速特性與加速效應(yīng)[J].湖南大學學報(自然科學版),2016,43(7):8—15.
LOU W J,LIU M M,LI Z H,et al. Research on mean wind speed characteristics and speed-up effect in canyon terrain[J]. Journal of Hunan University(Natural Sciences),2016,43(7):8—15.(In Chinese)
[11] ?中交公路規(guī)劃設(shè)計院. 公路橋梁抗風設(shè)計規(guī)范[M]. 北京:人民交通出版社,2005:40—48.
CCCC Highway Consultants Co Ltd. Wind-resistent design specification for highway bridges[M]. Beijing:China Communications Press,2005:40—48.(In Chinese)
[12] ?龐加斌,葛耀君,陸燁. 大氣邊界層湍流積分尺度的分析方法[J]. 同濟大學學報(自然科學版),2002,30(5):622—626.
PANG J B,GE Y J,LU Y. Methods for analysis of turbulence integral length in atmospheric boundary-layer[J]. Journal of Tongji University(Natural Science),2002,30(5):622—626.(In Chinese)
[13] ?儲彬彬,王琛,漆德寧. AR模型功率譜估計的典型算法比較及MATLAB實現(xiàn)[J]. 中國新通信,2008,10(17):76—79.
CHU B B,WANG C,QI D N. Contrast of the typical algorithms of psd estimation based on AR model and the simulation in MATLAB[J]. China New Telecommunications, 2008, 10(17):76—79. (In Chinese)
[14] ?胡廣書. 數(shù)字信號處理:理論、算法與實現(xiàn)[M]. 北京:清華大學出版社,2003:320—384.
HU G S. Digital signal processing: Theory, design and implementation[M]. Beijing:Tsinghua University Press,2003:320—384. (In Chinese)
[15] ?埃米爾·希繆. 風對結(jié)構(gòu)的作用:風工程導(dǎo)論[M]. 上海:同濟大學出版社,1992:24—50.
EMIL Simiu. Wind effects on structures: fundamentals and applications to design[M]. Shanghai:Tongji University Press,1992:24—50.(In Chinese)
[16] ?王修瓊,崔劍峰. DavenPort譜中系數(shù)K的計算公式及其工程應(yīng)用[J].同濟大學學報(自然科學版),2002,30(7):849—852.
WANG X Q,CUI J F. Formula of coefficient K in expression of DavenPort spectrum and its engineering application[J]. Journal of Tongji University(Natural Science),2002,30(7):849—852. (In Chinese)
[17] ?PANOFSKY H A,TENNEKES H,LENSCHOW D H,et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology,1977,11(3):355—361.
[18] ?沈煉,韓艷,蔡春聲,等. 山區(qū)峽谷橋址處風場實測與數(shù)值模擬研究[J]. 湖南大學學報(自然科學版),2016,43(7):16—24.
SHEN L,HAN Y,CAI C S,et al. Experiment and numerical simulation for wind field of a long-span suspension bridge located in mountainous canyon[J]. Journal of Hunan University(Natural Sciences),2016,43(7):16—24.(In Chinese)