摘 要:近年來(lái)隨著高考改革的不斷推進(jìn),新高考物理對(duì)學(xué)生應(yīng)試能力和學(xué)科素養(yǎng)的要求也發(fā)生了比較明顯的變化。新高考對(duì)學(xué)生的綜合能力和創(chuàng)新思維提出了更高的要求,注重對(duì)學(xué)生物理學(xué)核心素養(yǎng)的培養(yǎng),讓學(xué)生從“解題”向“解決問(wèn)題”進(jìn)行轉(zhuǎn)變。這就要求學(xué)生除了要掌握好高中物理基礎(chǔ)知識(shí)、基本概念和規(guī)律以外,還需要學(xué)會(huì)利用科學(xué)思維、方法研究分析高中物理的綜合性問(wèn)題。對(duì)稱性思維是高中物理一種非常重要的思維方式,是物理學(xué)科核心素養(yǎng)的重要組成部分,學(xué)會(huì)利用對(duì)稱性思維解決物理問(wèn)題已是高中物理教學(xué)中不可或缺的一部分,在歷年高考中對(duì)其的考查也是層出不窮。
關(guān)鍵詞:對(duì)稱性思維;物理;高考
一、 引言
高中物理中的對(duì)稱性主要體現(xiàn)在空間和時(shí)間上的對(duì)稱。如:在分析等量同種或異種電荷電場(chǎng)、電勢(shì)分布時(shí)可以利用其空間上的對(duì)稱來(lái)快速判斷空間中某位置的場(chǎng)強(qiáng)的大小以及電勢(shì)的高低,又如:在研究拋體運(yùn)動(dòng)時(shí)往往可以利用時(shí)間的對(duì)稱性進(jìn)行全程的分析來(lái)簡(jiǎn)化其較為復(fù)雜的運(yùn)動(dòng)過(guò)程。高考對(duì)利用對(duì)稱性思維解決物理問(wèn)題能力考查的題型也是變化的,顯得比較靈活,但主要體現(xiàn)在物體運(yùn)動(dòng)過(guò)程的對(duì)稱性、所研究對(duì)象受力的對(duì)稱性等問(wèn)題上。
二、 空間對(duì)稱性思維
利用空間對(duì)稱思維解決物理問(wèn)題在歷年的高考試題中是比較常見(jiàn)的,主要在一些動(dòng)力學(xué)問(wèn)題中應(yīng)用于對(duì)物體運(yùn)動(dòng)過(guò)程分析或者受力分析中,根據(jù)空間維度大致可分為一維空間對(duì)稱、二維空間對(duì)稱和三維空間對(duì)稱。
(一) 一維空間對(duì)稱
在常見(jiàn)的板塊模型中的碰撞問(wèn)題中,由于滑塊與木板間的摩擦力存在突變性,導(dǎo)致在研究該模型的運(yùn)動(dòng)過(guò)程中往往存在多過(guò)程的往復(fù)運(yùn)動(dòng),如果能夠利用對(duì)稱性思維全程分析其情景過(guò)程,會(huì)很大程度地減小運(yùn)算量以及思維量。如2010年課標(biāo)卷和2015年課標(biāo)1卷的計(jì)算題25題均為該類問(wèn)題,木板與墻壁發(fā)生彈性碰撞后立即原速率反彈,而滑塊仍然保持原來(lái)的速度繼續(xù)向前做勻減速直線運(yùn)動(dòng),期間木板先向后做勻減速運(yùn)動(dòng)直至速度為零,而后反向勻加速直線運(yùn)動(dòng)直到與滑塊共速,該過(guò)程木板的加速度保持不變,故可利用其運(yùn)動(dòng)的對(duì)稱性,全過(guò)程分析其運(yùn)動(dòng),不僅可以減少了運(yùn)算量,還可以提高其準(zhǔn)確性。
(二) 二維空間對(duì)稱
在曲線運(yùn)動(dòng)的拋體運(yùn)動(dòng)或者圓周運(yùn)動(dòng)模型的情景過(guò)程分析中,可以利用其運(yùn)動(dòng)軌跡和受力分析的對(duì)稱性來(lái)簡(jiǎn)化該模型。無(wú)論是運(yùn)動(dòng)過(guò)程分析還是受力分析或者能量轉(zhuǎn)化問(wèn)題都能快速地作出定性分析或者定量計(jì)算。如2015年課標(biāo)1卷中的17題,該題是研究小球在豎直放置粗糙程度處處相同的半圓形軌道的摩擦力做功問(wèn)題,可以根據(jù)左、右對(duì)稱的任意兩點(diǎn)受力的對(duì)稱性,利用牛頓第二定律分析其向心力大小,判斷彈力大小,得出摩擦力的大小關(guān)系,進(jìn)而判斷出小球在兩個(gè)四分之一園上運(yùn)動(dòng)過(guò)程中克服摩擦力做功的多少。
(三) 三維空間對(duì)稱
高考物理對(duì)三維空間的考查,主要是定性分析和較為簡(jiǎn)單的定量計(jì)算,因此三維空間的對(duì)稱性思維主要應(yīng)用于對(duì)模型中各物理量的大小、方向的判斷,重點(diǎn)考查三維空間的建模能力。例如2013年課標(biāo)1卷的第15題,題目要求分析、計(jì)算一半徑為R均勻分布著電荷量為Q的帶電圓盤過(guò)圓心軸線上的電場(chǎng)強(qiáng)度大小,解決該題需要考生會(huì)利用所掌握的點(diǎn)電荷電場(chǎng)分布情況結(jié)合空間中電場(chǎng)的疊加原理進(jìn)行建模。在該題的建模過(guò)程中,可以利用三維空間的對(duì)稱性思維,將一個(gè)復(fù)雜的空間電場(chǎng)分布等效簡(jiǎn)化為對(duì)稱的點(diǎn)電荷電場(chǎng),再利用點(diǎn)電荷電場(chǎng)強(qiáng)度公式和場(chǎng)強(qiáng)的疊加原理解決問(wèn)題。
三、 利用對(duì)稱性思維解決非對(duì)稱性問(wèn)題
在高考物理試題中,除了用較為直觀的空間或時(shí)間的對(duì)稱性解決問(wèn)題,還需要會(huì)對(duì)對(duì)稱性思維加以理解、升華,進(jìn)而可以巧妙利用對(duì)稱性思維結(jié)合其他物理方法來(lái)解決物理當(dāng)中的非對(duì)稱過(guò)程和情景。
如2016年全國(guó)2卷第20題,該題中已知帶負(fù)電荷的油滴在一未知的勻強(qiáng)電場(chǎng)中的運(yùn)動(dòng)軌跡是一條沿豎直方向?qū)ΨQ、開(kāi)口向上的曲線,判斷最低點(diǎn)P與軌跡上某點(diǎn)Q的電勢(shì)高低、加速度大小和能量關(guān)系。該題是一道復(fù)合場(chǎng)模型的題目,雖然該油滴在復(fù)合場(chǎng)中軌跡對(duì)稱,但其運(yùn)動(dòng)情況及受力情況并非對(duì)稱,解決該問(wèn)題可以將其在電場(chǎng)與重力場(chǎng)中運(yùn)動(dòng)情況和做功情況獨(dú)立分析,在重力場(chǎng)中的運(yùn)動(dòng)具有對(duì)稱性,根據(jù)運(yùn)動(dòng)的獨(dú)立性,在將其在勻強(qiáng)電場(chǎng)中的運(yùn)動(dòng)疊加,可以更加快速、準(zhǔn)確地分析判斷該油滴的運(yùn)動(dòng)以及能量轉(zhuǎn)化規(guī)律。
又如2018年全國(guó)1卷的第18題,abc是豎直面內(nèi)的光滑圓軌道,ab水平,長(zhǎng)為2R,bc是半徑為R的四分之一圓弧,與ab相切與b點(diǎn),一質(zhì)量為m的小球始終受到與重力大小相等的水平外力的作用,自a點(diǎn)處從靜止開(kāi)始向左運(yùn)動(dòng),求小球從a點(diǎn)開(kāi)始運(yùn)動(dòng)到其軌跡最高點(diǎn)機(jī)械能的增量。該題為動(dòng)力學(xué)綜合性問(wèn)題,根據(jù)功能關(guān)系可得,小球從開(kāi)始運(yùn)動(dòng)到軌跡最高點(diǎn)的機(jī)械能增量等于該水平外力所做的功。小球在脫離軌道后由于受到重力和水平方向外力的作用,小球在空中的運(yùn)動(dòng)軌跡并非直觀的對(duì)稱性斜拋運(yùn)動(dòng),為了解決該問(wèn)題,可以將該過(guò)程分解為豎直方向上的豎直上拋運(yùn)動(dòng)和水平方向的勻加速運(yùn)動(dòng),利用豎直方向的對(duì)稱性以及運(yùn)動(dòng)合成和分解的等時(shí)性,通過(guò)運(yùn)動(dòng)學(xué)公式即可求出該過(guò)程水平方向位移,求出該外力所做的功。
要利用對(duì)稱性思維來(lái)解決一些非對(duì)稱性問(wèn)題不僅要求學(xué)生具有較為敏銳的學(xué)科思維,還需要會(huì)結(jié)合微元法、疊加法、填補(bǔ)法、假設(shè)法等物理方法來(lái)構(gòu)建對(duì)稱的物理模型,以便較為直觀的解決物理問(wèn)題。這也是體現(xiàn)了高考考試大綱對(duì)考生要求的變化,在平時(shí)的課堂教學(xué)中,也要教會(huì)學(xué)生不要生搬硬套,要學(xué)會(huì)分析情景、推理過(guò)程,要培養(yǎng)學(xué)生利用所學(xué)的常規(guī)思維去解決一些非常規(guī)的創(chuàng)新型問(wèn)題的能力,提高學(xué)生的綜合能力和創(chuàng)新思維。
四、 結(jié)語(yǔ)
大自然的鬼斧神工造就了許多讓人嘆為觀止的自然景觀,其中許多對(duì)稱之美更加體現(xiàn)了自然界的神奇,作為自然哲學(xué)的重要分支,物理學(xué)對(duì)自然界中所存在的各種具有對(duì)稱性的模型及其運(yùn)動(dòng)規(guī)律的研究也必不可少。無(wú)論是宏觀世界的力的平衡問(wèn)題、物體運(yùn)動(dòng)規(guī)律的研究,又或是微觀世界中對(duì)粒子在電磁場(chǎng)中運(yùn)動(dòng)情況的分析都很大程度地體現(xiàn)了對(duì)稱性思維的重要性。而利用對(duì)稱性思維將物理模型化繁為簡(jiǎn)或者進(jìn)行等效替代的物理方法在高考中也時(shí)常體現(xiàn),值得在日常教學(xué)中予以關(guān)注、應(yīng)用。
參考文獻(xiàn):
[1]中華人民共和國(guó)教育部.普通高等學(xué)校招生全國(guó)統(tǒng)一考試大綱[S].北京:高等教育出版社,2018.
[2]楊繼雙.高考物理中常用的物理思想、方法[J].理科考試研究,2014(13):51-53.
[3]張明元.突出物理思想 巧解物理習(xí)題[J].德陽(yáng)教育學(xué)院學(xué)報(bào),2003(1):81-85.
作者簡(jiǎn)介:
魏恩澤,福建省漳州市,漳州實(shí)驗(yàn)中學(xué)。