• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Key Process Protection of High Dimensional Process Data in Complex Production

    2019-08-13 05:54:50HeShiWenliShangChunyuChenJianminghaoandLongYin
    Computers Materials&Continua 2019年8期

    He Shi ,Wenli Shang,,Chunyu Chen,Jianming Ζhao and Long Yin

    Abstract: In order to solve the problem of locating and protecting key processes and detecting outliers efficiently in complex industrial processes.An anomaly detection system which is based on the two-layer model fusion frame is designed in this paper.The key process is located by using the random forest model firstly,then the process data feature selection,dimension reduction and noise reduction are processed.Finally,the validity of the model is verified by simulation experiments.It is shown that this method can effectively reduce the prediction accuracy variance and improve the generalization ability of the traditional anomaly detection model from the experimental results.

    Keywords: Industrial control system,outlier detection,anomaly detection system,rule tree model.

    1 Introduction

    With the development of technologies such as artificial intelligence and the Internet of Things and the integration breakthrough of software and hardware,industrial production has made continuous progress in recent years and ushered in a global industrial Renaissance.The intelligent modern industrial manufacturing model is changing from a relatively simple process,a large scale of production,and a more production-oriented model,to a precision manufacturing model with complex manufacturing processes,diverse processes and processes that require hundreds or even thousands of processes[Roldán,Olivares-Méndez,Cerro et al.(2017);Yang,Zhou,Yang et al.(2018)].However,the complexity of production process will surely challenge the safety production in the industrial site and the real-time quality inspection of products.The complexity of the production process makes it possible for changes in process parameters to have an unpredictable impact on the manufacturing process and product quality.Due to the global economic integration and the continuous development of international import and export trade,in the fierce market competition,high-end manufacturing enterprises have to pay more and more attention to product quality in order to gain competitive advantage [Ceschini,Gatta,Venturini et al.(2017)].

    In complex production processes,the complexity of manufacturing technology and manufacturing process leads to the process parameter data reaching thousands or tens of thousands of dimensions.Such high dimensions make it impossible to adjust the process parameters effectively and timely in the field production process [Rajasegarar,Leckie and Palaniswami (2014)].The impact of different processes on the quality of products can only be measured artificially.Thus,the abnormal situation in industrial production cannot be timely positioned,and the abnormal process data cannot be timely detected,which brings a lot of losses to manufacturing enterprises.Research on intrusion detection of industrial control system has been extensive.For example,Caselli et al.[Caselli,Zambon and Kargl (2015)] proposed a unique sequence intrusion detection system based on industrial control system,they use the discrete time Markov chain (DTMCs) to describe network messages and log entries recorded from multiple ICS device operations,and they also proposed a detection mechanism based on the weighted distance calculation between Markov chain states.This method is effective in serial attack but has many limitations in identifying and analyzing the correct information set and modeling classified data.Ristic et al.[Ristic,Scala,Morelande et al.(2008)] used the historical AIS ship self-reported data to extract the ship's motion pattern,and then used the motion model to construct the corresponding motion anomaly detection system under the adaptive kernel density estimation framework.This abnormal ship motion system is greatly improved in the aspect of false alarm rate.Lazarevic et al.[Lazarevic,Ert?z,Kumar et al.(2003)] conducted a detailed comparative study on several abnormal detection schemes for identifying different network intrusions and assessed several existing abnormal detection schemes with or without supervision on the DARPA 1998 network connection data set.Zhou et al.[Zhou,Tian and Yang (2017)] proposed an outlier detection method based on clustering and nuclear density estimation hypothesis testing,which is an unsupervised outlier detection method,and is superior to the supervised learning model in the real-time detection of process data.However,cluster parameters should be set according to different business scenarios and data characteristics in cluster analysis of process data,and these artificially selected parameters have great influence on the detection effect.The parameter estimation and abnormal value detection based on Bayesian method proposed by Hua et al.[Shang,Feng and Zhang (2016)] first adopted Gibbs sampling and then used the post-verification probability of Bayesian to locate the abnormal value.The experimental results are better than the traditional outlier detection method,although the variance of the outlier prediction is reduced,the model deviation is large.

    The difficulty in constructing an anomaly detection system in the industrial scene lies in the requirements of real-time and accuracy,which makes the size of each training sample must be limited,the training sample dimensions be high,the number of bars be small,and noise data exist,resulting in the model being prone to over-fitting.Each batch of training model has a large variance of anomaly detection effect,so the model must have good robustness [Ouyang,Sun,Chen et al.(2018);Sagha,Bayati,Millán et al.(2013);Curiac and Volosencu (2012)].

    In this paper,an anomaly detection system based on improved tree model is constructed for high-dimensional process data,which can detect abnormal process data in the production process timely,thus reducing the loss of raw materials in industrial production process.The high-dimensional process data was firstly transformed to remove outlier points and long-tail distribution in this paper,so as to improve the data characteristic performance.Then,the high-importance features were selected by rule trees to suppress overfitting and reduce the model complexity.Finally,the double-layer model fusion was used for the final data anomaly detection.

    2 Data preprocessing

    The experimental data comes from a semiconductor manufacturing industry.The production process is complicated,including hundreds of processes,and the parameters of each process are not unique.The data description is shown in Tab.1.Manufacturers provide real process data of 8027 dimensions,including float64 type features 6483 dimensions,int64 type features 1534,object category features 10 dimensions,and int type one-dimensional target outliers’ calibration,and these data may have outliers or noises.

    Table1:The data description

    2.1 Category type feature processing and missing value padding

    There are 10-dimensional Category features in the process data set of this paper,we count the independent values of each Category type feature and each value is between 4 and 6.We use One-hot encoding to extract the Category features,it will not bring a big burden to the later calculation of the model,because the independent value of each feature is little.In order to construct abnormality detection system,we use the -1-tag approach to mark the missing values [Davies and Russl (1994);Breiman (2001)] instead of mean,median,mode,etc.filling or model estimation practices.

    2.2 Noise reduction and outlier processing for numerical features

    The numerical characteristic dimension of the process data is relatively high.The quality of the features determines the maximum performance of the model.After the preliminary statistical calculation of numerical features,the standard deviation of individual features is large,which means that these features have large fluctuations and may have abnormal values or noise.Fig.1 shows the histogram of the one-dimensional numerical characteristic data.Obviously,on the one hand,the distribution of features is long-tailed,which indicates that there may be outliers in the feature data.On the other hands,the density distribution of such features is severely skewed,and the fluctuation of data is great.However,the model hopes that data fluctuations are relatively stable.After all,the stable sample can reduce the prediction variance.Therefore,the data needs to be preprocessed to prevent over-fitting.

    Figure1:Histogram with deviation feature distribution

    In order to change the partial distribution of data,this paper compares three data transformation methods:square root transform,square root inverse transform and natural logarithm transform,and finally selects natural logarithm transform.In addition,the long tail of the data in this column was processed,and the data beyond 3 standard deviations were excluded.After that,natural logarithm was added again and again,and the results are shown in Fig.2.

    Figure2:Histogram after data processing conversion

    3 Positioning key process characteristics

    The dimensionality reduction methods for data mainly include the unsupervised dimensionality reduction method represented by PCA principal component analysis and the supervised linear discriminant method represented by LDA linear discriminant analysis.PCA is an unsupervised dimensionality reduction method based on maximum variance theory,which cannot reflect the correlation information between the predicted variable and the target,while LDA method is a linear method to discriminate the relationship between the predicted variable and the target and cannot be reacted if the correlation is non-linear.Furthermore,there is another method:a self-coded neural network based on deep learning,which requires a lot of data and can easily produce overfitting.In this paper,the feature selection based on the rule tree model,that is a nonlinear supervised dimensionality reduction method.The generating condition of rule tree is simple,and the result is very interpretable,which facilitates the calculation of feature importance in the later stage [Liu,Yang,Li et al.(2014);Epple (2012)].

    3.1 Rule tree model feature selection construction

    The rule tree model is used to find the appropriate splitting point and divide the target data into more and smaller scale homogenized groups.The choice of splitting point includes the selection of the overall features of the data and the division of the splitting points in the single feature.The methods for measuring the purity include the Gini coefficient and the cross entropy.The rule tree model is to generate different tree models by using different features and random samples,thus ensuring the generalization of the results Then,according to each feature as the split point,the average Gini coefficient change in different rule tree models is used as the feature importance basis to generate the feature importance index.This rule tree-based method is robust to noise in process data after generating more tree models [Zhou,Sun,Fu,et al.(2018);Ren,Ye and Li (2017)].

    There are two types of target categories in this paper,the simplification of the Gini coefficient 2P1 P2.We calculate the Gini coefficient before splitting and calculate the weight-to-Gini coefficient of each node after splitting and select the appropriate splitting node.Vimis used to represent the importance of Variables (Variable Importance Measures).The process data sample used in this paper is 8026 dimensions,represented by featuresX1 ,X2 ,X3 ,...,X8026,and the Gini coefficient scoreVimj[Tsai,Chang,Chen et al.(2009);Marchi,Ferroni,Eyben et al.(2014)] of each featureXiin the sample is calculated.TheGiniindex change before and after the node m branch can be determined by the following equation:

    whereGinilandGinirrepresent the Gini index of two new nodes after node branching respectively.

    The node where featureXappears in rule treejis in setM,then the importance ofXiin thejth tree is determined by the following formula;

    The importance of the features is normalized as follows:

    3.2 Rule tree model selection features

    In Fig.3,there are 4 feature scatter plots with the highest average importance of features in 300 rule trees.The diagonal diagram is a distribution of features to different target types.The distribution of these 4-dimensional features under different target categories is clearly differentiated,which contributes a lot to the abnormal behavior of distinguishing process data.These features have a large impact on the abnormality of the process data and correspond to the parameter dimensions of the product process.Obtaining the process characteristics with a large degree of influence on the process data is helpful for the whole process flow and human configuration,and the manufacturing plant can strengthen the protection for the key process partitions.We choose a grid search method for single model 10-fold cross-validation in process data samples using a list generated by feature importance ranking.Since the target category belongs to the unbalanced category and there are more normal categories,the method uses the cross-validation method of hierarchical sampling.In this method,the model is selected with a higher average score in the verification set and a smaller standard deviation,that is,the number of features with small fluctuation.Thus,a new process data sample set is constructed.

    Figure3:Distribution of important characteristics of process data

    4 The proposed anomaly detection model

    Traditional anomaly detection is a method of intrusion detection and it builds a normal behavioral model from existing data.Anomaly detection methods mainly include machine learning,mathematical statistics and neural networks.Machine learning is widely used in anomaly detection systems.In this paper,we propose a two-layer model fusion method,which has the following advantages compared with other single models.First,the two-layer model fusion has higher accuracy under the same sample size.Secondly,the underlying model can effectively prevent over-fitting and improve the generalization ability of the overall model.Moreover,the feature selection based on the rule tree groups can effectively avoid dimension disasters and computational costs and can improve the real-time performance of the system.

    A block diagram of the anomaly detection system of the two-layer model fusion is drawn in Fig.4.The effect of dimension reduction is achieved by randomly selecting the characteristics of high-dimensional data,constructing different rule tree groups,and selecting the k-dimensional features with the highest ranking in the rule tree group.We carry out a hierarchical n-fold cross-validation training model for k-dimensional samples,where n-1 samples are used to train the model,and the remaining sample is used as a validation set for prediction.Finally,we obtain n prediction probability results.We use these n predictions as predictors and use the new model to train the target variables.

    Figure4:The anomaly detection system of the two-layer model fusion

    Step0:Apply the bootstrap method to randomly extract K new self-sample sets and use the new sample set to build the K rule tree.Each time the sample that has not been drawn constitutes K out-of-bag data (Out-of-bag,OOB).The bootstrap sample is b=1,2...,B,where B represents the number of training samples.The variable importance metric Djbased on the classification accuracy of the feature Xjis calculated according to the following steps [Rassam,Zainal and Maarof (2013);Lane and Brodley (1900);Helali(2010);Subaira and Anitha (2015)]:

    Step1:Setb=1,create a decision tree Tbon the training sample,and mark the out-of-bag data asLboob.Use Tbto classify the data on the data outside the bag,and count the number of correct classifications,denoted asRboob.

    Step2:For the featureXj,j=1,2,...,N,perturb the value of the featureXjinLboob,record the disturbed data set asLbjoob,use Tbto classify the data,and count the number of correct classifications,denoted asRbjoob.

    Step3:Repeat Steps (1)~(3) forb=2,3...,B.The variable importance metricDjof the feature Xj is calculated by the following formula [Wan,Yao and Jiang (2018);Wu,Zhang,Zhang et al.(2018)]:

    Step4:Use grid search:Grid Search to set 10 folds cross-validation,select the number of features with low variance and high variance on the verification set,and generate new process data samples.

    Step5:Select three models with good performance and large difference in model principles as the base model.The sample is subjected to 3-fold stratified sampling,each single model is trained,and the 3D prediction samples are obtained by using the verification set.The following three basic models are established by using the python machine learning sklearn library.The model parameters are as follows:

    Naive Bayesian model:

    sklearn.GaussianNB(priors=None);

    Lightgbm model:

    XGboost model:

    Step6:Train the model with the newly generated 3D prediction samples and a simple logistic regression model,then use the grid search to adjust the regular penalty term C=10 to predict the final test data.

    5 Comparison and analysis of experimental results

    To carry out the feasibility of anomaly detection process data analysis and comparison of the typical algorithm validation,the research group use the existing industrial safety protection simulation laboratory deploying the model in anomaly detection system.10 rack servers,5 industrial control hosts,3 industrial firewalls,1 abnormal detection system and 1 industrial gate is equipped in the laboratory,which can meet the basic requirements of this experiment.On this basis,this paper designs and sets up the simulation experiment environment.The verification set of 3,000 semiconductor industrial data was imported into the industrial real-time database.Python was used to capture the data in the database in real time,and the highly important dimensional features were extracted with the experimental anomaly detection system and returned to the intrusion detection system for unified supervision.In this paper,the traditional SVM support vector machine,logical regression,and the GBDT model XGboost (XGboost has excellent performance in competitions such as Kaggle and Tianchi Big Data,and is an improved version of the traditional gradient ascension tree) which is generally effective in data mining are compared,the Figs.5-8 are learning curves of the test set using four different models.

    Figure5:Two-layer fusion model test set learning curve

    Figure6:SVM model test set learning curve

    Figure7:XGboost model test set learning curve

    According to the results of the simulation experiment,the anomaly detection systems implemented by all the four models have achieved a high level of classification accuracy.The classification accuracy was 79.6 percent,78.5 percent,78.9 percent and 83.4 percent,respectively,in the proportion of 1:1 between abnormal data and normal data.From the comparison of the learning curve,it can be seen that the standard deviation of the accuracy of the two-layer fusion model in this paper is 0.035 in the cross validation of ten folds,which overcomes the disadvantages of large variance and easy overfitting of other models such as logistic regression and retains the advantages of higher prediction accuracy.It effectively enhances the generalization ability of the anomaly detection model,in the meantime,the predictive ability is basically equivalent in the training set and the test set.The experiments show that the two-layer fusion model is effective in improving the generalization ability of the process data anomaly detection model,and the accuracy of the anomaly detection system is improved to some extent.The specific simulation results are shown in Tab.2.

    Figure8:Logistic regression model test set learning curve

    Table2:Stratified sampling cross-validation results

    When determining the final number of features,the parameter changes of the rule tree model are as follows:(1) The number of trees is 40,60,80,(2) Tree depth:4,6,8,In each test,a 10-fold cross-validation method was used to verify the features from the top 70 to the top 125,and finally the top 84 dimensions were selected according to the test set effect.The characteristics of “sms_opp_len_rate” and len_count_12_rate of the process data is highly recognized.

    6 Comparison and analysis of experimental results

    This paper introduces an efficient method for locating key processes and detecting abnormal values of process data in complex production process.In the complex anomaly detection of high-dimensional process data,this method can effectively reduce the data dimension,predict the anomaly samples,and find out the key features that have great impact on the anomaly of process data.Manufacturing enterprises can focus on the protection of these key processes,and industrial control safety personnel can also implement the means of safety protection better.

    Comparing with other models,this model can effectively improve the accuracy and variance of anomaly detection,greatly suppress the over-fitting phenomenon of anomaly detection system,and it has better real-time performance compared with traditional anomaly detection models,more conducive to real-time detection of process data.In addition,the fusion structure of the two-model framework in this paper has obvious improvement in model accuracy.And next we will carry out work on how to ensure low variance while effectively improving the accuracy of the model.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China,2018.01-2020.12 (No.61773368).The Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDC02000000).State Grid Corp of China’s Science and Technology Project “Application of Edge Computing in Smart Grid and Security Protection Technology Research” (52110118001H).

    久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| av有码第一页| 人人妻人人添人人爽欧美一区卜| 2022亚洲国产成人精品| 中国美白少妇内射xxxbb| 九九久久精品国产亚洲av麻豆| 夫妻性生交免费视频一级片| 嫩草影院入口| 青春草视频在线免费观看| 免费观看无遮挡的男女| 国产女主播在线喷水免费视频网站| 欧美精品一区二区免费开放| 人妻系列 视频| 九九在线视频观看精品| 少妇猛男粗大的猛烈进出视频| videosex国产| 春色校园在线视频观看| 最新的欧美精品一区二区| 特大巨黑吊av在线直播| 中国三级夫妇交换| 大又大粗又爽又黄少妇毛片口| 在线亚洲精品国产二区图片欧美 | 欧美人与性动交α欧美精品济南到 | 日韩强制内射视频| 欧美日本中文国产一区发布| av线在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 国产熟女欧美一区二区| 看十八女毛片水多多多| 免费黄频网站在线观看国产| 99九九线精品视频在线观看视频| 满18在线观看网站| 亚洲国产精品999| 两个人免费观看高清视频| 51国产日韩欧美| 亚洲欧美清纯卡通| 国产 一区精品| 久久av网站| 久久久久久久久久成人| 91精品国产九色| 青春草国产在线视频| 一区二区三区乱码不卡18| 制服人妻中文乱码| 我的女老师完整版在线观看| 成人国产麻豆网| 国产精品秋霞免费鲁丝片| 视频区图区小说| 观看av在线不卡| 日日撸夜夜添| 18禁裸乳无遮挡动漫免费视频| 美女国产视频在线观看| 亚洲一区二区三区欧美精品| av在线观看视频网站免费| 久久久久久久久久久久大奶| 精品熟女少妇av免费看| 欧美日韩综合久久久久久| 性高湖久久久久久久久免费观看| 大陆偷拍与自拍| 91精品三级在线观看| 在线播放无遮挡| 免费看光身美女| 久久久久国产网址| 成人免费观看视频高清| 亚洲av二区三区四区| 中文字幕人妻丝袜制服| 我的老师免费观看完整版| 男女免费视频国产| 母亲3免费完整高清在线观看 | 嫩草影院入口| 日本-黄色视频高清免费观看| 国产精品久久久久久久电影| 欧美xxⅹ黑人| 老司机影院毛片| 黄色一级大片看看| 欧美日韩一区二区视频在线观看视频在线| 高清午夜精品一区二区三区| 两个人的视频大全免费| 午夜日本视频在线| 日韩av在线免费看完整版不卡| 美女大奶头黄色视频| 日韩av在线免费看完整版不卡| 亚洲av日韩在线播放| 亚洲av二区三区四区| 日韩欧美精品免费久久| 中文字幕精品免费在线观看视频 | 亚洲国产精品成人久久小说| 人妻少妇偷人精品九色| 欧美亚洲日本最大视频资源| 亚洲国产精品国产精品| 成年av动漫网址| 在线观看人妻少妇| 在线观看免费视频网站a站| 97超碰精品成人国产| 国产精品不卡视频一区二区| 成年美女黄网站色视频大全免费 | 人人澡人人妻人| 亚洲,一卡二卡三卡| 男女国产视频网站| 最黄视频免费看| 少妇人妻 视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av福利一区| 欧美少妇被猛烈插入视频| 欧美性感艳星| 校园人妻丝袜中文字幕| 91精品伊人久久大香线蕉| 能在线免费看毛片的网站| 美女cb高潮喷水在线观看| 一本大道久久a久久精品| 最近2019中文字幕mv第一页| 性色av一级| 亚洲精品乱码久久久v下载方式| 中文字幕久久专区| 国产成人一区二区在线| 亚洲人成77777在线视频| 人妻夜夜爽99麻豆av| 亚洲美女黄色视频免费看| 99热国产这里只有精品6| 国产成人91sexporn| 我的女老师完整版在线观看| 伦理电影免费视频| 久久精品久久精品一区二区三区| 18禁在线播放成人免费| 精品国产国语对白av| 国产片特级美女逼逼视频| 建设人人有责人人尽责人人享有的| 久久久久国产精品人妻一区二区| 老熟女久久久| 99久久精品一区二区三区| 中国美白少妇内射xxxbb| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 国产免费现黄频在线看| 国产精品 国内视频| 国产成人精品无人区| 亚洲av国产av综合av卡| 欧美日韩在线观看h| 亚洲伊人久久精品综合| 人人妻人人澡人人看| 国产国拍精品亚洲av在线观看| 国产精品女同一区二区软件| 国模一区二区三区四区视频| 久久人人爽人人片av| 国产精品99久久99久久久不卡 | 日韩一区二区视频免费看| 色5月婷婷丁香| 免费看光身美女| 成人毛片a级毛片在线播放| 久久免费观看电影| 亚洲精品aⅴ在线观看| 最黄视频免费看| √禁漫天堂资源中文www| 91在线精品国自产拍蜜月| 国内精品宾馆在线| 国产片特级美女逼逼视频| 欧美3d第一页| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 考比视频在线观看| 99精国产麻豆久久婷婷| 国产黄色免费在线视频| 国产精品一国产av| 亚洲精品视频女| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人爽人人片va| 一二三四中文在线观看免费高清| 五月天丁香电影| 黑人巨大精品欧美一区二区蜜桃 | 免费看不卡的av| videosex国产| 亚洲精品日韩在线中文字幕| 国产国语露脸激情在线看| 大片电影免费在线观看免费| 在线观看三级黄色| 午夜激情久久久久久久| 亚洲色图综合在线观看| 下体分泌物呈黄色| 晚上一个人看的免费电影| av专区在线播放| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 九九久久精品国产亚洲av麻豆| 国产精品一区二区在线不卡| 美女cb高潮喷水在线观看| 久久久国产欧美日韩av| 日本免费在线观看一区| 我的女老师完整版在线观看| 中文字幕精品免费在线观看视频 | av视频免费观看在线观看| 亚洲精品视频女| 在线观看国产h片| 成年人午夜在线观看视频| 久久婷婷青草| 国产免费一级a男人的天堂| 久久久精品94久久精品| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 久久婷婷青草| 亚洲精品日本国产第一区| 自线自在国产av| 国产有黄有色有爽视频| 国产精品一国产av| 午夜91福利影院| 国产精品久久久久成人av| 久久久精品区二区三区| 国产伦理片在线播放av一区| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 午夜视频国产福利| 国产成人精品无人区| 在线观看三级黄色| 国产精品嫩草影院av在线观看| 久久精品国产亚洲网站| 亚洲第一av免费看| 寂寞人妻少妇视频99o| √禁漫天堂资源中文www| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 精品久久久精品久久久| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 国产男人的电影天堂91| 久久久久精品性色| 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| av在线播放精品| 国产精品国产三级国产专区5o| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到 | 久久 成人 亚洲| 久热久热在线精品观看| .国产精品久久| www.色视频.com| 人妻人人澡人人爽人人| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 人妻系列 视频| av视频免费观看在线观看| 午夜av观看不卡| 国产精品欧美亚洲77777| 99九九在线精品视频| 热re99久久精品国产66热6| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 国产片内射在线| 亚洲欧美一区二区三区国产| 日韩电影二区| 国产黄频视频在线观看| 国产亚洲最大av| 丝袜脚勾引网站| tube8黄色片| 欧美激情极品国产一区二区三区 | 这个男人来自地球电影免费观看 | 建设人人有责人人尽责人人享有的| 伦理电影大哥的女人| av.在线天堂| 成人18禁高潮啪啪吃奶动态图 | 狠狠婷婷综合久久久久久88av| 黄片无遮挡物在线观看| 久久人人爽av亚洲精品天堂| 国产高清有码在线观看视频| 亚洲精品国产av蜜桃| 不卡视频在线观看欧美| 亚洲经典国产精华液单| 亚洲内射少妇av| 如何舔出高潮| 国产高清不卡午夜福利| 亚州av有码| 国产精品久久久久久精品电影小说| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久av不卡| 亚洲av综合色区一区| 夜夜看夜夜爽夜夜摸| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 九草在线视频观看| 亚洲精品色激情综合| 久久精品夜色国产| 精品少妇黑人巨大在线播放| 国产成人精品无人区| 青青草视频在线视频观看| 久久久久久久久久久丰满| 亚洲精品视频女| 精品国产国语对白av| 蜜桃在线观看..| 少妇人妻久久综合中文| 免费观看的影片在线观看| 久久婷婷青草| 日本wwww免费看| 99久久综合免费| 国产淫语在线视频| 99热国产这里只有精品6| av女优亚洲男人天堂| 黄色配什么色好看| 美女国产视频在线观看| 国产日韩欧美视频二区| 久久国产精品大桥未久av| 有码 亚洲区| 九九爱精品视频在线观看| 国产成人精品久久久久久| 国产片内射在线| 十八禁高潮呻吟视频| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 大片免费播放器 马上看| 97超碰精品成人国产| av免费在线看不卡| 免费看av在线观看网站| 亚洲国产精品一区二区三区在线| 国产黄片视频在线免费观看| 国产日韩欧美亚洲二区| 2022亚洲国产成人精品| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 国产69精品久久久久777片| 九九在线视频观看精品| av一本久久久久| 亚洲精品国产av蜜桃| 人体艺术视频欧美日本| 日本午夜av视频| 人妻人人澡人人爽人人| 另类亚洲欧美激情| 美女主播在线视频| 亚洲欧美成人综合另类久久久| 国产成人aa在线观看| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 麻豆精品久久久久久蜜桃| 男人添女人高潮全过程视频| 精品久久久久久电影网| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 国产成人免费无遮挡视频| 青春草视频在线免费观看| 99热国产这里只有精品6| 人妻少妇偷人精品九色| 成年人免费黄色播放视频| 2022亚洲国产成人精品| 丝袜喷水一区| 欧美三级亚洲精品| 91久久精品国产一区二区成人| 美女中出高潮动态图| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 亚洲欧美一区二区三区黑人 | 男女无遮挡免费网站观看| 免费人妻精品一区二区三区视频| 青青草视频在线视频观看| 国产成人精品一,二区| av播播在线观看一区| a 毛片基地| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 一级毛片 在线播放| 丰满饥渴人妻一区二区三| 高清黄色对白视频在线免费看| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区| 啦啦啦在线观看免费高清www| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 天美传媒精品一区二区| 夜夜爽夜夜爽视频| 国产欧美日韩综合在线一区二区| 日韩亚洲欧美综合| 九草在线视频观看| 国产精品一区二区在线不卡| 成年女人在线观看亚洲视频| 色吧在线观看| 国产在线一区二区三区精| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看| 久久婷婷青草| 制服诱惑二区| 水蜜桃什么品种好| 一级毛片黄色毛片免费观看视频| 啦啦啦视频在线资源免费观看| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线 | 日本色播在线视频| 国产精品99久久99久久久不卡 | 亚洲综合色惰| 建设人人有责人人尽责人人享有的| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区精品91| 免费播放大片免费观看视频在线观看| a级毛色黄片| 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| 免费观看在线日韩| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 日本av手机在线免费观看| 国产不卡av网站在线观看| 一本—道久久a久久精品蜜桃钙片| 999精品在线视频| 久久久久久久久久久久大奶| 一本久久精品| 一个人看视频在线观看www免费| 欧美另类一区| 精品久久久噜噜| 国产精品一国产av| 久久久久精品性色| 国产精品.久久久| 亚洲av电影在线观看一区二区三区| 99久久精品一区二区三区| 久久久久视频综合| 国产日韩欧美视频二区| 亚洲第一区二区三区不卡| 9色porny在线观看| h视频一区二区三区| 免费人妻精品一区二区三区视频| 交换朋友夫妻互换小说| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 高清在线视频一区二区三区| 国产精品一区二区三区四区免费观看| 久久99蜜桃精品久久| 在线观看免费高清a一片| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 国产乱来视频区| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 久久久久国产网址| av国产精品久久久久影院| 国产精品国产av在线观看| 久久久精品94久久精品| 午夜视频国产福利| 欧美另类一区| 国产精品人妻久久久久久| 美女大奶头黄色视频| 亚洲精品aⅴ在线观看| 99久久精品国产国产毛片| 国产熟女欧美一区二区| 亚洲综合精品二区| 国产av码专区亚洲av| 国模一区二区三区四区视频| 免费高清在线观看日韩| 好男人视频免费观看在线| 免费av不卡在线播放| 黄色怎么调成土黄色| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 精品人妻在线不人妻| 欧美另类一区| 亚洲精华国产精华液的使用体验| 男女边吃奶边做爰视频| 十八禁高潮呻吟视频| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 我的女老师完整版在线观看| 国产高清三级在线| 七月丁香在线播放| 极品少妇高潮喷水抽搐| 最近最新中文字幕免费大全7| 精品人妻偷拍中文字幕| 午夜福利视频精品| 蜜桃在线观看..| 亚洲国产精品一区三区| 伦精品一区二区三区| 在线观看国产h片| 人妻一区二区av| 久久久久久久精品精品| 黄色配什么色好看| 男男h啪啪无遮挡| 亚洲人成77777在线视频| av国产久精品久网站免费入址| 九九在线视频观看精品| 国内精品宾馆在线| 免费观看在线日韩| 亚洲国产色片| 视频在线观看一区二区三区| 97精品久久久久久久久久精品| a级毛片在线看网站| 久久精品国产亚洲网站| 精品人妻偷拍中文字幕| 亚洲精品第二区| 国产精品成人在线| 国产精品蜜桃在线观看| 美女主播在线视频| 亚洲美女搞黄在线观看| 久久久久久伊人网av| 亚洲第一av免费看| 啦啦啦在线观看免费高清www| 夜夜爽夜夜爽视频| 高清av免费在线| 秋霞伦理黄片| 一边亲一边摸免费视频| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 日韩视频在线欧美| 精品久久久久久久久av| 日韩欧美一区视频在线观看| 一本色道久久久久久精品综合| 国产高清三级在线| 大码成人一级视频| 日韩电影二区| 一边亲一边摸免费视频| 亚洲精品久久成人aⅴ小说 | 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区 | 最后的刺客免费高清国语| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看日韩| 国产精品久久久久久av不卡| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 国产白丝娇喘喷水9色精品| 视频中文字幕在线观看| 一个人看视频在线观看www免费| 人人妻人人添人人爽欧美一区卜| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 伊人久久精品亚洲午夜| 少妇猛男粗大的猛烈进出视频| 国产白丝娇喘喷水9色精品| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说| 丰满少妇做爰视频| 最近中文字幕2019免费版| 久久午夜福利片| 国产高清不卡午夜福利| 一本久久精品| 成年美女黄网站色视频大全免费 | 日本黄大片高清| 色婷婷久久久亚洲欧美| 伊人亚洲综合成人网| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 婷婷成人精品国产| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 狠狠精品人妻久久久久久综合| 久久久久久久久久久免费av| 丰满少妇做爰视频| 亚洲国产精品一区二区三区在线| 国产精品一区www在线观看| 久久人妻熟女aⅴ| 国产精品久久久久久精品电影小说| 中文天堂在线官网| 九色亚洲精品在线播放| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 视频区图区小说| 亚洲第一av免费看| 国产亚洲最大av| 成年人免费黄色播放视频| 大片免费播放器 马上看| 亚洲第一区二区三区不卡| 亚洲欧美一区二区三区国产| 男人操女人黄网站| 纯流量卡能插随身wifi吗| 中国三级夫妇交换| 日韩视频在线欧美| 99九九线精品视频在线观看视频| 性高湖久久久久久久久免费观看| 啦啦啦视频在线资源免费观看| 肉色欧美久久久久久久蜜桃| 久久精品夜色国产| 99热国产这里只有精品6| 久久久国产欧美日韩av| 久久久精品94久久精品| 亚洲精品美女久久av网站| 综合色丁香网| 亚洲成人av在线免费| 国产 精品1| 亚洲熟女精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 欧美日本中文国产一区发布| 能在线免费看毛片的网站| 男女免费视频国产| 国产乱来视频区| 精品久久久久久电影网| 人妻 亚洲 视频| 免费观看性生交大片5| 免费观看在线日韩| 99热6这里只有精品| 日韩不卡一区二区三区视频在线| 日韩视频在线欧美| 观看美女的网站| 女人久久www免费人成看片| 在线 av 中文字幕| 久久99蜜桃精品久久| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 精品人妻熟女毛片av久久网站| 成人无遮挡网站| a级毛片在线看网站| 18禁观看日本| 亚洲内射少妇av| www.av在线官网国产| 免费观看的影片在线观看| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 日韩伦理黄色片| 91成人精品电影| 18禁在线播放成人免费| 成人亚洲欧美一区二区av| 亚洲国产色片|