• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters

    2019-08-13 05:55:12RuikangXingandChenghaiLi
    Computers Materials&Continua 2019年8期

    Ruikang Xing and Chenghai Li

    Abstract: In clustering analysis,the key to deciding clustering quality is to determine the optimal number of clusters.At present,most clustering algorithms need to give the number of clusters in advance for clustering analysis of the samples.How to gain the correct optimal number of clusters has been an important topic of clustering validation study.By studying and analyzing the FCM algorithm in this study,an accurate and efficient algorithm used to confirm the optimal number of clusters is proposed for the defects of traditional FCM algorithm.For time and clustering accuracy problems of FCM algorithm and relevant algorithms automatically determining the optimal number of clusters,kernel function,AP algorithm and new evaluation indexes were applied to improve the confirmation of complexity and search the scope of traditional fuzzy C-means algorithm,and evaluation of clustering results.Besides,three groups of contrast experiments were designed with different datasets for verification.The results showed that the improved algorithm improves time efficiency and accuracy to certain degree.

    Keywords: Fuzzy C-means clustering,affinity propagation (AP) clustering,evaluation index,kernel function.

    1 Introduction

    As the important technology in data mining field,clustering analysis is widely applied in statistics,decision support,machine learning,pattern recognition,picture processing,spatial database technology and e-commerce,etc.It is a very efficient data analysis method.Classical clustering algorithms mainly include partition-based clustering,hierarchical clustering algorithm,density-based method,grid-based method,model-based method and analysis method based on isolated point,etc.The quality of clustering algorithms greatly influences the final results of clustering process.

    Clustering process is an effective grouping of physical or abstract set of objects.The group generated in clustering results is called cluster.Cluster is the set of objects with certain same features in the database.The concrete manifestations include the following:any objects in the cluster have high similarity,while the objects which do not belong to the same cluster have relatively large dissimilarity.The value of similarity and dissimilarity can be calculated according to various attribute values of description objects.Usually,the distance between any objects is the measurement method which is mostly applied.As an important method which is widely applied in data analysis,clustering is used to classify the samples as per the specific standards,with the purpose of maximizing intracategory similarity and minimizing intercategory similarity.In clustering analysis,the key to deciding clustering quality is to determine the optimal number of clusters.At present,most clustering algorithms need to give the number of clusters in advance for clustering analysis of the samples.How to gain the correct optimal number of clusters has been an important topic of clustering validation study.The existing method to determine the optimal number of clusters is mainly the fuzzy C-means (FCM) algorithm.

    2 Material and methods

    2.1 Improved fuzzy C-means algorithm based on kernel function

    2.1.1 Fuzzy C-means algorithm analysis

    Clustering analysis aims to classify objects according to their different features,degree of intimacy and similarity.The boundary of relations among things is usually not clear (i.e.fuzzy relation),so the application of fuzzy method for clustering analysis becomes inevitable.Fuzzy clustering analysis has been successfully applied in large-scale data analysis,data mining,picture analysis,pattern recognition,information fusion and so on.And,various fuzzy clustering algorithms appear.Among the numerous fuzzy clustering algorithms,fuzzy C-means (FCM) clustering algorithm [Bezdek (1981)] is most widely and successfully applied.It is a clustering analysis method based on objective function.Membership degree of each object to be classified for all centers of clustering can be gained through optimizing objective function so as to decide the category of classification objects and reach the purpose of automatic classification [Chen,Li and Wang (2006)].

    FCM clustering algorithm:the set of objects to be classified is set as:

    wherein,each object hasmcharacteristic indexes,and is set as:

    Now,the object setAis classified intoccategories (2≤c≤n).The matrix which consists of vectors ofccenters of clustering is set as:

    To gain an optimal fuzzy classification,a best fuzzy classification can be chosen from the fuzzy classification space as per clustering norms.To calculate the appropriate fuzzy classification matrixUand center of clusteringV,the objective function:is made to reach the minimum.Wherein,certain value can be taken forq(generallyq=2).represents the distance between objectAjand the vector ofithcategory of centers of clustering.

    Usually,iterative operation is used to figure out the approximate solution of objective function given in Formula (5).The detailed steps are as follows:

    Step1:Choose the number of categoriesc,2≤c≤n;take a primary fuzzy classification matrixU(0)for gradual iteration,l= 0 ,1,2,???

    Step2:ForU(l),calculate the center of clustering:

    in which:

    Step3:Amend fuzzy classification matrixU(l);when ?i,A≠V

    ji

    If ?k,Aj=Vk

    The fuzzy classification matrixand the center of clusteringgained from the above algorithm are locally optimal solutions relative to the number of categoriesc,initial fuzzy classification matrix

    Noise in dataset has a great influence on the whole clustering classification process.At present,many algorithms fail to process noise,thus leading to the influence on the dataset classification.Or,noise processing results are unsatisfactory.Noise data processing is too complex or there is no substantive influence of noise reduction.All these lead to some defects of FCM clustering algorithm in practical applications.

    2.1.2 Objective function optimization based on kernel function

    Kernel function is introduced to enhance optimizing ability of FCM clustering algorithm.It issupposed that the centerof clusteringin high-dimensional space can find primary imagein the primary space.Then,the objective function changes to

    According to Mercer kernel definition,

    Meanwhile,Gaussian radial basis function (K(x,x) = 1,?x∈X) is used as the kernel function for simplification.Then,the objective function of improved fuzzy C clustering algorithm can change to

    Lagrange multiplication approach is used to the center of clustering and iterative formula of membership matrix:

    The process of improving fuzzy C clustering algorithm is as follows:

    Step1:Initialize.Give weighted indexmand the number of clustering categoriesc(2≤c≤n);set the parameter values of the chosen kernel function;set threshold value of iteration stopε;initialize membership matrixU(0),iteration counterb=0.

    Step2:Work outK(xi,vk)

    Step3:Update membership matrixU(b).

    Step4:If(||.||<εis an appropriate norm),stop updating membership matrixU,otherwise,makeU=U+1and turn to Step2.

    2.1.3 Improved FCM algorithm and analysis

    The division method of standard FCM clustering algorithm is based on the following criterion:The sumEof distance between each data object p and corresponding cluster center is minimum.The computational formula ofEis

    wherein,oiis the center of clusterCi;d(.)is distance function;Eis the minimum of sum of distance between all data objects p and corresponding cluster centers.Whenk=1,time complexity of the algorithm isO(n2).After the kernel function is added,when theithinitial center pointi∈ [1,k],the computational formula of time complexitytof the algorithm ist= (n+ 1)(i-1).

    Time complexityTiof theithinitial center point is

    Time complexityO(T)of the algorithm is

    Thus,O(T) =O(n2).In conclusion,after the kernel function is added,the algorithm complexity of FCM clustering algorithm reduces.

    2.2 Confirmation of search scope

    Since clustering results of FCM clustering algorithm depend on the selection of initial center of clustering,different initial center of clustering will generate different clustering results.Thus,clustering results are unstable.How to determine the optimal clustering according to FCM algorithm is important.

    Usually,the basic thought of determining the optimal number of clusters is as follows:for the specific dataset,conform the search scope of number of clusters and operate clustering algorithm to gain the clustering results of different number of clusters;choose appropriate validity indexes to evaluate clustering results,and confirm the optimal number of clusters according to the evaluation result.Thus,the core of confirming the optimal number of clusters is to confirm reasonable search scope of number of clusters and evaluation indexes of clustering effectiveness.To confirm the search scope of number of clusters [kmin,kmax],kminandkmaxshould be confirmed.kmin=1refers to even distribution of samples,without obvious characteristic difference.The minimum number of clusters in clustering algorithms is usually 2,i.e.kmin=2.There still no explicit theoretical direction about how to confirmkmax.The empirical rule that most scholars use is:kmax≤which is described in the Literature[Yu and Cheng (2002)].The conclusion is based on the precondition of uncertainty functionf(x) =x-1.But the precondition is not the sufficient condition proved by Literature [Yang,Li,Hu et al.(2006)].The conclusion is deduced based on the precondition that the sample space has fractal geometrical characteristics,and the conclusion have no universality.Besides,sample size and practical category number of all datasets in Literature (Frey and Dueck 2008) also have no such property.Sample size and practical category number of some datasets in Literature [Brusco (2008)] also have no such property.To sum up,kmax≤is only an empirical rule,and does not own universality.In this study,AP algorithm proposed by Frey et al.is applied to confirmkmax.The algorithm is fast and effective.It has been well applied in multiple fields.

    2.2.1 AP clustering algorithm

    AP clustering algorithm [Kapp (2007);Xiao and Yu (2008)] is a kind of clustering algorithm based on affinity information propagation.Its purpose is to find out the set of optimal category representatives so that the sum of similarities of all samples to the nearest category is largest.AP algorithm deems all N samples in the dataset as the candidate category representatives and establishes attraction degree information with other samples for each sample.In other words,similarity between any two samplesxiandx(when Euclidean distance is applied for measurement,s(i,k) = - | |x-v||2) iskikstored inN×Nsimilarity matrix.AP algorithm appliess(i,k)to express the appropriateness of samplexkas samplexi.It is initially supposed that the possibility of all samples chosen as category representative is same,that is,alls(k,k)are set with the same valuep.To pick out the appropriate category representative,it is necessary to gather relevant evidence from samples continuously.Thus,AP algorithm introduces two important information quantities parameters:reliabilityrand availabilitya.These two parameters represent different competition purposer(i,k)points toxkfromxi.It represents the evidence fromxk,and expresses the appropriateness degree ofxkused as the category representative ofxi,anda(i,k)points toxifromxk.It represents the evidence accumulated byxi,and is used to express the appropriateness ofxichoosingxkas the category representative.For any samplexi,the sum of reliability of all samplesr(i,k)and availabilitya(i,k)is calculated.The samplexkinvolving the largest sum is category representative.The iteration process of AP algorithm is the alteration and update process of two information quantities.

    To prevent oscillation in the iteration process,AP algorithm introduces the factorλto prevent oscillation,and the value ofλis between 0 and 1.The update result ofr(i,k)anda(i,k)is gained through the weighing of current iteration value and the last iteration result.

    2.2.2 AP feasibility analysis

    AP algorithm does not give the number of clusters.When the algorithm ends,the number of clusters is determined automatically.For the clustering structure of intra-category compactness and inter-category alienation,AP algorithm can get the accurate clustering result.But for the close clustering structure,the algorithm tends to generate much local clustering.Thus,the number of clusters is generally large and the accurate clustering results cannot be given [Wang,Li,Zhang et al.(2007)].Because of its fast speed and effectiveness,AP algorithm rather than C-means clustering algorithm is used to complete initial category number screening of dataset.Since the category number searched by AP algorithm is greater than,the maximumkmaxof category number is reduced from n (sample size) to the number of clusterskAPgenerated by AP algorithm.Compared with,the scheme involves clustering structure distribution of samples,which is scientific.The experiment also successfully verifies the feasibility of its scheme.

    2.3 Confirmation of new evaluation index

    At present,many validity evaluation indexes have been proposed to analyze clustering results for FCM algorithm,such as partition coefficient VPC [Bezdek (1974)],partition entropy VPE [Bezdek (1974)],VOS proposed by Kim et al.[Kim,Lee,Lee et al.(2004)]VXB index proposed by Xie et al.[Xie and Beni (1991)],VFS index proposed by Fukuyama et al.[Fukuyama and Sugeno (1989)],VK index pro-posed by Kwon [Kwon(1998)],VCWB index proposed by Rezaee et al.[Rezaee,Lelieveldt and Reiber (1998)],VB index proposed by Boudraa [Boudraa (1999)],VSV index proposed by Kim et al.[Kim,Park and Park (2001)],Wint (Weighted inter-intra) [Boudraa (1999)] and Silhouette[Silhouette (2004)] index.However,due to the defects of these indexes,it is hard for them to judge the clustering results.The clustering validity test effect is not ideal enough.Thus,geometric structure of datasets and clusters with different sizes are fully considered in this study.The specific value of intra-category compactness and inter-category separation degree is combined with clustering membership degree to define a new clustering validity index.Besides,the information of dataset and its geometric structure are fully considered.So,the optimal partition and the optimal number of clusters of fuzzy partition can be accurately confirmed by FCM algorithm.On this basis,a method to confirm the optimal number of clusters of samples is proposed to evaluate the clustering results of AP algorithm and determine the optimal number of clusters of samples.

    2.3.1 Definition of compactness Index

    Compactness index is used to measure intra-category compactness,and can be expressed with intra-category weighted squared error sum as follows:

    Ascincreases,and weightωireduce.inhibits the reduction of measured value through weighing each category.

    When the noise point is separately regarded as one category,.At this moment,the weight of such category will be larger than other categories.To make compactness index more robust,is added for adjustment.

    2.3.2 Definition of separation index

    Separation index is a method to measure separation degree of two fuzzy sets.Dispersion between two categories is defined as follows:the sample belongs to the minimum of membership degree of these two categories.Separation measurement uses the largest difference of all paired fuzzy clusters.So,similarity between two fuzzy setsFiandFjis defined as:

    Separation measurement of given fuzzy partition is

    Then,the boundary of separation index is 0 ≤S(c,U) ≤ 1;whenFi=Fj,S(c,U) = 0.

    2.3.3 New evaluation index

    Since compactness and separation have different scalar quantity,normalization result can be expressed as:

    These two formulas are effectively combined to get the new evaluation indexes of clustering effect:

    In the new validity indexes,compactness indexV(c,U)reflects intra-category total variation,and it is used to express the concentration degree of intra-category samples.

    When its value is smaller,compactness of category is better.Separation indexS(c,U)reflects intra-category total variation,and it is used to express the distance among fuzzy clusters.When separation is larger,the partition result is better.V(c,U)andS(c,U)are combined to reflect the partition features of dataset.When the indexes are smaller,intra-category is more compact,intra-category is more separate and the clustering result is better.

    3 Results

    To test validity and operation efficiency of the proposed algorithm,three groups of experiments were applied to carry out simulation test of artificial dataset and true dataset,and the algorithms were compared.

    Table1:Datasets and standard number of clusters

    There are three artificial datasets:Dataset1,Dataset2 and Dataset3.Dataset1 is composed of two two-dimensional Gaussian distribution data with the centers of (0,0) and (20,20)respectively.Each category has 400 samples.Dataset2 is composed of four twodimensional Gaussian distribution data with the centers of (0,0),(5,7),(12,17) and (19,24) respectively.Each category has 400 samples.Dataset3 is the sample dataset generated artificially at random.The number of samples is 150.The true number of clusters is 13.The true dataset is composed of UCI true datasets including Iris and Wine datasets.The standard number clusters,data and sources of artificial datasets and UCI true datasets are shown in Tab.1.

    Experiment 1:Validity experiment of kernel-based improved FCM algorithm

    IRIS dataset and Wine dataset were chosen as the test samples.FMC clustering algorithm and improved FMC clustering algorithm were simulated.The change trend of objective function with iteration times is shown in the Fig.1.

    Figure1:Convergence comparison chart of FCM algorithm based on improved kernel function

    In the Fig.1,Line 1 represents the first clustering of FCM algorithm;Line 2 represents the second clustering of FCM algorithm;Line 3 represents the first clustering of improved FCM algorithm;Line 4 represents the second clustering of improved FCM algorithm.

    According to the figure,the iteration times of improved FCM algorithm is obviously lower than that of traditional FCM algorithm in the process where the target value tends to coincide.Thus,the validity of the algorithm is proved.

    Experiment 2:Validity experiment of AP algorithm determining upper limit of search.Artificial Dataset3 was chosen asexample.Simulation experiment was carried out forrespectively.

    To eliminate the influence of this algorithm,PC was used as the evaluation index for contrast experiment.The optimal number of clusters is shown in the following figure.

    Figure2:Comparison chart of optimal number of clusters

    It can be easily seen that,since the search scope confirmed byis smaller than the practical optimal number of clusters,the accurate optimal number of clusters cannot be gained.The accurate optimal number of clusters is obtained through AP algorithm.

    Experiment 3:Comparison experiment of several validity indexes Artificial Dataset1 and Dataset2 as well as UCI datasets Iris and Wine were selected to verify several representative evaluation indexes via comparisons.The results are shown in Tab.2.Judging from the above results,the evaluation indexes proposed in this study can be all converged and get the accurate number of clusters in 4 groups data.They perform better than other indexes.The theoretical research and experimental results indicate that,compared with other indexes and methods,the indexes in this study have better performance and stability.

    Table2:Comparison of various indicators

    5 Discussion

    The above three groups contrast experiments verify the timeliness of improved algorithm,validity of search scope and the accuracy of evaluation indexes respectively.The result shows that the proposed fuzzy clustering algorithm automatically determining the number of clusters is reliable.

    6 Conclusion

    Based on the analysis of FCM algorithm,an accurate and efficient algorithm used to confirm the optimal number of clusters is proposed in this study to solve the defects of traditional FCM algorithm.The algorithm is improved in the aspects of reducing algorithm complexity,confirming search scope and constructing clustering validity index.In addition,multiple groups of contrast experiments verify the improvement of algorithm with higher efficiency and accuracy.

    Despite some problems exiting in the algorithm,the future researches will be completed to improve the time efficiency,which is caused by mutual application of various algorithms in the process of automatically determining the number of clusters.

    Acknowledgement:This research was financially supported by Natural Science Foundation of China (Grant No.61703426) and Postdoctoral Science Foundation of China (Grant No.2016M602996).

    亚洲精品中文字幕一二三四区| 欧美成狂野欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 精品高清国产在线一区| 老司机福利观看| 日韩有码中文字幕| 69av精品久久久久久| 亚洲av美国av| 18禁观看日本| 女同久久另类99精品国产91| netflix在线观看网站| 校园春色视频在线观看| 久久香蕉激情| 欧美亚洲 丝袜 人妻 在线| 黄色视频,在线免费观看| 久久中文看片网| 亚洲国产精品sss在线观看 | 日本vs欧美在线观看视频| 国产黄色免费在线视频| 俄罗斯特黄特色一大片| 国产一区二区三区在线臀色熟女 | 99精品欧美一区二区三区四区| 亚洲欧美日韩另类电影网站| 欧美乱码精品一区二区三区| 国产1区2区3区精品| 高潮久久久久久久久久久不卡| 一级毛片女人18水好多| 可以免费在线观看a视频的电影网站| 欧美日韩视频精品一区| 1024视频免费在线观看| 大型av网站在线播放| 亚洲av电影在线进入| 99re6热这里在线精品视频| av视频免费观看在线观看| 欧美av亚洲av综合av国产av| 婷婷精品国产亚洲av在线 | 免费女性裸体啪啪无遮挡网站| 亚洲精品国产精品久久久不卡| tube8黄色片| 国产又爽黄色视频| 99国产极品粉嫩在线观看| videos熟女内射| av中文乱码字幕在线| ponron亚洲| 精品国产亚洲在线| 九色亚洲精品在线播放| 成年版毛片免费区| 亚洲自偷自拍图片 自拍| av国产精品久久久久影院| 搡老乐熟女国产| 在线播放国产精品三级| av网站在线播放免费| 99久久精品国产亚洲精品| 波多野结衣一区麻豆| 国产精品偷伦视频观看了| 国产精品 国内视频| 男女免费视频国产| 18禁美女被吸乳视频| 国产精品九九99| 在线免费观看的www视频| 欧美精品高潮呻吟av久久| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 亚洲一区中文字幕在线| 香蕉久久夜色| av不卡在线播放| 无限看片的www在线观看| 久久精品亚洲精品国产色婷小说| 啦啦啦在线免费观看视频4| 在线观看免费高清a一片| 在线av久久热| x7x7x7水蜜桃| 国产97色在线日韩免费| 在线观看免费日韩欧美大片| 黄色视频,在线免费观看| 在线视频色国产色| 欧美在线黄色| 1024香蕉在线观看| 亚洲男人天堂网一区| 高清视频免费观看一区二区| 十八禁网站免费在线| 狠狠婷婷综合久久久久久88av| 亚洲五月天丁香| 欧美精品一区二区免费开放| 久久久久国产一级毛片高清牌| av网站在线播放免费| xxx96com| 老司机在亚洲福利影院| 一区二区三区激情视频| 乱人伦中国视频| 亚洲男人天堂网一区| 高清黄色对白视频在线免费看| 欧美精品一区二区免费开放| 校园春色视频在线观看| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 成年动漫av网址| 91成年电影在线观看| 欧美色视频一区免费| 亚洲免费av在线视频| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 91老司机精品| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产a三级三级三级| 亚洲精品久久成人aⅴ小说| 黄色女人牲交| 亚洲人成77777在线视频| cao死你这个sao货| av网站免费在线观看视频| 中亚洲国语对白在线视频| 国产av又大| 久久久精品国产亚洲av高清涩受| 欧美丝袜亚洲另类 | 老司机亚洲免费影院| 两性午夜刺激爽爽歪歪视频在线观看 | 国内毛片毛片毛片毛片毛片| 久久国产精品大桥未久av| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 亚洲色图av天堂| 一级a爱视频在线免费观看| 国产精品综合久久久久久久免费 | 天天添夜夜摸| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡免费网站照片 | 亚洲国产毛片av蜜桃av| 亚洲av美国av| 精品免费久久久久久久清纯 | 日本黄色视频三级网站网址 | 男女之事视频高清在线观看| а√天堂www在线а√下载 | 热99国产精品久久久久久7| 97人妻天天添夜夜摸| 欧美亚洲日本最大视频资源| 每晚都被弄得嗷嗷叫到高潮| 免费黄频网站在线观看国产| 在线观看一区二区三区激情| 成年动漫av网址| 亚洲视频免费观看视频| 一进一出好大好爽视频| 女性生殖器流出的白浆| 人妻一区二区av| 亚洲精品国产精品久久久不卡| 久久香蕉国产精品| 久久久久国内视频| 婷婷丁香在线五月| 日日爽夜夜爽网站| 久久影院123| av国产精品久久久久影院| 9热在线视频观看99| 一边摸一边抽搐一进一出视频| 每晚都被弄得嗷嗷叫到高潮| 精品国产美女av久久久久小说| 成在线人永久免费视频| 黄片大片在线免费观看| 国产97色在线日韩免费| 国产精品 欧美亚洲| 久久国产亚洲av麻豆专区| a级毛片黄视频| 热re99久久精品国产66热6| 亚洲第一av免费看| 久久久久久久午夜电影 | 国产欧美日韩精品亚洲av| 国产精品九九99| cao死你这个sao货| 狂野欧美激情性xxxx| 高清毛片免费观看视频网站 | 精品国产乱码久久久久久男人| 久久精品成人免费网站| x7x7x7水蜜桃| 最近最新中文字幕大全电影3 | 成年女人毛片免费观看观看9 | 亚洲一区中文字幕在线| 一边摸一边做爽爽视频免费| 免费黄频网站在线观看国产| 在线永久观看黄色视频| 一个人免费在线观看的高清视频| 在线观看午夜福利视频| 两人在一起打扑克的视频| 高清av免费在线| 国产日韩一区二区三区精品不卡| 国产99久久九九免费精品| 欧美乱码精品一区二区三区| 少妇粗大呻吟视频| 十八禁高潮呻吟视频| 久热这里只有精品99| 人妻一区二区av| 90打野战视频偷拍视频| 亚洲av熟女| 欧美人与性动交α欧美精品济南到| 久久久久久亚洲精品国产蜜桃av| 国产激情久久老熟女| 久久久久久久久免费视频了| 国产在视频线精品| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 中文字幕最新亚洲高清| 成人精品一区二区免费| 97人妻天天添夜夜摸| 成人av一区二区三区在线看| 国产野战对白在线观看| 欧美 日韩 精品 国产| www.自偷自拍.com| 亚洲国产精品sss在线观看 | 91在线观看av| 午夜激情av网站| 亚洲专区中文字幕在线| 久久狼人影院| 老汉色av国产亚洲站长工具| 大陆偷拍与自拍| 久久久国产成人免费| 高清在线国产一区| 好看av亚洲va欧美ⅴa在| 亚洲 国产 在线| 人妻一区二区av| 日本a在线网址| 久久九九热精品免费| 国产成人免费观看mmmm| 高清在线国产一区| 老司机亚洲免费影院| videos熟女内射| videosex国产| 视频在线观看一区二区三区| 久久九九热精品免费| 日本vs欧美在线观看视频| 日韩欧美在线二视频 | 在线视频色国产色| a级片在线免费高清观看视频| 国产一区二区三区综合在线观看| 视频区欧美日本亚洲| 亚洲av熟女| 如日韩欧美国产精品一区二区三区| 精品熟女少妇八av免费久了| 女人精品久久久久毛片| 免费av中文字幕在线| 国产99久久九九免费精品| 91在线观看av| 国产精品98久久久久久宅男小说| 美女视频免费永久观看网站| 亚洲成人免费av在线播放| 脱女人内裤的视频| 精品高清国产在线一区| 午夜精品国产一区二区电影| 99热只有精品国产| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 女同久久另类99精品国产91| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡av网站在线观看| 男女午夜视频在线观看| av欧美777| 亚洲精品粉嫩美女一区| 成年人免费黄色播放视频| 亚洲熟妇熟女久久| 51午夜福利影视在线观看| 免费女性裸体啪啪无遮挡网站| 精品无人区乱码1区二区| 在线观看免费高清a一片| 丝袜在线中文字幕| 黄片小视频在线播放| 国产有黄有色有爽视频| 欧美精品一区二区免费开放| 欧美成人免费av一区二区三区 | 看片在线看免费视频| 国产成+人综合+亚洲专区| 国产精品免费视频内射| 飞空精品影院首页| 精品一区二区三卡| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区91| 后天国语完整版免费观看| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区 | 久久久久久久午夜电影 | 丝袜美腿诱惑在线| 久久性视频一级片| 久久久久视频综合| 夜夜躁狠狠躁天天躁| 9热在线视频观看99| 两个人免费观看高清视频| 又大又爽又粗| 高潮久久久久久久久久久不卡| 纯流量卡能插随身wifi吗| 90打野战视频偷拍视频| 99久久国产精品久久久| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频 | 亚洲色图综合在线观看| www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 999精品在线视频| 色94色欧美一区二区| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 亚洲人成77777在线视频| 男女高潮啪啪啪动态图| 嫩草影视91久久| 国产亚洲精品久久久久5区| 精品第一国产精品| 精品电影一区二区在线| а√天堂www在线а√下载 | 国产成人欧美| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 操美女的视频在线观看| 亚洲一区中文字幕在线| 国产主播在线观看一区二区| 久久人妻熟女aⅴ| 夜夜躁狠狠躁天天躁| 无遮挡黄片免费观看| 国产色视频综合| 91在线观看av| 国产91精品成人一区二区三区| 99香蕉大伊视频| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 国产aⅴ精品一区二区三区波| 成人av一区二区三区在线看| 久久人妻福利社区极品人妻图片| 国产精品欧美亚洲77777| 美女视频免费永久观看网站| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 人人妻人人爽人人添夜夜欢视频| 视频在线观看一区二区三区| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 国产淫语在线视频| 夫妻午夜视频| 亚洲视频免费观看视频| 精品第一国产精品| 91精品三级在线观看| xxx96com| 久久久久精品人妻al黑| 免费一级毛片在线播放高清视频 | 久久亚洲精品不卡| 亚洲国产中文字幕在线视频| 在线永久观看黄色视频| av天堂久久9| 国产精品国产av在线观看| 午夜成年电影在线免费观看| 国产淫语在线视频| 欧美另类亚洲清纯唯美| av视频免费观看在线观看| 欧洲精品卡2卡3卡4卡5卡区| 他把我摸到了高潮在线观看| 高清在线国产一区| 亚洲,欧美精品.| 最近最新中文字幕大全电影3 | av网站在线播放免费| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲第一av免费看| 日韩欧美在线二视频 | 欧美最黄视频在线播放免费 | 狠狠婷婷综合久久久久久88av| 亚洲一区二区三区不卡视频| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 精品国产乱子伦一区二区三区| 亚洲男人天堂网一区| 亚洲情色 制服丝袜| 亚洲av美国av| 窝窝影院91人妻| 亚洲精品美女久久av网站| 精品国内亚洲2022精品成人 | 国产高清国产精品国产三级| 国产精品国产av在线观看| 法律面前人人平等表现在哪些方面| 国产成人系列免费观看| 女人被狂操c到高潮| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 色在线成人网| 美女扒开内裤让男人捅视频| 久久精品国产清高在天天线| 怎么达到女性高潮| 露出奶头的视频| 丝袜美足系列| 一夜夜www| 亚洲一区中文字幕在线| 视频在线观看一区二区三区| 婷婷成人精品国产| 国产成人av教育| 精品人妻1区二区| 最新在线观看一区二区三区| av在线播放免费不卡| 欧美国产精品一级二级三级| 亚洲视频免费观看视频| 脱女人内裤的视频| 大陆偷拍与自拍| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全免费视频| 在线观看66精品国产| 亚洲一区二区三区欧美精品| 婷婷成人精品国产| 精品国产一区二区久久| 91成人精品电影| 国产成人欧美在线观看 | 50天的宝宝边吃奶边哭怎么回事| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 日韩视频一区二区在线观看| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产深夜福利视频在线观看| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 久久久久精品人妻al黑| 久久精品国产综合久久久| 18禁美女被吸乳视频| 精品福利观看| 欧美乱妇无乱码| 亚洲全国av大片| 色婷婷av一区二区三区视频| 国产精品香港三级国产av潘金莲| 国产aⅴ精品一区二区三区波| 捣出白浆h1v1| 国产亚洲精品一区二区www | 老司机靠b影院| 免费在线观看黄色视频的| 日本五十路高清| 女人被狂操c到高潮| 在线观看免费视频网站a站| 高清在线国产一区| 国产午夜精品久久久久久| 亚洲欧美一区二区三区久久| 下体分泌物呈黄色| 丝袜在线中文字幕| 欧美黄色淫秽网站| 村上凉子中文字幕在线| 在线播放国产精品三级| 亚洲精品粉嫩美女一区| 高清欧美精品videossex| 久久精品国产亚洲av高清一级| 九色亚洲精品在线播放| 麻豆国产av国片精品| 91字幕亚洲| 亚洲精品乱久久久久久| 国产精品香港三级国产av潘金莲| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 久久热在线av| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 国产熟女午夜一区二区三区| 成人特级黄色片久久久久久久| 在线看a的网站| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久久久免费视频 | 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | av福利片在线| 国产精品综合久久久久久久免费 | 最新在线观看一区二区三区| 激情视频va一区二区三区| а√天堂www在线а√下载 | 波多野结衣av一区二区av| 91国产中文字幕| 亚洲一区中文字幕在线| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 一本一本久久a久久精品综合妖精| 亚洲欧洲精品一区二区精品久久久| 国产不卡一卡二| 老司机福利观看| 亚洲成人免费av在线播放| 精品国产一区二区久久| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 黄色 视频免费看| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 大片电影免费在线观看免费| 亚洲精品美女久久久久99蜜臀| 一本综合久久免费| 十八禁人妻一区二区| 自线自在国产av| 美女扒开内裤让男人捅视频| 成年人免费黄色播放视频| 亚洲自偷自拍图片 自拍| 亚洲人成电影观看| 国产男靠女视频免费网站| 成人18禁在线播放| 91成年电影在线观看| 97人妻天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 午夜福利视频在线观看免费| 久久热在线av| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲一级av第二区| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 欧美最黄视频在线播放免费 | 1024视频免费在线观看| 日韩制服丝袜自拍偷拍| 亚洲国产中文字幕在线视频| 亚洲中文av在线| 9热在线视频观看99| av福利片在线| 天堂√8在线中文| 欧美人与性动交α欧美软件| 欧美精品一区二区免费开放| 欧美精品高潮呻吟av久久| 91老司机精品| 日本a在线网址| 国产精品久久久久久精品古装| 亚洲一区高清亚洲精品| 美女高潮喷水抽搐中文字幕| 国产免费男女视频| 在线观看免费日韩欧美大片| 精品亚洲成a人片在线观看| 久久影院123| 叶爱在线成人免费视频播放| 激情视频va一区二区三区| 女人被狂操c到高潮| 人人妻人人爽人人添夜夜欢视频| 欧美 亚洲 国产 日韩一| 如日韩欧美国产精品一区二区三区| tube8黄色片| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av高清一级| 飞空精品影院首页| 国产激情久久老熟女| 日韩熟女老妇一区二区性免费视频| 777久久人妻少妇嫩草av网站| 国产国语露脸激情在线看| 久久久精品免费免费高清| 亚洲成人手机| 18禁裸乳无遮挡免费网站照片 | 69精品国产乱码久久久| 午夜福利欧美成人| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| 亚洲av成人不卡在线观看播放网| 成人影院久久| 俄罗斯特黄特色一大片| 超碰97精品在线观看| 成人三级做爰电影| 19禁男女啪啪无遮挡网站| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 日韩欧美三级三区| 色婷婷久久久亚洲欧美| 国产精品美女特级片免费视频播放器 | 国产免费男女视频| 久久久国产成人免费| 亚洲精品久久成人aⅴ小说| 色综合婷婷激情| 黄片大片在线免费观看| 天天影视国产精品| 国产精品电影一区二区三区 | 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 色在线成人网| 亚洲欧洲精品一区二区精品久久久| 日本黄色日本黄色录像| 午夜日韩欧美国产| 国产成人精品无人区| 日本黄色视频三级网站网址 | 好男人电影高清在线观看| 久久久久国产一级毛片高清牌| 热99久久久久精品小说推荐| 一级毛片精品| 日本a在线网址| 亚洲中文字幕日韩| 99久久国产精品久久久| 啦啦啦免费观看视频1| 久久影院123| 午夜福利免费观看在线| 欧美日韩精品网址| 在线观看日韩欧美| 日本欧美视频一区| 欧美大码av| 久久久久精品人妻al黑| 天天躁日日躁夜夜躁夜夜| 交换朋友夫妻互换小说| 国产一区二区三区视频了| 久久久精品国产亚洲av高清涩受| 欧美精品高潮呻吟av久久| 男女高潮啪啪啪动态图| 午夜免费观看网址| 制服人妻中文乱码| 亚洲男人天堂网一区| 我的亚洲天堂| 女人久久www免费人成看片| 女性被躁到高潮视频| 久久久久国内视频|