• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Integration for Trimmed Geometries in Isogeometric Analysis

    2019-08-13 05:54:44JinlanXuNingningSunLaixinShuTimonRabczukandGangXu
    Computers Materials&Continua 2019年8期

    Jinlan Xu,Ningning Sun,Laixin Shu,Timon Rabczuk and Gang Xu,

    Abstract: Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design (CAD).In this paper,an improved integration for trimmed geometries in isogeometric analysis (IGA) is proposed.The proposed method can improve the accuracy of the approximation and the condition number of the stiffness matrix.In addition,comparing to the traditional approaches,the trimming techniques can reduce the number of the integration elements with much fewer integration points,which improves the computational efficiency significantly.Several examples are illustrated to show the effectiveness of the proposed approach.

    Keywords: Isogeometric analysis,trimming curves,trimmed geometry,computational efficiency.

    1 Introduction

    IGA is an numerical method,combining the computer aided design (CAD) and finite element analysis (FEA) with the same NURBS basis functions.Geometries in CAD are usually represented by splines (B-splines,NURBS,T-splines,PHT-splines for instance),with the geometries in FEA are commonly based on Lagrange polynomials.These two different geometry descriptions introduce inconsistencies in CAD and CAE designs which require reapproximating the CAD geometries in CAE.This does not only introduce errors in the geometry but increase the entire design-to-analysis time.It was demonstrated in Cohen et al.[Cohen,Martin,Kirby et al.(2015);Xu,Mourrain,Duvigneau et al.(2013);Xu,Mourrain,Duvigneau et al.(2011)] that the mesh quality has a big impact on the analysis results,and meshing operation occupies a large percentage in the entire analysis procedure.IGA unifies the geometry representation of design and analysis,by using the same CAD spline functions in CAE simplifying the design-analyze process,and ensuring the exact geometry during the analysis.If a high precision numerical solution is requested,mesh refinement is inevitable.In FEA,posterior error is often used to guide the refinement,and the refinement based on the mesh is sometimes not appropriate,so re-meshing will be needed which have to be interact with original model.In practical engineering analysis,this is a severe bottleneck.IGA applies the same spline basis functions for the geometry generation and the numerical analysis without remeshing procedure.The geometry is represented exactly at the coarse level,which avoid introducing the geometrical errors.Refinement at any level can take place completely within the analysis framework,which eliminates the necessity to communicate with the geometry.

    Most of CAD models cannot be represented by a single tensor-product spline surface but several patches of spline surfaces are needed [Xu,Chen and Deng (2015)].However,it is not easy to construct a complex geometry with multiple patches of spline surfaces,especially a certain continuity is required.In such cases,trimming techniques are usually employed.But trimming technology brings gaps and overlaps between surfaces because of inaccuracies along the intersection.Other techniques to approximate the geometry without gaps and overlaps are proposed,including T-splines [Sederberg,Zheng,Bakenov et al.(2003);Brovka,López,Escobar et al.(2014)],PHT-splines [Deng,Chen,Li et al.(2008);Chan,Anitescu and Rabczuk (2017)],THB-splines [Falini,Speh and Jüttler(2015)],and LR B-splines [Johannessen,Kvamsdal and Dokken (2014)] etc.If trimming techniques are used,normal elements and trimmed elements will be considered separately during isogeometric analysis.Kim et al.[Kim,Seo and Youn (2009)] proposed a method to solve this problem.Schmidt et al.[Schmidt,Wüchner and Bletzinger (2012)] proposed a reconstruction method using geometric bases to evaluate the finite element constituents of trimmed elements.This method covers both bases of a single patch and multi-patches.Shen et al.[Shen,Kosinka,Sabin et al.(2014)] introduced a method to convert trimmed NURBS surfaces to subdivision surfaces,and their method can produce gap-free models which are mandatory for numerical analysis.Moreover,the resulting models areG1continuous between two adjacent surfaces.Zhu et al.[Zhu,Hu and Ma (2016)] proposed a spline called B++ spline,to express the trimmed NURBS patch in an analytic form.They solved the problem of implementing essential boundary conditions in isogeometric analysis.The basis functions of B++ spline satisfy the Kronecker delta property which allows imposing essential boundary condition strongly,and this is similar with FEM.Other interesting approaches on isogeometric analysis for trimmed surfaces,can be found in Kang et al.[Kang and Youn (2016);Breitenberger,Bletzinger and Roland (2013);Beer,Marussig,Zechner et al.(2014);Ruess,Schillinger,?zcan et al.(2014);Wang,Benson and Nagy (2015);Zhu,Ma and Hu (2017);Marussig,Zechner,Beer et al.(2016)]and references therein.In this paper,we improve the method proposed by Kim et al.[Kim,Seo and Youn (2010)].

    The original method in Kim et al.[Kim,Seo and Youn (2010)] is based on NURBS-enhanced integration.Both surface and trimming curve are represented using NURBS.For the trimming curve,there are two kinds of curve information in IGES files,which are defined in physical and parametric domain respectively.They classified the trimmed elements in parametric domain into three types,which correspond to the following three types in parametric domain:a pentagon with one curved side;a quadrilateral with one curved side;a triangle with one curved side.For the integration of trimmed element,Gauss quadrature points are chosen as integration points.In their method,curved triangles are parameterized by rectangles which make the integration simple.Pentagons are decomposed into three triangles where two of the triangles are normal,the other one is with one curved side.Quadrilaterals are decomposed into two triangles where one is normal triangle and the other one is triangle with one curved side.To summarize,the final integration elements are:(a) triangles with one NURBS curved side,(b) normal triangles.Triangular Gauss integration points are used for normal triangles.But for triangles with one NURBS curved side,they are transformed to a rectangular domain through several mappings,hence Gauss quadratures in quadrilateral are used during integration.

    In the method proposed in this paper,the procedure of isogeometric analysis on trimmed geometries is similar,but the integration elements are a little different from the original method.Based on the three types of trimmed elements in parametric domain,the integration elements are classified into (a) triangles with one NURBS curved side,(b)quadrilaterals.The pentagon will be decomposed to two quadrilaterals and the quadrilaterals will not be decomposed into two triangles in our method,therefore the integration elements are less than original methods and integration points will be reduced at the same time which can improve the computational efficiency.

    The paper is organized as follows.In Section 2,we summarize the basics of the IGA formulation on trimmed geometries presented in Kim et al.[Kim,Seo and Youn (2010)].In Section 3,we describe our method to deal with trimmed element in details.Section 4 gives several examples of our proposed method,and comparison to the method in Kim et al.[Kim,Seo and Youn (2010)] are also presented.We end this paper with conclusions in Section 5.

    2 Preliminaries

    NURBS bases are the most common basis functions for representing free-form objects.However,tensor product form of NURBS surfaces makes the representation of complex objects non-trivial.Trimming techniques eliminate this limitation of NURBS.There are many research works of isogeometric analysis for trimmed geometries [Zhu,Ma and Hu(2017);Guo,Ruess and Schillinger (2017);Ruess,Schillinger,Bazilevs et al.(2013);Breitenberger (2016);Marussig,Zechner,Beer et al.(2017)].But the earliest work is proposed by Kim et al.[Kim,Seo and Youn (2009)],which is simple and direct.As our method is based on this work,we will give a brief introduction about the flowchart of this work in this section.

    2.1 Flowchart of trimmed isogeometric analysis

    Trimming techniques employ NURBS curves to trim unwanted parts of geometries from NURBS surfaces as shown in Fig.1.And trimming technique not only simplifies the construction of complex models,but also keeps the smoothness of the untrimmed parts.If both trimming curves and untrimmed surfaces are NURBS,the resulting trimmed surface is called trimmed NURBS surface.For a trimmed surface,the CAD files contain the surface information in the parametric space and physical space.Fig.1 shows two surfaces in physical space trimmed by shapes of butterfly and sheep.

    Figure1:Two examples of trimmed NURBS surfaces

    Suppose a trimmed surface is represented by a NURBS surface and a NURBS curve:

    If the physical equation defined on trimmed surface is a Poisson equation with Dirichlet boundary condition,

    where Ωis the trimmed geometry represented by a NURBS surface and several trimming NURBS curves.

    The coefficient matrix of the weak form is given by

    Figure2:Three types of elements:(a) type A with one corner trimmed out;(b) type B with two corners trimmed out;(c) type C with three corners trimmed out

    Figure3:Segmentation of elements with type A and type B

    Figure4:Transformation of curved triangular cell

    2.2 Imposition of essential boundary condition

    In isogeometric analysis,essential boundary conditions cannot be imposed as in FEM,because NURBS basis functions do not satisfy the Kronecker delta property.For homogeneous essential boundary conditions,the coefficients of basis functions corresponding to boundary are set to zero.The imposition of non-homogeneous essential boundary conditions requires special techniques such as modification of the weak form or the solution of an interpolation problem at the boundary,see e.g.,[Ruess,Schillinger,?zcan et al.(2014)].

    In trimmed isogeometric analysis,additional challenges occur for imposing essential boundary condition.The boundary conditions need to be imposed on the trimming curves but the degree of freedom (DOF) is defined on the NURBS surface.Furthermore,there is no mathematical relationship between these two representations.In Kim et al.[Kim,Seo and Youn (2010)],they use Lagrange multiplier method to impose essential boundary conditions on trimming curves.And we use the same method in our algorithm.

    The Lagrange multipliersλ(u)are supposed to be expressed as

    KU+ATλ=f,AU=b,

    where

    3 Improved integration on trimmed geometry

    The main contribution of our method is to modify the integration rules for the trimmed elements.For type C in Kim et al.[Kim,Seo and Youn (2010)],a similar method is applied to generate integral points on the curved triangle,but for type B [Kim,Seo and Youn (2010)],a mapping from a rectangle to the curved quadrilateral element is used which avoids the triangular decomposition of the curved quadrilateral element.For type A,decomposition is adopted but it is different from the method in Kim et al.[Kim,Seo and Youn (2010)].The curved pentagon is segmented to two quadrilaterals,one with a curved edge and the other is rectangular.

    Fig.5 shows the decomposition of type A in our method.The segmentation of trimmed elements of type A can be chosen on the basis of the intersection points.SupposePaandPbare two intersection points,wherePbis closer to the corner point which is trimmed out,then the trimmed element is segmented at pointPa.

    Figure5:The trimmed element of type A is decomposed to two quadrilaterals

    Figure6:Trimmed element of type B.There are four cases for the curved quadrilaterals according to which two consecutive corners are trimmed out

    Except trimmed elements of type C,all trimmed elements are represented as quadrilaterals.For the curved quadrilateral which contains one curved edge as part of trimming curves,the mapping from unit rectangle is constructed as follows:according to the location of the curved edge,there are four types of curved quadrilaterals as shown in Fig.6.Supposeare parameters of the trimming curve at the intersections.For each case,the mappingQbetween the curved quadrilateral and rectangle can be described as follows.

    (a):Ifu1is the parameter of the left intersection point,the mappingQis constructed as

    otherwise,

    (b):Ifu1is the parameter of the right intersection point,the mappingQis constructed as

    otherwise,

    (c):Ifu1is the parameter of the bottom intersection point,the mappingQis constructed as

    otherwise,

    (d):Ifu1is the parameter of the top intersection point,the mappingQis constructed as

    otherwise,Gauss quadrature is commonly used in isogeometric FE approaches.Compared to the method proposed by Kim et al.[Kim,Seo and Youn (2010)],the proposed method leads to less integration points.Fig.7 shows the distribution of Gauss points in our approach compared to the approach in Kim et al.[Kim,Seo and Youn (2010)] for one trimmed element.In Fig.7,it can be seen that Trimmed element of type A is decomposed into three triangles in Kim et al.[Kim,Seo and Youn (2010)],where one of triangle with a curved edge.Gauss points are selected for each triangle.But in our method,element of type A is decomposed into two quadrilaterals,and the number of Gauss points for each quadrilateral is the same with curved triangle.For element of type B,no decomposition is carried out in our method,since then the number of Gauss points is less than the method in Kim et al.[Kim,Seo and Youn (2010)].In fact,the reduction of integral points can be estimated.SupposenGauss points are chosen for the normal triangle,andmGauss points are chosen for the curved triangle.As the number of integral points for quadrilateral element is the same with curved triangle,we can give the number of integral points for each type of trimmed element,see Tab.1.

    Figure7:Integration points and segmentation of trimmed elements.(a)(c) type A and type B elements in Kim et al.[Kim,Seo and Youn (2010)],(b)(d) type A and type B elements in our method

    Table1:Comparison of the number of integral points

    4 Numerical examples

    In this section,we solve the Poisson equation on several trimmed geometries to show the effectiveness of our method,and compare our results with results obtained by the method in Kim et al.[Kim,Seo and Youn (2010)].

    For the method in Kim et al.[Kim,Seo and Youn (2010)],basis functions are NURBS basis functions.Three Gaussian points are used in each direction for quadrilateral element,and seven Gaussian points are used for the regular triangle.

    Figure8:Integration points and segmentation of trimmed elements with3× 3elements:(a) computational domain of EX1;(b) integration points in Kim et al.[Kim,Seo and Youn (2010)];(c) integration points in the proposed method

    In the first example,the exact solution isx2+y2-1.We choose a very simple geometry,the computational domain is fan-shaped.It is constructed by trimming a corner of a rectangle using an arc represented by a NURBS curve with degree two.In this example,we compare the correspondingL2error of numerical solution,and the condition number of stiffness matrix with the method in Kim et al.[Kim,Seo and Youn (2010)] as shown in Tab.2.We also compare the computational cost of Ex1 as presented in Tab.3,whereTerepresents the trimmed element andrepresents the integration element after the decomposition ofTe.

    Table2:Comparison of our method with the proposed method in Kim et al.[Kim,Seo and Youn (2010)] for Ex1

    Table3:Comparison of computational cost with the Method in Kim et al.[Kim,Seo and Youn (2010)]

    Figure9:Comparison of numerical solution with 20 × 20grid.(a) the method in Kim et al.[Kim,Seo and Youn (2010)];(b) our method;(c) exact solution;(d)L2error of method in Kim et al.[Kim,Seo and Youn (2010)];(e)L2error of our proposed method

    We use the method presented in Kim et al.[Kim,Seo and Youn (2009)] to find all the active elements,and construct the mapping from the unit square [0,1]×[0,1]to each trimmed element as described in Section 3.When the spline surface consists of 3× 3elements,with our method,the distribution of the integration points on the computational domain is more regular than the method in Kim et al.[Kim,Seo and Youn(2010)] as illustrated in Fig.8.The corresponding numerical solution andL2error are shown in Fig.9.From Tab.2,we can see that the condition number of the stiffness matrix and theL2error of the numerical solution is reduced almost by one half compared to the method in Kim et al.[Kim,Seo and Youn (2010)] on the refined grid.

    In the second example,exact solution isx(1 -x)y(1 -y).We construct a computational domain with a little more complex geometry,where the rectangle is trimmed by a closed spline curve.There are two protrusions in the interior of the final trimmed geometry.In this example,the surface contains6 × 6elements first.However,there are other kind of trimmed elements except of three types we processed in this coarse mesh,so local refinement is performed on the surface as described in Kim et al.[Kim,Seo and Youn(2009)] until there are only three types of trimmed elements.In this example,there are many trimmed elements of type B,as shown in Fig.12.The element of type B is decomposed into two triangles with the method in Kim et al.[Kim,Seo and Youn(2010)],integration on this element then becomes integration on these two triangles.In the proposed method,we construct a mapping from type B element to rectangle directly while keeping the number of integral elements.Our method can reduce a half integral points and integral elements for this type of trimmed element.For type A,one third of integral points and integral elements can be reduced by our method.

    In the third example,we also choose the exact solutionx(1 -x)y(1 -y).A round hole is trimmed out from a rectangle as computational domain.The number of trimmed elements of type A and type C are more than type B,in this case the reduction of integral points and integral elements is not as significant as the first example.It can be clearly observed from Tab.2.And in this example,the number of trimmed elements of type A becomes more and more during mesh refinement process,and the reduction of integral elements is clearly demonstrated.

    Figure10:The computational domain of EX2.(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn(2010)];(b) enlarge the area of yellow rectangle in (a);(c) elements and integral points of our method;(d) enlarge the area of yellow rectangle in (c)

    Figure11:The computational domain of EX3:(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn (2010)];(b) enlarge the area of yellow rectangle in (a);(c) elements and integral points of our method;(d) enlarge the area of yellow rectangle in (c);(e) numerical solution;(f)L2error is 4.43065× 10-4

    Figure12:The computational domain of EX3.(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn (2010)];(b) elements and integral points of our method;(c) numerical solution of 10× 10grid;(d)L2error is 3.26665× 10-4

    5 Conclusion

    In this paper,we propose an improved integration of isogeometric analysis over trimmed geometries on two-dimensional planar computational domain.By the proposed method,the integral elements and integral points in analysis process can be reduced significantly,which improves the efficiency of analysis.Moreover,compared with the previous method,the distribution of integral points is more regular,and the accuracy of numerical solution is also improved.Several numerical examples are given to show the effectiveness of the proposed approach.

    In the future,we will consider more efficient integration method,and the improvement of integration on curved triangular element.Extension to three-dimensional isogeometric analysis is also a part of our future work.

    Acknowledgement:This research was supported by the National Nature Science Foundation of China under Grant Nos.61602138,61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LQ16F020005,LR16F020003,and Zhejiang Provincial Science and Technology Program in China (2018C01030).

    国产亚洲精品综合一区在线观看 | 熟女少妇亚洲综合色aaa.| 一级毛片精品| 又紧又爽又黄一区二区| 亚洲片人在线观看| 亚洲av第一区精品v没综合| 免费看十八禁软件| 久久中文字幕人妻熟女| 麻豆久久精品国产亚洲av| 久久精品91蜜桃| 日韩免费av在线播放| 97碰自拍视频| 欧美在线黄色| 中文字幕人妻丝袜一区二区| 亚洲av日韩精品久久久久久密| 51午夜福利影视在线观看| 一级片免费观看大全| 1024手机看黄色片| 在线看三级毛片| 亚洲国产中文字幕在线视频| 日韩欧美国产在线观看| 亚洲av成人一区二区三| 国内少妇人妻偷人精品xxx网站 | 国产av在哪里看| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 九色国产91popny在线| 国产精品1区2区在线观看.| 午夜福利欧美成人| 1024视频免费在线观看| 中文字幕最新亚洲高清| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 麻豆av在线久日| 午夜久久久在线观看| 欧美激情久久久久久爽电影| 久热这里只有精品99| 亚洲七黄色美女视频| 欧美中文日本在线观看视频| 激情在线观看视频在线高清| 久久精品国产亚洲av香蕉五月| 啪啪无遮挡十八禁网站| 欧美国产日韩亚洲一区| 夜夜看夜夜爽夜夜摸| 亚洲成人国产一区在线观看| 精品熟女少妇八av免费久了| 亚洲国产日韩欧美精品在线观看 | 两个人视频免费观看高清| 午夜激情福利司机影院| 中文在线观看免费www的网站 | 神马国产精品三级电影在线观看 | 人人妻人人澡人人看| 黄色毛片三级朝国网站| 午夜影院日韩av| 欧美日韩亚洲综合一区二区三区_| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 观看免费一级毛片| 天天躁夜夜躁狠狠躁躁| 制服丝袜大香蕉在线| 在线av久久热| av免费在线观看网站| 国产又色又爽无遮挡免费看| 俺也久久电影网| 久久国产精品人妻蜜桃| 不卡一级毛片| 成在线人永久免费视频| 国产激情久久老熟女| 国语自产精品视频在线第100页| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 成人亚洲精品av一区二区| 日韩精品中文字幕看吧| 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 国产野战对白在线观看| 日本 欧美在线| 国内久久婷婷六月综合欲色啪| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 禁无遮挡网站| 亚洲欧美激情综合另类| 高清在线国产一区| 免费在线观看视频国产中文字幕亚洲| 啦啦啦免费观看视频1| 搡老妇女老女人老熟妇| 欧美大码av| 精品一区二区三区视频在线观看免费| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 久久久久免费精品人妻一区二区 | 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 亚洲全国av大片| 亚洲性夜色夜夜综合| 在线av久久热| 免费无遮挡裸体视频| 一区二区日韩欧美中文字幕| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 香蕉国产在线看| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| 国产精品av久久久久免费| 中出人妻视频一区二区| 又紧又爽又黄一区二区| 国产精品九九99| aaaaa片日本免费| 久久久久免费精品人妻一区二区 | 国产亚洲av嫩草精品影院| 中文字幕久久专区| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品在线美女| 成人免费观看视频高清| 内地一区二区视频在线| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 如何舔出高潮| 永久网站在线| 国产精品日韩av在线免费观看| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 亚洲av.av天堂| 最近在线观看免费完整版| 久久久久久久久中文| 亚洲精品亚洲一区二区| 国产亚洲91精品色在线| 18禁在线无遮挡免费观看视频 | 欧美日韩一区二区视频在线观看视频在线 | 亚洲美女视频黄频| 最近中文字幕高清免费大全6| 97超级碰碰碰精品色视频在线观看| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 中文字幕免费在线视频6| 欧美+日韩+精品| 日日啪夜夜撸| 变态另类丝袜制服| 国产美女午夜福利| 一个人看的www免费观看视频| 黑人高潮一二区| 美女 人体艺术 gogo| 91狼人影院| 男女做爰动态图高潮gif福利片| 久久天躁狠狠躁夜夜2o2o| 免费黄网站久久成人精品| 69av精品久久久久久| 亚洲精品影视一区二区三区av| 欧美xxxx性猛交bbbb| 色尼玛亚洲综合影院| 91狼人影院| 九九在线视频观看精品| av天堂在线播放| 性欧美人与动物交配| 麻豆一二三区av精品| 一区二区三区高清视频在线| 精品午夜福利在线看| 禁无遮挡网站| 午夜久久久久精精品| 国产黄片美女视频| 18禁黄网站禁片免费观看直播| av在线天堂中文字幕| 欧美xxxx性猛交bbbb| 国产色婷婷99| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 精品久久久久久久久亚洲| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 美女被艹到高潮喷水动态| 亚洲国产高清在线一区二区三| 国产高清激情床上av| 色播亚洲综合网| 秋霞在线观看毛片| 日韩欧美精品v在线| 狠狠狠狠99中文字幕| 如何舔出高潮| 在线国产一区二区在线| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 国内精品宾馆在线| 99久久精品一区二区三区| ponron亚洲| 久久久久久大精品| 成年免费大片在线观看| 欧美+日韩+精品| 日本五十路高清| 少妇裸体淫交视频免费看高清| 午夜福利成人在线免费观看| 人人妻人人看人人澡| 国产乱人视频| 我要看日韩黄色一级片| 秋霞在线观看毛片| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 亚洲av第一区精品v没综合| 老女人水多毛片| 精品一区二区三区人妻视频| 国产私拍福利视频在线观看| 日韩高清综合在线| 欧美另类亚洲清纯唯美| 日韩,欧美,国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 小蜜桃在线观看免费完整版高清| 又粗又爽又猛毛片免费看| 最好的美女福利视频网| 天天一区二区日本电影三级| 久久天躁狠狠躁夜夜2o2o| 夜夜夜夜夜久久久久| 一本精品99久久精品77| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 国产综合懂色| 精品不卡国产一区二区三区| 国产成年人精品一区二区| 久久午夜亚洲精品久久| 看黄色毛片网站| 日日啪夜夜撸| 淫秽高清视频在线观看| 久久人人爽人人片av| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| 老熟妇仑乱视频hdxx| 亚洲四区av| 超碰av人人做人人爽久久| 色哟哟哟哟哟哟| 日本色播在线视频| 国产一区二区激情短视频| 国产精品日韩av在线免费观看| 99视频精品全部免费 在线| 欧美三级亚洲精品| 色吧在线观看| 久99久视频精品免费| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看 | 人人妻人人澡人人爽人人夜夜 | 中文在线观看免费www的网站| 欧美日韩一区二区视频在线观看视频在线 | 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 婷婷亚洲欧美| 久久综合国产亚洲精品| 日韩大尺度精品在线看网址| 亚洲欧美成人综合另类久久久 | 国产精品永久免费网站| 中文在线观看免费www的网站| 亚洲中文日韩欧美视频| 国产一区二区在线观看日韩| 好男人在线观看高清免费视频| 少妇熟女aⅴ在线视频| 国产av不卡久久| 成人亚洲精品av一区二区| 日韩一本色道免费dvd| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| 日韩三级伦理在线观看| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 国产成人91sexporn| 欧美3d第一页| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| av.在线天堂| 日日干狠狠操夜夜爽| 看片在线看免费视频| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 国产免费一级a男人的天堂| 国产精品女同一区二区软件| 看片在线看免费视频| 丰满人妻一区二区三区视频av| 成年女人毛片免费观看观看9| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 午夜日韩欧美国产| 97在线视频观看| 在线播放国产精品三级| 亚洲欧美成人综合另类久久久 | 好男人在线观看高清免费视频| 久久久欧美国产精品| 日产精品乱码卡一卡2卡三| 天堂动漫精品| 国产午夜精品论理片| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 国产精品国产三级国产av玫瑰| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 人妻久久中文字幕网| 国产色婷婷99| 欧美+亚洲+日韩+国产| 97在线视频观看| 日韩 亚洲 欧美在线| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 免费在线观看成人毛片| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 日本成人三级电影网站| 亚洲五月天丁香| 日韩,欧美,国产一区二区三区 | 国产精品无大码| 国产黄色视频一区二区在线观看 | av福利片在线观看| 六月丁香七月| 波野结衣二区三区在线| 嫩草影院入口| 精品不卡国产一区二区三区| 俺也久久电影网| 白带黄色成豆腐渣| 91久久精品国产一区二区成人| 国产精品电影一区二区三区| 日韩av不卡免费在线播放| av免费在线看不卡| 亚洲美女黄片视频| 亚洲精品国产成人久久av| 日本黄色片子视频| 国产在线男女| 亚洲成人精品中文字幕电影| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 老司机影院成人| av在线老鸭窝| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 日本三级黄在线观看| 婷婷色综合大香蕉| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 国产单亲对白刺激| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 欧美性感艳星| 亚洲最大成人中文| 狠狠狠狠99中文字幕| 亚洲性久久影院| 我要看日韩黄色一级片| 尾随美女入室| 日本免费a在线| 在线播放无遮挡| 舔av片在线| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 18+在线观看网站| 丰满乱子伦码专区| 在线播放无遮挡| 18禁在线播放成人免费| 亚洲最大成人中文| 亚洲精品影视一区二区三区av| 伦理电影大哥的女人| 欧美zozozo另类| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 一个人看视频在线观看www免费| 俄罗斯特黄特色一大片| 国产探花极品一区二区| 两个人视频免费观看高清| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 亚洲色图av天堂| 91久久精品国产一区二区成人| 精品福利观看| 午夜老司机福利剧场| 少妇高潮的动态图| 色哟哟·www| 久久99热6这里只有精品| 午夜福利在线观看免费完整高清在 | 香蕉av资源在线| 色av中文字幕| 婷婷六月久久综合丁香| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 黄色视频,在线免费观看| 91在线观看av| 精品免费久久久久久久清纯| 白带黄色成豆腐渣| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 99久久精品国产国产毛片| 欧美日韩一区二区视频在线观看视频在线 | 91在线精品国自产拍蜜月| 国产精品永久免费网站| 久久国产乱子免费精品| 男人的好看免费观看在线视频| 国产激情偷乱视频一区二区| 国产av在哪里看| 精品久久久久久久末码| 男女那种视频在线观看| av天堂在线播放| 六月丁香七月| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 韩国av在线不卡| 久久国产乱子免费精品| 久久久久久久久久久丰满| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 国产av不卡久久| 午夜免费男女啪啪视频观看 | 亚洲欧美成人精品一区二区| 岛国在线免费视频观看| 变态另类成人亚洲欧美熟女| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 一进一出抽搐动态| 午夜福利18| 蜜桃久久精品国产亚洲av| 精品一区二区免费观看| 精品久久久噜噜| 久久久久久大精品| 欧美人与善性xxx| 欧美zozozo另类| 日本成人三级电影网站| 国产精品一区www在线观看| 久久欧美精品欧美久久欧美| 97在线视频观看| 波多野结衣巨乳人妻| av在线天堂中文字幕| 大香蕉久久网| 99久国产av精品国产电影| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 国产一区二区在线观看日韩| av在线老鸭窝| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 美女内射精品一级片tv| 两个人的视频大全免费| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 真实男女啪啪啪动态图| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 亚洲av第一区精品v没综合| av福利片在线观看| 久99久视频精品免费| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 欧美区成人在线视频| 别揉我奶头~嗯~啊~动态视频| 国产av在哪里看| 欧美高清性xxxxhd video| 国产精品国产三级国产av玫瑰| 真人做人爱边吃奶动态| 日本爱情动作片www.在线观看 | 日韩 亚洲 欧美在线| 成人三级黄色视频| 日本一本二区三区精品| a级毛片a级免费在线| 天天一区二区日本电影三级| 亚洲欧美清纯卡通| 久久欧美精品欧美久久欧美| 高清毛片免费看| 长腿黑丝高跟| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久| 22中文网久久字幕| 午夜精品国产一区二区电影 | 嫩草影院精品99| 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 毛片女人毛片| 国产av在哪里看| 直男gayav资源| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 久久九九热精品免费| 此物有八面人人有两片| 久久精品国产亚洲av天美| 国产亚洲91精品色在线| 看黄色毛片网站| 成年女人永久免费观看视频| 99热精品在线国产| 亚洲国产欧美人成| 色5月婷婷丁香| 一边摸一边抽搐一进一小说| 日韩人妻高清精品专区| 欧美高清性xxxxhd video| 九色成人免费人妻av| 免费看光身美女| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 色尼玛亚洲综合影院| 亚洲熟妇熟女久久| 两性午夜刺激爽爽歪歪视频在线观看| 午夜老司机福利剧场| 神马国产精品三级电影在线观看| 国产精品永久免费网站| 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣| 国产美女午夜福利| 久久精品久久久久久噜噜老黄 | 国产av一区在线观看免费| 色综合站精品国产| 波野结衣二区三区在线| 精品无人区乱码1区二区| 99久久精品热视频| 亚洲人成网站在线观看播放| 性插视频无遮挡在线免费观看| 免费在线观看影片大全网站| 国产精品久久久久久久久免| 久久人人爽人人爽人人片va| 久久久久国产精品人妻aⅴ院| 男人和女人高潮做爰伦理| 少妇裸体淫交视频免费看高清| 人人妻人人澡人人爽人人夜夜 | 国内精品美女久久久久久| 男人狂女人下面高潮的视频| 国产男人的电影天堂91| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 久久人人精品亚洲av| 国产在视频线在精品| 亚洲最大成人av| av福利片在线观看| 欧美色欧美亚洲另类二区| 免费av毛片视频| 国产精品人妻久久久久久| 久久久久国内视频| 午夜福利18| 午夜精品一区二区三区免费看| 日韩成人av中文字幕在线观看 | 欧美3d第一页| 波多野结衣高清作品| 国产精品野战在线观看| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 精华霜和精华液先用哪个| 成年av动漫网址| 亚洲av.av天堂| 赤兔流量卡办理| 日韩欧美精品免费久久| 村上凉子中文字幕在线| 成人综合一区亚洲| av视频在线观看入口| ponron亚洲| 高清毛片免费看| 乱人视频在线观看| 在线天堂最新版资源| 国产单亲对白刺激| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 亚州av有码| 国产精品一区二区三区四区免费观看 | 欧美日韩综合久久久久久| 亚洲国产色片| 国产蜜桃级精品一区二区三区| 日韩在线高清观看一区二区三区| 国产精华一区二区三区| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 春色校园在线视频观看| 18禁黄网站禁片免费观看直播| 成人一区二区视频在线观看| 色播亚洲综合网| 国产三级中文精品| 国产aⅴ精品一区二区三区波| 嫩草影院新地址| 老熟妇仑乱视频hdxx| 亚洲国产精品国产精品| 在线观看美女被高潮喷水网站| 亚洲中文字幕一区二区三区有码在线看| 色av中文字幕| 激情 狠狠 欧美| 亚洲一区二区三区色噜噜| 九九爱精品视频在线观看| 俄罗斯特黄特色一大片| 12—13女人毛片做爰片一| 别揉我奶头 嗯啊视频| 我要搜黄色片| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| 亚洲av一区综合| 国产精品综合久久久久久久免费| 天堂影院成人在线观看| 日韩成人av中文字幕在线观看 | 99热这里只有精品一区| 国产一区二区三区在线臀色熟女| 国内精品美女久久久久久|