• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Satellite Cloud-Derived Wind Inversion Algorithm Using GPU

    2019-08-13 05:54:42LiliHeHongtaoBaiDantongOuyangChangshuaiWangChongWangandYuJiang
    Computers Materials&Continua 2019年8期

    Lili He,Hongtao Bai,Dantong Ouyang,Changshuai Wang,Chong Wang, and Yu Jiang,

    Abstract: Cloud-derived wind refers to the wind field data product reversely derived through satellite remote sensing cloud images.Satellite cloud-derived wind inversion has the characteristics of large scale,computationally intensive and long time.The most widely used cloud-derived serial--tracer cloud tracking method is the maximum crosscorrelation coefficient (MCC) method.In order to overcome the efficiency bottleneck of the cloud-derived serial MCC algorithm,we proposed a parallel cloud-derived wind inversion algorithm based on GPU framework in this paper,according to the characteristics of independence between each wind vector calculation.In this algorithm,each iteration is considered as a thread of GPU cores,and each thread block array of GPU allocates n*32 threads,and the many thread blocks are allocated to the thread grid.The parameters of the algorithm are passed from CPU to GPU global memory and the storage spaces are previously created on the GPU device before the functions of algorithm are executed.The test results of multiple sets of different inversion models on the NVIDIA Geforce GT and the 4-core 8-thread Core i7-3770 CPU show that the algorithm significantly improves the inversion efficiency.The acceleration ratio is up to 112,and the parallel experiment acceleration ratio is also impressive.

    Keywords: Correlation coefficient method,cloud-derived wind,GPU,cross-correlation coefficient,satellite cloud image.

    1 Introduction

    Cloud-derived wind refers to the wind field data product reversely derived through satellite remote sensing cloud images.A large number of satellite remote sensing image data and terrestrial meteorological information data are needed in the study of global weather and disaster prediction,which can play a positive role in global meteorological disaster forecast as well as protection of personal property [Ouyang (2018);He,Ouyang,Wang et al.(2018);Lompar,?uri? and Romanic (2017)].Among them,wind field data is a very important meteorological data in the meteorological field and the acquisition of it has a very important impact on the forecast of aerospace activities and severe weather such as typhoon storms.Therefore,it is significant to obtain wind field data [Chen,Chen,Luo et al.(2018);Cervantes,Casanova,Gout et al.(2016)].In recent years,with the constant improvement of the network of land wind field observation stations,it has become easier for researchers to obtain data on land wind fields.However,compared with the approach of acquiring land wind field data,wind fields in the vast sea,barren and ridiculous high-altitude areas and hot deserts are much poorer.Wind fields are relatively difficult to obtain in these areas.The meteorological satellites operate in the high-altitude orbit around the earth,so it is convenient to collect wind field data in the extreme areas where wind field data is difficult to obtain on the land.The wind can be calculated as long as there is a cloud.Inversion of wind field information in the air based on meteorological satellite remote sensing images has become a very effective means of obtaining short-time interval and high-resolution wind fields,which can compensate for the lack of stations in some environmentally harsh areas at sea and on land [Susanne,Andrey and Miguel (2012);Rich,Frelich,Reich et al.(2016)].Satheesh Kumar et al.[Satheesh Kumar,Narayana Rao and Taori (2015)] have explored the possibility of implementing an advanced photogrammetric technique,generally employed for satellite measurements,on airglow imager and a very good correspondence was seen between these two wind measurements,both showing similar wind variation.Though the cloud drift wind (CDW) has displayed its good application perspective in numerical weather prediction (NWP),up to the present the CDW data are not actually applied to the daily operation of NWP.Li et al.[Li,Wang,Xue et al.(2008)] have explored the systematic error character of FY-2C CDW and its effects on the initial fields and forecast results of NWP model so as to promote the application of CDW data in operational NWP.Long et al.[Long,Shi and Huang (2000)] has used numerical differentiation,which is developed in recent years to calculate gray gradient,and then realized the inverse cloud motion wind by regularization.At last,through simulation and practical experiments,they compared the wind inverse results between the algorithms with or without gray gradient information when the cloud images include perturbation.The experimental results show that the new algorithm with gradient information can reduce the influence of image disturbance effectively,and also increase the precision of cloud motion winds.We are in a position to find a new way to cloud motion wind inversion.

    However,since the satellite remote sensing technology is developing rapidly,the definition of satellite remote sensing cloud images as well as the corresponding resolution is getting much higher.A cloud image contains pixels of millions or even tens of millions.Furthermore,the real-time requirements of products in the meteorological field are getting higher and higher,and the rate of satellite cloud maps is getting faster and faster.If the traditional serial algorithm is used,in most case,the next cloud image is issued before the last cloud image has been processed,and the computational efficiency bottleneck of the cloud-derived wind is gradually revealed.It is getting harder for single machine and single thread to meet current needs of executing the inversion calculation task.In general,the shorter the cloud image time interval,the more tracer clouds used for inversion,the higher compute density of the wind vector,also the higher wind field data quality of the cloud-derived wind,but all of these pose a challenge to the efficiency of the cloud-derived wind inversion algorithm.Although some scholars have proposed a simple algorithm for the cloud-derived wind inversion algorithm,it is difficult to meet the efficiency requirement of the wind field calculation which is increasingly required for real-time performance.Therefore,in addition to studying the cloud-derived wind inversion algorithm with lower computational cost,the architecture of the multi-core CPU [Jongerius,Anghel,Dittmann et al.(2018)],GPU [Wang,Pan,Davidson et al.(2017)] and cluster [Hulse (2018)] of modern computer is fully utilized to study the parallel cloud-derived wind inversion algorithm,which is also one of the effective ways to improve actual operational efficiency of the inversion algorithm.Wang et al.[Wang,He,Ouyang et al.(2016)] have studied the parallel inversion algorithm of cloud-derived wind based on multi-core CPU and achieved better efficiency improvement,but the number of CPU cores is small,and the performance gain caused by pure multi-core CPU is limited.This paper explores the cloud-derived wind inversion algorithm based on multi-core CPU in order to obtain better performance gain.

    2 Basic theory

    At present,cloud-derived wind inversion based on satellite cloud image is generally applied to estimate the wind speed and direction by tracking the movement of image blocks in three consecutive time clouds.The height of wind is specified by the height of the corresponding position cloud in cloud map.In actual calculation,cloud-derived wind inversion mainly includes four steps:data preprocessing,tracer cloud tracking,altitude designation and quality control.

    The maximum cross-correlation coefficient (MCC) method [Wang,Jia and Cheng (2002)]is the most widely used tracer cloud tracking method,as shown in Fig.1.The principle can be expressed as:selecting a trace cloud A in the cloud image,and then moving the cloud block A (for the N×N pixel image block) in the target search area S (which is M×M) containing A.Next,calculating all the correlation coefficients of tracking cloud blocks as well as the tracking cloud block A in M.Finally the tracking cloud block B corresponding to the maximum correlation coefficient is the target cloud block.

    The cross correlation coefficient R(Δx,Δy) is calculated as follows:

    Figure1:Maximum correlation coefficient method

    After obtaining the maximum correlation coefficient,the distances of the tracking cloud block B in the target search area relative to the tracking cloud block A in the x,y directions are Δx and Δy respectively.The latitude and longitude of the center point of the trace cloud block A is (x1,y1) and the latitude and longitude of the center point of the tracking cloud block B is (x2,y2).The earth model (shown in Fig.2) can be established to calculate the distance d of the target cloud block B relative to the tracking cloud block A.The speed of the wind vector can be obtained by dividing d by the observation time interval t of the two images.The derivation process is as follows:

    Figure2:Schematic diagram of wind speed derivation

    Wind speed

    The distance between two points A and B (RE is the radius of the Earth)

    The spherical angle formed by the two points A and B and the center of the sphere can be calculated by the product of the space vector

    The same reason

    By substituting the formulas (4) to (9) into (3) we can obtain the size of the spherical center angle γ.Then substituting the obtained γ into (2) to obtain the distance d between the two points A and B,and finally substituting (1) with d,the velocity v of the wind vector can be obtained.

    The direction of wind vector is calculated using the spherical triangle cosine theorem.As shown in Fig.3,the plane AED is tangent to the earth spherical surface ABC at point A.A,B are the start and end points of the wind vector respectively.

    Figure3:Wind direction derivation

    The triangular cosine theorem is applied to the triangle ODE.

    Since the triangle OAE and the triangle OAD are both right triangles,there are

    Substituting (11) (12) into (10) and applying the triangular cosine theorem

    Among them

    Substituting (14) and (15) and γ obtained above into (13),the magnitude of θ can be obtained by an inverse sine function.If point A is in the area north of the equator,the wind direction angle is θ.If x2< x1,the wind direction angle is 2π-θ.If point A is in the south of the equator,the wind direction angle is π-θ,and if x2< x1,the wind direction angle is π+θ.

    The height of the wind vector can be specified by the brightness temperature values of the infrared and water vapor channels at the position of the wind vector.

    After the wind vector is calculated,the wind speed and direction check are required to eliminate the wind speed and direction deviation in the preliminary calculation results.The cloud maps that define three consecutive time observations are C1,C2,and C3.It is assumed that the wind speed and wind direction of the wind vector V1calculated by C1 and C2 are v1and θ1respectively,and the wind speed and wind direction of the wind vector V2are calculated as V2and θ2by C2 and C3 respectively.The wind direction difference θ′=|θ1- θ2| and the relative difference of wind speedWhen the wind direction difference or wind speed difference is greater than a given threshold,the wind vector is removed.

    3 Parallel algorithm

    3.1 Serial algorithm analysis

    Satellite cloud-derived wind algorithm process is mainly divided into the following stages:

    1) Data preprocessing

    2) Tracer cloud tracking

    3) Height specification

    4) Quality control

    5) Data storage

    The satellite data decompression step is to first decompress the satellite cloud image to obtain the data of each channel;the data preprocessing step generally trans-forms the image into a Mercator projection for wind vector inversion,and then image enhancement is needed in order to obtain satellite cloud image data with less noise;At the core of the tracer cloud tracking algorithm,the algorithm uses the maximum correlation coefficient method to perform pixel matching on the center 32*32 area of each block on the cloud image to calculate the size and angle of the wind vector;the height designation part mainly calculates the height of the wind vector.Generally,the calculation method is to obtain temperature based on the gray value of the coordinates of the wind vector,and then the height is derived from the temperature.If the original cloud image is given a temperature calibration table,the height is converted according to the temperature calibration table;the quality control is to check quality according to the wind vectors calculated by the last two of the three consecutive cloud images.The wind vectors with excessive wind speed difference and angle deviation will be removed;the last step is to write the reversed wind to disk using a certain rule.

    The serial cloud-derived wind inversion algorithm divides the cloud image of size Width×Height pixels into ((Width×Height)) ?ρ blocks (ρ is the density of the wind vector),and uses the wind vector calculation method for each block of the cloud image respectively to calculate wind vectors.In the calculation of each wind vector,the time required to use the MCC method to match the target cloud block is the highest in the calculation time,and the size of the traced image block is mentioned in the related literature [10].National Satellite Meteorological Center and EUM ETSAT are set to 32×32.If the trace cloud size is used by this standard (i.e.,32×32) and the search area size is set to 64×64,we need 33×33 traces of clouds and the correlation coefficient between the cloud blocks to find the location of the target cloud block.But currently a complete satellite cloud image taken by the meteorological satellite is generally larger (up to megapixel level),which reduces the inversion of all winds.

    It can be seen from the above analysis that the main reason for the long wind in-version time in the cloud image in the serial cloud-derived wind inversion algorithm is that it has more iterations than the single iteration time,so the single iteration parallelizes this fine.Granular parallelism is not suitable for cloud-derived wind inversion.Since the calculations of the wind vectors in the cloud map are completely independent,the wind map can be selected for coarse-grained parallelism.

    3.2 Parallel algorithm analysis

    Using NVIDIA’s CUDA architecture,thread is the basic unit of stream processor execution in the GPU,and blocks containing multiple threads are the basic unit of processor scheduling.Multiple threads in the same block use the same memory space,which means they can share access to each other.Since the above block is a basic scheduling unit,it is possible to launch a GPU that has multiple processors,and it is possible to execute more blocks faster,that is,using such a GPU is computationally efficient.The following diagram illustrates that more processors are used,more efficient they perform,as shown in Fig.4.

    Figure4:The effect of the number of stream processors on efficiency

    The function executed in the stream processor in GPU parallel computing is a kernel function,such as the wind vector inversion task function executed in the stream processing of the GPU,so the function is a kernel function.The kernel function is called by kernel_function<<<M,N>>>(arguments),where M is the size of the thread grid.The variable can be a one-dimensional,two-dimensional or three-dimensional variable,and N represents each block.The number of threads can also use one-dimensional,twodimensional or three-dimensional variables.In actual use,variables of different dimensions are used according to different scenarios.

    Inside the kernel function,CUDA provides some built-in variables for accessing thread indexes,thread blocks and thread grids,etc.,such as the following variables:

    (1) gridDim:Indicates the size of the grid,gridDim.x,gridDim.y,gridDim.z are the sizes of the x-axis,y-axis,and z-axis respectively.

    (2) blockIdx:Indicates the index value of the block in the grid.blockIdx.x and blockIdx.y represent the x-axis index and the y-axis index of the block in the grid respectively.

    (3) blockDim:Indicates the size of the block,blockDIm.x and blockDIm.x are the dimensions of the x-axis and the y-axis respectively.

    (4) threadIdx:Represents the thread index in the block.

    The GPU parallel technology is used to accelerate the cloud-derived wind inversion algorithm,and the MN tasks are dynamically allocated to the GPU stream processors for execution.For the sake of simplicity,the thread application is applied as a onedimensional variable blocksPerGrid.Each ThreadsPerBlock thread is opened in the thread grid.In this paper,the number of threads on each block is 256,and the number of blocks in the thread grid.

    blocksPerGrid=(iMax+threadsPerBlock-1)/threadsPerBlock

    The index of each wind vector inversion task to obtain the wind inversion is windIndex=blockDim.x*blockIdx.x+threadIdx.x

    Finally,dev_makeCloud<<<blocksPerGrid,threadsPerBlock>>>(arguments...) is called to allocate and execute each wind inversion task.The threads in each block are executed sequentially in a stream processor and will be reversed.The global wind vector array is opened corresponding to the position of the windIndex.

    4 The experimental results

    In this section,we compare the calculation results of the serial cloud-derived wind inversion algorithm and parallel algorithm under different parameters,including the calculation accuracy and computational efficiency of the results.The experimental environment is for the CPU to be 4 cores and 8 threads Intel Core i7-3770 3.4 GHZ,GPU NVIDIA Geforce GT650M,and 4G memory.The satellite cloud images used in the experiment are three infrared-cloud images issued by Fengyun-2E satellite at Beijing time on October 11,2013 at 7:01,7:31,and 8:01.The size of the cloud map is 2581×1399 pixels,the longitude range is 45° east longitude to 165° east longitude,and the latitude range is 5° south latitude to 60° north latitude.

    4.1 Algorithm precision comparison

    (1) When the inversion parameters are 22×22 pixels,the tracking area is 44×44 pixels,and the wind density is 2/degree.10 consecutive wind vectors on the equator are selected as comparison objects.The wind direction accuracy comparison between inversion serial algorithm and parallel algorithm is shown in Tab.1 (S indicates serial,T-64 represents 64 threads allocated in one thread block,T-128 represents 128 threads in a thread block,and the number of blocks in the thread is the total number of tasks WN divided by the number of threads in a block).(2) The inversion parameters are 32×32 pixels for the tracer.The size of the tracking area is 64×64 and the wind density is 4/degree.The 10 winds with 32 degrees north latitude are selected as the comparison object,parallel and string.The wind vector precision of the row algorithm inversion is shown in Tab.2.(where S represents serial,T-64 represents 64 threads allocated in one thread block,and T-128 represents 128 thread threads in a thread block,then The number of blocks in the thread grid is the total number of tasks WN divided by the number of threads in each block).

    Table1:Accuracy comparison-1

    Table2:Accuracy comparison-2

    As can be seen from Tab.1 and Tab.2 above,GPU-based parallel cloud-derived wind inversion,serial inversion and parallel inversion yield most of the same,less partial similar numerical results due to GPU float Point operations also have precision errors,so it is ideal to achieve this result,which proves that the GPU-based parallel algorithm is numerically reliable and efficient.

    The cloud-derived product map of the GPU-based parallel inversion algorithm is shown in Fig.5.

    4.2 Performance comparison

    The experiment uses the host machine as a 4-core 8-thread CPU.The GPU used is Nvidia’Nvidia GeForce GT650M.The core frequency is 925 MHz,the memory is 1 G,the memory frequency is 5400 MHz,the memory bandwidth is 84.6 GB/s,and the number of stream processors is 768.The theoretical computing power is 1.42 TFLOPs.The satellite cloud image is inverted in the case of different inversion parameters and thread blocks.The relative acceleration ratio and parallel efficiency of the algorithm vary with the inversion parameters and the number of thread blocks as shown in Tab.3 and Tab.4.

    Table3:Acceleration ratio and parallel efficiency-1

    80 23.55 69.47 88 23.52 69.56 96 23.47 69.71 104 24.98 65.49 112 24.83 65.89 120 24.83 65.89 128 14.14 115.70 136 24.48 66.83 144 24.48 66.83 152 24.47 66.86 160 24.47 66.86 168 24.5 66.78 176 24.52 66.72 184 24.5 66.78 192 24.5 66.78 200 24.86 65.81 208 24.86 65.81 216 24.83 65.89 224 14.55 112.44 232 24.88 65.76 240 24.86 65.81 248 14.52 112.67 256 14.52 112.67

    Table4:Acceleration ratio and parallel efficiency-2

    32 52.41 22.99 40 34.95 34.48 48 35.59 33.86 56 26.64 45.23 64 26.63 45.25 72 17.95 67.13 80 19.73 61.08 88 18.78 64.17 96 18.78 64.17 104 18.78 64.17 112 20 60.25 120 19.88 60.62 128 19.88 60.62 136 11.34 106.27 144 19.59 61.51 152 19.59 61.51 160 19.58 61.55 168 19.59 61.51 176 19.61 61.45 184 19.59 61.51 192 19.59 61.51 200 19.88 60.62 208 19.88 60.62 216 19.84 60.74 224 11.63 103.62 232 19.89 60.59 240 19.89 60.59 248 11.61 103.80 256 11.61 103.80

    It can be seen from the analysis of Tab.3 and Tab.4 that in the case where the inversion parameters are the same,the more thread blocks are basically followed,the larger acceleration ratio is.When the thread block is smaller than 64,the parallel acceleration ratio is increased by 2 times.When it is greater than 64,the parallel acceleration ratio is related to the division of the thread block.The highest acceleration ratio of the two experiments reaches 112 and 103 and the acceleration effect is very significant.

    5 Conclusion

    This paper discusses the parallel computing problem of cloud-derived wind inversion.According to the characteristics of cloud-derived wind inversion,a parallel algorithm based on GPU for many-core computing is designed and implemented.By analyzing the calculation results,it is known that assigning reasonable parallel granularity can guarantee the correctness of the calculation results and effectively improve,compared with the serial algorithm,the calculation efficiency.Compared with the serial algorithm,it provides an efficient calculation for large-scale,short-interval and high-density wind vector.

    In recent years,the application of cluster computing is becoming much more extensive,and the mixed using multi-core CPU,MPI and GPUs [Pawliczek,Dzwinel and Yuen(2014)] mixed programming mode for design algorithm design will also be the direction to further improvement of the efficiency of cloud-derived wind cloud windward inversion.In addition to the application of parallel technology,the efficiency improvement of the cloud-derived wind inversion algorithm is also worth considering from the perspective of optimizing the algorithm of the wind vector inversion.For example,the other tracer cloud tracking algorithms and the optimization of thee tracking efficiency are considered.

    Acknowledgements:This work was supported in part by the National Natural Science Foundation of China (61872160,51679105,51809112,61672261).

    一区福利在线观看| 欧美 亚洲 国产 日韩一| 又大又爽又粗| 久久精品国产亚洲av涩爱| 国产在线观看jvid| 性色av一级| av电影中文网址| www.熟女人妻精品国产| 别揉我奶头~嗯~啊~动态视频 | 日本91视频免费播放| 久久久精品区二区三区| 中文字幕精品免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区久久| 视频在线观看一区二区三区| 国产精品av久久久久免费| 欧美老熟妇乱子伦牲交| 丝袜喷水一区| 老汉色∧v一级毛片| 国产片特级美女逼逼视频| 一本综合久久免费| 美女视频免费永久观看网站| 午夜福利乱码中文字幕| 九草在线视频观看| 国产三级黄色录像| 亚洲欧美精品自产自拍| 国产有黄有色有爽视频| 这个男人来自地球电影免费观看| 嫁个100分男人电影在线观看 | 久久久国产欧美日韩av| 捣出白浆h1v1| 纵有疾风起免费观看全集完整版| 亚洲国产av新网站| 午夜久久久在线观看| 人人妻人人澡人人看| 久久精品亚洲av国产电影网| 欧美日韩视频精品一区| 亚洲色图 男人天堂 中文字幕| 满18在线观看网站| 免费观看av网站的网址| 久久精品人人爽人人爽视色| 大陆偷拍与自拍| 视频在线观看一区二区三区| 性少妇av在线| 男女边摸边吃奶| 精品免费久久久久久久清纯 | 51午夜福利影视在线观看| 美女午夜性视频免费| www.999成人在线观看| 国产精品一区二区在线观看99| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清 | 欧美日本中文国产一区发布| av欧美777| 精品亚洲成a人片在线观看| 欧美日韩黄片免| 一级黄色大片毛片| 免费在线观看视频国产中文字幕亚洲 | 精品人妻熟女毛片av久久网站| 久久精品aⅴ一区二区三区四区| 精品人妻1区二区| 啦啦啦啦在线视频资源| 又紧又爽又黄一区二区| 欧美国产精品va在线观看不卡| 精品高清国产在线一区| 青青草视频在线视频观看| 夫妻午夜视频| av又黄又爽大尺度在线免费看| 菩萨蛮人人尽说江南好唐韦庄| 欧美人与性动交α欧美精品济南到| 亚洲一码二码三码区别大吗| 午夜福利在线免费观看网站| 99re6热这里在线精品视频| 一区二区日韩欧美中文字幕| videos熟女内射| 久久av网站| 女性生殖器流出的白浆| 亚洲精品自拍成人| 久久这里只有精品19| 大码成人一级视频| 亚洲精品国产色婷婷电影| 大片电影免费在线观看免费| 在线观看免费午夜福利视频| 成人黄色视频免费在线看| 香蕉丝袜av| 欧美老熟妇乱子伦牲交| 日韩电影二区| 嫩草影视91久久| 亚洲欧美清纯卡通| 人人妻人人添人人爽欧美一区卜| 欧美日韩视频高清一区二区三区二| 国产成人91sexporn| 婷婷丁香在线五月| 一边亲一边摸免费视频| 视频区图区小说| 人成视频在线观看免费观看| 九草在线视频观看| 宅男免费午夜| 国产在线视频一区二区| 亚洲精品美女久久av网站| 亚洲精品美女久久久久99蜜臀 | svipshipincom国产片| 精品欧美一区二区三区在线| 日韩中文字幕视频在线看片| e午夜精品久久久久久久| 国产成人91sexporn| 老司机午夜十八禁免费视频| 一区二区av电影网| 18禁黄网站禁片午夜丰满| 亚洲天堂av无毛| 麻豆国产av国片精品| 国产精品秋霞免费鲁丝片| 国产欧美日韩综合在线一区二区| 久9热在线精品视频| 中文字幕人妻熟女乱码| 99热国产这里只有精品6| 男人操女人黄网站| 亚洲美女黄色视频免费看| 青草久久国产| 后天国语完整版免费观看| 后天国语完整版免费观看| 欧美日韩视频精品一区| 观看av在线不卡| 精品熟女少妇八av免费久了| av福利片在线| 又大又黄又爽视频免费| 免费在线观看黄色视频的| 99国产精品一区二区蜜桃av | 成人午夜精彩视频在线观看| 久热这里只有精品99| 热99久久久久精品小说推荐| 熟女av电影| 在线精品无人区一区二区三| 丰满人妻熟妇乱又伦精品不卡| 91老司机精品| 高清av免费在线| 欧美日韩亚洲国产一区二区在线观看 | 日韩欧美一区视频在线观看| 人妻 亚洲 视频| 国产又色又爽无遮挡免| kizo精华| kizo精华| 十八禁网站网址无遮挡| 性高湖久久久久久久久免费观看| 国产精品一区二区在线观看99| 99精国产麻豆久久婷婷| 肉色欧美久久久久久久蜜桃| 国产成人精品久久久久久| 欧美精品人与动牲交sv欧美| 麻豆av在线久日| 欧美亚洲 丝袜 人妻 在线| 1024视频免费在线观看| 大香蕉久久成人网| 欧美日韩视频精品一区| 国产成人av教育| 日本vs欧美在线观看视频| 日韩中文字幕视频在线看片| 夫妻午夜视频| 欧美日韩视频高清一区二区三区二| 黄色毛片三级朝国网站| 欧美日韩国产mv在线观看视频| 99国产精品一区二区三区| 午夜激情av网站| 久久久久久免费高清国产稀缺| 在线亚洲精品国产二区图片欧美| 99久久人妻综合| 天天影视国产精品| 久久毛片免费看一区二区三区| 国产精品二区激情视频| 大香蕉久久网| 国产伦人伦偷精品视频| a级毛片在线看网站| 制服诱惑二区| 性少妇av在线| 熟女少妇亚洲综合色aaa.| 亚洲国产精品一区三区| 黄色毛片三级朝国网站| 夜夜骑夜夜射夜夜干| 一边摸一边抽搐一进一出视频| 亚洲欧美激情在线| 999久久久国产精品视频| 欧美av亚洲av综合av国产av| 午夜福利一区二区在线看| 捣出白浆h1v1| 叶爱在线成人免费视频播放| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区| 亚洲av成人精品一二三区| 18禁裸乳无遮挡动漫免费视频| 国产精品欧美亚洲77777| 校园人妻丝袜中文字幕| 午夜91福利影院| 亚洲精品一卡2卡三卡4卡5卡 | 久久 成人 亚洲| 欧美国产精品va在线观看不卡| 亚洲成人免费电影在线观看 | 69精品国产乱码久久久| 少妇人妻久久综合中文| 午夜久久久在线观看| 免费在线观看日本一区| 亚洲自偷自拍图片 自拍| 黄网站色视频无遮挡免费观看| av线在线观看网站| av欧美777| 大香蕉久久网| 国产精品久久久久久人妻精品电影 | 人人妻人人添人人爽欧美一区卜| 精品久久久精品久久久| 午夜激情av网站| 999久久久国产精品视频| 精品视频人人做人人爽| 精品人妻熟女毛片av久久网站| 免费观看av网站的网址| 久久性视频一级片| 最新在线观看一区二区三区 | 狂野欧美激情性bbbbbb| 悠悠久久av| 欧美97在线视频| 九草在线视频观看| 纵有疾风起免费观看全集完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 一本—道久久a久久精品蜜桃钙片| av一本久久久久| 99九九在线精品视频| 午夜激情av网站| 老熟女久久久| 麻豆乱淫一区二区| 欧美 日韩 精品 国产| 少妇 在线观看| 人人妻,人人澡人人爽秒播 | 母亲3免费完整高清在线观看| 操出白浆在线播放| 一边亲一边摸免费视频| 国产免费视频播放在线视频| 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看 | 成在线人永久免费视频| 最近最新中文字幕大全免费视频 | 老司机亚洲免费影院| 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| 青春草视频在线免费观看| 又大又爽又粗| 色婷婷av一区二区三区视频| 国产精品一区二区免费欧美 | 国产精品三级大全| 色视频在线一区二区三区| 国产成人精品久久二区二区免费| 欧美日韩精品网址| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 自拍欧美九色日韩亚洲蝌蚪91| a 毛片基地| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 久久这里只有精品19| 在线 av 中文字幕| 成年动漫av网址| 九草在线视频观看| 美女主播在线视频| 欧美性长视频在线观看| 热99久久久久精品小说推荐| 精品国产乱码久久久久久男人| 久久九九热精品免费| 啦啦啦在线观看免费高清www| 午夜福利视频精品| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx| 在线观看国产h片| 一级毛片我不卡| 国产精品一二三区在线看| 国产在线一区二区三区精| 久久毛片免费看一区二区三区| 国产成人精品在线电影| 伊人亚洲综合成人网| 操出白浆在线播放| √禁漫天堂资源中文www| 高清不卡的av网站| 国产片特级美女逼逼视频| 老司机靠b影院| 亚洲第一av免费看| 91精品三级在线观看| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 久久久久久久久久久久大奶| 老司机午夜十八禁免费视频| 精品一区在线观看国产| 大片免费播放器 马上看| 日韩一区二区三区影片| 免费黄频网站在线观看国产| 99国产精品免费福利视频| 亚洲欧美精品自产自拍| 中文欧美无线码| 脱女人内裤的视频| 国产精品秋霞免费鲁丝片| 国产精品免费大片| 精品国产国语对白av| 天堂俺去俺来也www色官网| 搡老岳熟女国产| av有码第一页| 亚洲精品久久久久久婷婷小说| 欧美黄色淫秽网站| xxxhd国产人妻xxx| 黄色视频在线播放观看不卡| 悠悠久久av| 高清黄色对白视频在线免费看| 最黄视频免费看| svipshipincom国产片| 一本久久精品| 国产一级毛片在线| 精品一品国产午夜福利视频| 久久精品人人爽人人爽视色| 在线观看免费日韩欧美大片| 国产亚洲欧美精品永久| 91精品国产国语对白视频| 亚洲熟女毛片儿| 国产精品香港三级国产av潘金莲 | 国产精品一国产av| 亚洲国产中文字幕在线视频| 精品少妇内射三级| 欧美日韩黄片免| 久久毛片免费看一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 亚洲欧洲精品一区二区精品久久久| 一本综合久久免费| 久久久久久久国产电影| 免费在线观看完整版高清| videos熟女内射| 女人久久www免费人成看片| 青草久久国产| 精品一区在线观看国产| 色婷婷久久久亚洲欧美| 男女午夜视频在线观看| 精品免费久久久久久久清纯 | 操出白浆在线播放| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 亚洲精品一区蜜桃| 国产在线视频一区二区| 十八禁人妻一区二区| √禁漫天堂资源中文www| 老司机深夜福利视频在线观看 | 欧美成人精品欧美一级黄| 两个人免费观看高清视频| 男女免费视频国产| 首页视频小说图片口味搜索 | 欧美人与善性xxx| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 亚洲国产精品999| 国产成人影院久久av| 国产精品三级大全| 成年人午夜在线观看视频| 久久精品人人爽人人爽视色| 国产黄频视频在线观看| 国产人伦9x9x在线观看| 黄色视频在线播放观看不卡| 精品国产一区二区三区四区第35| 国产亚洲精品久久久久5区| 国产一区二区在线观看av| 真人做人爱边吃奶动态| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 男人操女人黄网站| 亚洲欧美日韩高清在线视频 | 丝袜人妻中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产精品99久久99久久久不卡| 亚洲国产看品久久| 亚洲七黄色美女视频| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 大话2 男鬼变身卡| 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 国产成人精品无人区| 国产激情久久老熟女| 手机成人av网站| h视频一区二区三区| 日韩一本色道免费dvd| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 国产欧美日韩综合在线一区二区| 国产免费视频播放在线视频| 亚洲图色成人| 国产熟女欧美一区二区| 国产成人欧美在线观看 | 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 大话2 男鬼变身卡| 午夜久久久在线观看| 一级黄色大片毛片| 国产成人一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月欧美| 97在线人人人人妻| 精品免费久久久久久久清纯 | 自拍欧美九色日韩亚洲蝌蚪91| 手机成人av网站| 亚洲视频免费观看视频| 香蕉国产在线看| 国产免费视频播放在线视频| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| 高清av免费在线| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 少妇人妻久久综合中文| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 韩国高清视频一区二区三区| 岛国毛片在线播放| 国产一区二区在线观看av| 久久精品亚洲熟妇少妇任你| 国产av一区二区精品久久| 国产精品偷伦视频观看了| 日本av手机在线免费观看| 老熟女久久久| 大话2 男鬼变身卡| 男女国产视频网站| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 美女高潮到喷水免费观看| 一本色道久久久久久精品综合| 午夜激情av网站| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片| 久久人人爽人人片av| 久久鲁丝午夜福利片| 十分钟在线观看高清视频www| h视频一区二区三区| 两个人免费观看高清视频| 亚洲国产欧美在线一区| 日本91视频免费播放| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 91国产中文字幕| 国产亚洲一区二区精品| 亚洲五月婷婷丁香| 性色av一级| 午夜av观看不卡| 国产成人欧美| 十八禁人妻一区二区| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 在现免费观看毛片| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| 大陆偷拍与自拍| 我要看黄色一级片免费的| 国产有黄有色有爽视频| 我的亚洲天堂| 亚洲成人免费av在线播放| 亚洲av成人精品一二三区| 韩国精品一区二区三区| 女人精品久久久久毛片| 免费少妇av软件| 日韩伦理黄色片| 国产深夜福利视频在线观看| 日韩一卡2卡3卡4卡2021年| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 老熟女久久久| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频 | 国产一区有黄有色的免费视频| 免费不卡黄色视频| av国产久精品久网站免费入址| 亚洲,欧美,日韩| 久久国产精品人妻蜜桃| 99re6热这里在线精品视频| 亚洲欧美日韩高清在线视频 | 99热全是精品| 1024视频免费在线观看| 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 中文字幕精品免费在线观看视频| 午夜激情av网站| 性色av乱码一区二区三区2| 婷婷亚洲欧美| a在线观看视频网站| 老汉色∧v一级毛片| 美女 人体艺术 gogo| 女人高潮潮喷娇喘18禁视频| 亚洲免费av在线视频| 身体一侧抽搐| 久久久久国内视频| 又黄又爽又免费观看的视频| or卡值多少钱| 日日夜夜操网爽| 十八禁网站免费在线| 久久国产亚洲av麻豆专区| 日韩三级视频一区二区三区| 制服人妻中文乱码| 村上凉子中文字幕在线| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 久久青草综合色| 长腿黑丝高跟| 中文字幕久久专区| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91| 国产精品98久久久久久宅男小说| 制服诱惑二区| 老熟妇仑乱视频hdxx| 老司机午夜十八禁免费视频| 一级a爱片免费观看的视频| 国产成人啪精品午夜网站| 美女高潮喷水抽搐中文字幕| 成人国语在线视频| 国产真人三级小视频在线观看| 成人18禁在线播放| 男女床上黄色一级片免费看| 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 在线观看66精品国产| 久久九九热精品免费| 自线自在国产av| 国产97色在线日韩免费| 国内揄拍国产精品人妻在线 | 窝窝影院91人妻| 叶爱在线成人免费视频播放| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 香蕉久久夜色| 亚洲国产欧美一区二区综合| 国产午夜福利久久久久久| 日本一区二区免费在线视频| 久久精品人妻少妇| 桃色一区二区三区在线观看| 波多野结衣av一区二区av| 精品日产1卡2卡| 少妇被粗大的猛进出69影院| 亚洲 欧美一区二区三区| 极品教师在线免费播放| 国产精品一区二区精品视频观看| 黄片大片在线免费观看| 国产精品一区二区精品视频观看| 免费看美女性在线毛片视频| 曰老女人黄片| www.www免费av| 亚洲精品国产区一区二| 亚洲成人久久爱视频| 欧美亚洲日本最大视频资源| 久久九九热精品免费| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 九色国产91popny在线| 一a级毛片在线观看| 男女那种视频在线观看| 亚洲av日韩精品久久久久久密| 中文资源天堂在线| a级毛片a级免费在线| 熟妇人妻久久中文字幕3abv| 久久久久国内视频| 久久精品人妻少妇| 欧美成人免费av一区二区三区| 免费在线观看完整版高清| 亚洲国产日韩欧美精品在线观看 | 丰满人妻熟妇乱又伦精品不卡| 男女床上黄色一级片免费看| 中文资源天堂在线| 欧美成人一区二区免费高清观看 | 国产成人欧美在线观看| 男女做爰动态图高潮gif福利片| 一级毛片女人18水好多| 亚洲无线在线观看| 国产精品一区二区精品视频观看| 久99久视频精品免费| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 一夜夜www| 又紧又爽又黄一区二区| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 中文在线观看免费www的网站 | 亚洲第一青青草原| 免费观看精品视频网站| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 欧美日韩一级在线毛片| 中文字幕人成人乱码亚洲影| 啦啦啦观看免费观看视频高清| 国产伦人伦偷精品视频| 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 少妇被粗大的猛进出69影院|