• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Bus Ride Comfort Using Smartphone Sensor Data

    2019-08-13 05:54:08HoongChorChinXingtingPangandhaoxiaWang
    Computers Materials&Continua 2019年8期

    Hoong-Chor Chin,Xingting Pang and Ζhaoxia Wang

    Abstract: Passenger comfort is an important indicator that is often used to measure the quality of public transport services.It may also be a crucial factor in the passenger’s choice of transport mode.The typical method of assessing passenger comfort is through a passenger interview survey which can be tedious.This study aims to investigate the relationship between bus ride comfort based on ride smoothness and the vehicle’s motion detected by the smartphone sensors.An experiment was carried out on a bus fixed route within the University campus where comfort levels were rated on a 3-point scale and recorded at 5-second intervals.The kinematic motion characteristics obtained includes tri-axial linear accelerations,tri-axial rotational velocities,tri-axial inclinations and the latitude and longitude position of the vehicle and the updated speed.The data acquired were statistically analyzed using the Classification &Regression Tree method to correlate ride comfort with the best set of kinematic data.The results indicated that these kinematic changes captured in the smartphone can reflect the passenger ride comfort with an accuracy of about 90%.The work demonstrates that it is possible to make use of larger and readily available kinematic data to assess passenger comfort.This understanding also suggests the possibility of measuring driver behavior and performance.

    Keywords: Ride comfort,smartphone sensor,classification ®ression tree,kinematic motion,driver behavior analysis.

    1 Introduction

    Passenger comfort is an important index that can be used to measure the quality of public transport services and a crucial factor in the passenger’s choice of transport mode [Olio,Ibeas and Cecin (2011);Eboli and Mazzulla (2010)].In Singapore,it has been reported that improvements in public transport ride comfort is one important consideration in attracting bus-choice riders as well as to retain bus-captive riders [PTC (2017)].

    Despite well-paved and well-maintained roads,buses still make numerous sudden braking,acceleration or turns throughout the journey,during which passengers are susceptible to jerk and sway discomforts with occasional serious injuries [The Straits Times (2018)].

    Conventionally,the quality of bus rides was evaluated through manual surveying arandomly selected sample of passengers who reflected their experiences across a rating scale of intolerable to excellent ride [SAE (2000)].This is a laborious and costly method and could only provide feedback periodically.This study attempts to assess ride comfort experienced by passengers with the use of motion sensors in modern Smartphones.

    2 Related works

    Over the last decade,mobile phones have transformed from simple cell devices to powerful sensing,communication and computing devices [Klausner (2013)].Smart phone devices are now widely used,and they are changing our daily life [Cui,Zhang and Cai et al.(2018)].Such smartphone devices have also been used to obtain transportation data of taxi,such as Uber Sun et al.[Sun and McIntosh (2018)].

    An average smartphone today is equipped with several sensors ranging from accelerometer,gyroscope,and Global Positioning System (GPS),among others that are capable of split-second high sampling rates of data acquisition.Its computing capabilities coupled with its proliferation-expected to reach 70% of earth’s population by 2020[Williams (2015)]-makes it a ubiquitous device that has high potential to facilitate the rapid and large-scale deployment in Intelligent Transport Systems [Engelbrecht,Booysen and Rooyen et al (2015)].

    F?rstberg [F?rstberg (2000)] have previously classified variables of a vehicle environment that influence the user’s comfort.They included dynamic variables (such as motions),ambient variables (such as temperature,pressure,air quality,ventilation and noise),spatial variables (such as workspace,legroom,seat shape) as well as human factors (like age and gender).Other studies have also shown that bus-operating factors such as in-vehicle time [Vovsha (2014)],passenger load [Kumar,Basu and Maitra(2004)],effects of road infrastructure [Bodini (2013)] have significant impacts on the levels of comfort experienced.

    Smartphones have been employed to measure dynamic factors that affect comfort in public transportation [Castellanos,Susin and Fruett (2011)].The tri-axial accelerometers,GPS,and temperature sensors were used alongside a comfort index based on measuring the RMS value of the weighted acceleration,where sources of comfort’s disturbances were detected geographically through the Threshold detection algorithm.Lin et al.[Lin,Chen and Chen et al.(2010)] adopted an average-ride comfort methodology to assess comfort.Participatory phones were used to acquire data using GPS and tri-axial accelerometers,where a ride data is computed in a server and coordinated with the transportation database in order to identify ride comfort thus enabling a comparison of comfort values of different vehicles.

    The perceived value determined by service quality positively affects overall satisfaction,involvement,and behavioral intentions [Lin and Chen (2011)].With comfort being one of the key factor in the provision of high bus service quality,and also a significant influencer of passenger satisfaction with bus transits [Eboli and Mazzulla (2007);Eboli and Mazzulla (2009)],passenger perception is a fundamental prerequisite for the improvement of bus comfort.The findings of such surveys were shown to help bus operators and authorities design better measures to improve bus comfort level.

    3 Proposed methodology

    3.1 Experimental route

    The experiment was carried out within National University of Singapore Kent Ridge Campus on the Internal Shuttle Bus service D1,for the journey segment between Information Technology (16189) to Central Library (16181) as shown in Fig.1.

    Figure1:Experimental route of NUS internal shuttle bus D1 service (as shown on google map ?2015 Google)

    3.2 Smartphone sensor data acquisition

    The smartphone was placed on a flat surface in the bus,secured on top of an anti-slip mat.Fig.2 shows an illustration of tri-axial accelerometer and gyroscope sensor coordinates of a smartphone.The positive y-axis of the phone was set in the longitudinal axis of the vehicle.The smartphone was set to capture data when the bus reaches the first bus stop(16189),with the following sensors activated:Linear Accelerometer (ax,ay,az),Gyroscope (wx,wy,wz),Inclinometer (Pitch,Roll,Azimuth) and GPS location (latitude,longitude).The recording was terminated at the last bus stop (16181) when the bus has come to a complete stop.A total of 10 runs were made.

    Figure2:Illustration of tri-axial accelerometer and gyroscope sensor coordinates of a smartphone [The MathWorks (2013)].

    3.3 Perception of ride comfort

    Throughout the journey,the level of comfort experienced by the experimenter was captured on an iPad programmed to receive the input at 5-second intervals.The level of discomfort experienced was noted on a 3-point scale as shown in Tab.1.

    Table1:Ride comfort scale

    4 Data cleaning and preprocessing

    Before the time-series data were analyzed,data cleaning and preprocessing was performed,and this includes:Error Compensation,Data Concatenating and Ordering,and Removal of Statistical Insignificant Variables.

    4.1 Error compensation

    Reducing drift in Inertia Navigation Systems (INS)

    The acceleration data from the accelerometer and gyroscope should be hovering near zero when the bus is identified to have stopped at a bus stop,over the extended durations in which the longitude and latitude position remains unchanged.During this instant,the acceleration values of the preceding section from the bus stop were proportionately adjusted and the acceleration values were reset for the subsequent section to the next bus stop.

    Position correction in absolute positioning system

    To acquire the absolute position of the vehicle and the corresponding speed,the Kalman filter,commonly used to estimate true distance travelled obtained by the GPS sensor during sampling intervals,is applied.The moving average has also been shown to produce results close to those using the Kalman filter [Eliasson (2014)].The central moving average was used in this experiment.Based on the average values of latitude and longitude obtained,the distance travelled and hence the corrected speed was computed and used in analysis.

    4.2 Data concatenating and ordering

    Data obtained from the various smartphone sensors were averaged in 5-second intervals to match the corresponding Ride Comfort score captured.Data from each 5-second intervals were concatenated into a single data set for analysis.Ride Comfort score was reformatted as an Ordered factor variable,to model the increasing level of discomfort.

    4.3 Removal of statistical insignificant variables

    Correlation amongst the variables present in the data was examined to account for multicollinearity problems.In prediction ride comfort,there was relatively high correlation of wzwith other variables and hence removed from further analysis.As expected,geographical location (latitude and longitude) were not motion characteristics and prove not to influence ride comfort.

    After the data cleaning,there were 1208 observations with 9 independent variables as shown in Fig.3,along with the summary statistics of the variables of the final model.

    Figure3:Summary statistics of variables in final models

    5 Model development and results of data analysis

    A regression tree was performed on the data set.The fully-grown tree had a total of 32 splits,where it was then pruned based on the optimal complexity parameter in order to avoid overfitting.This resulted in a pruned tree with 26 splits as shown in Fig.4.Terminal nodes are highlighted in red,yellow and green to illustrate cases where majority of the ride comfort levels 3,2 and 1 respectively.

    Based on the model and the Gini importance index,the variables identified to be important in providing meaningful splits for the Classification and Regression Tree(CART) as shown in Tab.2.

    Table2:Variable importance table for CART analysis

    The model had an accuracy of 90.9% with the following confusion matrix as shown in Tab.3.

    Table3:Confusion matrix for CART analysis

    6 Discussions

    The 26 splits can be identified from the tree where a “yes” to the condition is split to the left and a “no” to the condition is split to the right.Results suggest that for 16% of the observed data falls under the combination ,,

    Figure4:Prune CART decision tree with 26 splits

    All these mean that while speed influences the ride comfort significantly,cases with low speed accompanied with changes in lateral direction causes greater discomfort.Sharper turns that are accompanied by changes in elevation,possibly caused by humps also cause discomfort,while at the same time,smoother ride with more sudden turns increase would increase ride discomfort.

    The results indicate that higher speed does not necessarily compromise on ride comfort.Riding over humps when the pitch is kept within a range of ±2° is also acceptable.The changes in lateral direction,even with a near right-angle turn but with low longitudinal acceleration may not increase ride discomfort.

    7 Conclusion

    This study shows that kinematic data captured from sensors in a smartphone can be used to reflect a passenger’s ride comfort with high degree of accuracy.Sharp turns that are accompanied by changes in elevation,or sudden albeit smoother turns are the two biggest causes of passenger discomfort in a ride.

    This provides possibilities of measuring driver behavior and performance,where drivers could be tested relatively easily whether they are providing comfortable rides for passengers.

    天天躁夜夜躁狠狠久久av| 麻豆av噜噜一区二区三区| 一本久久中文字幕| 99在线人妻在线中文字幕| 精品久久久久久久久av| 亚洲成人久久性| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久久免费视频| 日韩视频在线欧美| 黄色配什么色好看| 小蜜桃在线观看免费完整版高清| 国内精品久久久久精免费| 国产精品蜜桃在线观看 | 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 97超视频在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产欧美人成| 免费观看精品视频网站| 欧美高清性xxxxhd video| 只有这里有精品99| 女同久久另类99精品国产91| 欧美另类亚洲清纯唯美| 午夜福利在线观看吧| 高清日韩中文字幕在线| 在线国产一区二区在线| 欧美成人免费av一区二区三区| 免费观看的影片在线观看| 六月丁香七月| 综合色丁香网| 深爱激情五月婷婷| 91在线精品国自产拍蜜月| 最新中文字幕久久久久| 欧美最新免费一区二区三区| 中文资源天堂在线| 日韩亚洲欧美综合| 成人高潮视频无遮挡免费网站| 亚洲在线自拍视频| 国产综合懂色| 夜夜夜夜夜久久久久| 男女视频在线观看网站免费| 国产黄色小视频在线观看| 久久热精品热| 如何舔出高潮| 欧美色视频一区免费| 亚洲精品国产成人久久av| 色综合亚洲欧美另类图片| 日韩一本色道免费dvd| 99久国产av精品| 能在线免费观看的黄片| 国产精品嫩草影院av在线观看| 少妇裸体淫交视频免费看高清| 亚洲精品国产成人久久av| 国产精品免费一区二区三区在线| 一个人看的www免费观看视频| 在线播放无遮挡| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 久久久欧美国产精品| .国产精品久久| 国产日韩欧美在线精品| 精品少妇黑人巨大在线播放 | 午夜精品一区二区三区免费看| 亚洲在久久综合| 国产免费一级a男人的天堂| 国产极品精品免费视频能看的| 国产91av在线免费观看| 国产真实乱freesex| 亚洲av成人av| 九九久久精品国产亚洲av麻豆| 此物有八面人人有两片| 网址你懂的国产日韩在线| 欧美人与善性xxx| 国产精品麻豆人妻色哟哟久久 | 97在线视频观看| 久久久精品94久久精品| avwww免费| 亚洲欧美精品专区久久| 亚洲av男天堂| 黄色视频,在线免费观看| 久久久久九九精品影院| 亚洲图色成人| 国产精品久久电影中文字幕| 天天一区二区日本电影三级| 日韩av不卡免费在线播放| 久久国产乱子免费精品| 最近视频中文字幕2019在线8| 亚洲精品国产av成人精品| 国产精品久久视频播放| 三级毛片av免费| 国产久久久一区二区三区| 日韩一区二区视频免费看| 少妇高潮的动态图| 深夜a级毛片| 国产av不卡久久| 狂野欧美激情性xxxx在线观看| 日日干狠狠操夜夜爽| 身体一侧抽搐| 精品日产1卡2卡| 国模一区二区三区四区视频| 九色成人免费人妻av| 中文精品一卡2卡3卡4更新| 色哟哟·www| 深爱激情五月婷婷| 日日摸夜夜添夜夜爱| 亚洲av男天堂| 一级毛片电影观看 | 一级毛片电影观看 | 久久综合国产亚洲精品| 成人国产麻豆网| 久久久欧美国产精品| 午夜久久久久精精品| 国产高清三级在线| 十八禁国产超污无遮挡网站| 尤物成人国产欧美一区二区三区| 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| 在线观看一区二区三区| 网址你懂的国产日韩在线| kizo精华| 不卡视频在线观看欧美| 啦啦啦韩国在线观看视频| 午夜久久久久精精品| 国产成人影院久久av| 国产精品久久久久久av不卡| 亚洲国产欧美在线一区| 亚洲综合色惰| 国产成年人精品一区二区| 婷婷六月久久综合丁香| 黄片无遮挡物在线观看| 国产爱豆传媒在线观看| 国产免费一级a男人的天堂| 亚洲av二区三区四区| 国产午夜精品一二区理论片| 免费在线观看成人毛片| 偷拍熟女少妇极品色| 国产成人91sexporn| 成人亚洲欧美一区二区av| .国产精品久久| 在线观看66精品国产| 亚洲av二区三区四区| 三级男女做爰猛烈吃奶摸视频| 九九在线视频观看精品| 成人亚洲欧美一区二区av| or卡值多少钱| 久久久久久久久久黄片| 黄片wwwwww| 伦理电影大哥的女人| h日本视频在线播放| 22中文网久久字幕| 在线观看av片永久免费下载| 哪个播放器可以免费观看大片| 91久久精品电影网| 欧美一区二区精品小视频在线| 在线观看av片永久免费下载| 精品久久久久久久久亚洲| 男人舔奶头视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美一区二区三区在线观看| 国产成人91sexporn| 91久久精品国产一区二区三区| 免费大片18禁| 嫩草影院入口| 亚洲精品国产av成人精品| 精品无人区乱码1区二区| 久久久色成人| 最近的中文字幕免费完整| 青春草国产在线视频 | 亚洲国产精品sss在线观看| 国产精品综合久久久久久久免费| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 国产黄色视频一区二区在线观看 | 如何舔出高潮| 99精品在免费线老司机午夜| 天天一区二区日本电影三级| 久久鲁丝午夜福利片| 免费在线观看成人毛片| 日本一本二区三区精品| 黄色一级大片看看| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 国产中年淑女户外野战色| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 在线免费观看的www视频| 亚洲欧美日韩卡通动漫| 麻豆精品久久久久久蜜桃| 日韩大尺度精品在线看网址| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 青春草亚洲视频在线观看| 在线播放国产精品三级| 欧美日本亚洲视频在线播放| 亚洲欧美日韩高清专用| 一个人看视频在线观看www免费| 国产成人91sexporn| 非洲黑人性xxxx精品又粗又长| h日本视频在线播放| 久久久久久国产a免费观看| 国产91av在线免费观看| 2021天堂中文幕一二区在线观| 少妇猛男粗大的猛烈进出视频 | 成人高潮视频无遮挡免费网站| 日产精品乱码卡一卡2卡三| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验 | 国模一区二区三区四区视频| 国产69精品久久久久777片| 大又大粗又爽又黄少妇毛片口| 女同久久另类99精品国产91| 午夜a级毛片| 欧美成人a在线观看| 欧美另类亚洲清纯唯美| 成人高潮视频无遮挡免费网站| 国产精品无大码| 久久久久久国产a免费观看| 秋霞在线观看毛片| 日韩欧美在线乱码| 国产午夜福利久久久久久| 99久久中文字幕三级久久日本| 色播亚洲综合网| 又爽又黄a免费视频| 国产老妇女一区| 一级二级三级毛片免费看| 丝袜喷水一区| 91av网一区二区| 精品一区二区三区视频在线| 变态另类成人亚洲欧美熟女| av视频在线观看入口| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 成人av在线播放网站| 亚洲经典国产精华液单| 青春草亚洲视频在线观看| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 久久精品影院6| 欧美zozozo另类| 精品日产1卡2卡| 久久精品国产亚洲av涩爱 | 狠狠狠狠99中文字幕| 成年免费大片在线观看| 中文资源天堂在线| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 久久99热6这里只有精品| 久久亚洲国产成人精品v| 久久久久久久久大av| 日韩成人av中文字幕在线观看| 亚洲久久久久久中文字幕| 国产精品.久久久| 国产精品一区二区三区四区久久| 99久久人妻综合| 亚洲欧美精品专区久久| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 日韩av在线大香蕉| 国产精品99久久久久久久久| a级毛片免费高清观看在线播放| 99久久人妻综合| 日韩欧美精品v在线| 国产精品一区www在线观看| 波野结衣二区三区在线| 两个人视频免费观看高清| 成人午夜精彩视频在线观看| 亚洲国产欧洲综合997久久,| 尤物成人国产欧美一区二区三区| 久久这里只有精品中国| 亚洲久久久久久中文字幕| 免费看a级黄色片| 欧美色视频一区免费| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 亚洲成av人片在线播放无| 亚洲av免费在线观看| 欧美高清性xxxxhd video| 亚洲自拍偷在线| 国产黄色视频一区二区在线观看 | 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| 搡女人真爽免费视频火全软件| 免费在线观看成人毛片| 两个人的视频大全免费| 日本一二三区视频观看| 在线观看66精品国产| 亚洲七黄色美女视频| 麻豆一二三区av精品| 国产成年人精品一区二区| 中文字幕免费在线视频6| 99国产极品粉嫩在线观看| 99久久精品国产国产毛片| 老熟妇乱子伦视频在线观看| 日本爱情动作片www.在线观看| 99热精品在线国产| 一边亲一边摸免费视频| 免费人成在线观看视频色| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 插阴视频在线观看视频| 国产精品一区二区三区四区免费观看| 综合色丁香网| 一个人看视频在线观看www免费| or卡值多少钱| 欧美日本视频| 中文字幕熟女人妻在线| 亚洲人成网站在线观看播放| a级毛片a级免费在线| 成人一区二区视频在线观看| 国产成人福利小说| 免费人成在线观看视频色| 亚洲av免费在线观看| 国产乱人偷精品视频| 日韩中字成人| 国产精品蜜桃在线观看 | 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 男插女下体视频免费在线播放| 亚洲色图av天堂| 欧美性感艳星| 国产午夜精品论理片| or卡值多少钱| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 黄片无遮挡物在线观看| 夜夜夜夜夜久久久久| 日日啪夜夜撸| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠久久av| 能在线免费看毛片的网站| 大香蕉久久网| 久久午夜福利片| 两性午夜刺激爽爽歪歪视频在线观看| 少妇裸体淫交视频免费看高清| 欧美日本视频| 观看美女的网站| 欧美日本视频| 欧美日韩乱码在线| 久久精品国产亚洲av涩爱 | 欧美最新免费一区二区三区| 能在线免费看毛片的网站| .国产精品久久| 亚洲五月天丁香| 久久久久国产网址| 亚洲高清免费不卡视频| 一级黄色大片毛片| 插阴视频在线观看视频| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 国内精品美女久久久久久| 国内精品宾馆在线| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 给我免费播放毛片高清在线观看| 12—13女人毛片做爰片一| 日本欧美国产在线视频| 22中文网久久字幕| 国产视频内射| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 美女国产视频在线观看| 久久久a久久爽久久v久久| 91麻豆精品激情在线观看国产| 中文字幕人妻熟人妻熟丝袜美| 久久中文看片网| 中文在线观看免费www的网站| 丰满的人妻完整版| 成人美女网站在线观看视频| 变态另类丝袜制服| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 欧美色视频一区免费| ponron亚洲| 可以在线观看的亚洲视频| 悠悠久久av| 最近的中文字幕免费完整| 亚洲精品自拍成人| 国产69精品久久久久777片| 91av网一区二区| 女的被弄到高潮叫床怎么办| 久久精品国产自在天天线| 中文字幕免费在线视频6| 久久婷婷人人爽人人干人人爱| 一本精品99久久精品77| 在线免费观看的www视频| 成人综合一区亚洲| 有码 亚洲区| 麻豆一二三区av精品| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 我要搜黄色片| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 国产成人精品久久久久久| 欧美色视频一区免费| 男女啪啪激烈高潮av片| 一级av片app| 18禁黄网站禁片免费观看直播| 51国产日韩欧美| 欧美三级亚洲精品| 我要看日韩黄色一级片| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 亚洲精品亚洲一区二区| 男插女下体视频免费在线播放| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 国产成人午夜福利电影在线观看| 色噜噜av男人的天堂激情| 欧美xxxx性猛交bbbb| 中文亚洲av片在线观看爽| 国产视频首页在线观看| 亚洲人成网站高清观看| 日韩中字成人| 久久人人爽人人片av| 男的添女的下面高潮视频| 亚洲精品日韩av片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费av毛片视频| 国产亚洲av片在线观看秒播厂 | 日韩欧美 国产精品| 熟女人妻精品中文字幕| 成人三级黄色视频| 别揉我奶头 嗯啊视频| 亚洲精品色激情综合| 午夜视频国产福利| 成人午夜高清在线视频| 免费av观看视频| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 天美传媒精品一区二区| 插逼视频在线观看| 久久精品夜色国产| 亚洲精品日韩av片在线观看| 一本精品99久久精品77| 丰满乱子伦码专区| 亚洲最大成人中文| 99riav亚洲国产免费| av在线蜜桃| 99热这里只有是精品在线观看| 在线观看一区二区三区| 精品久久久噜噜| 成人特级av手机在线观看| 成人永久免费在线观看视频| videossex国产| 边亲边吃奶的免费视频| 欧美丝袜亚洲另类| 婷婷色综合大香蕉| 国产在视频线在精品| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 插阴视频在线观看视频| 2022亚洲国产成人精品| 亚洲人成网站在线播| 美女黄网站色视频| 97超碰精品成人国产| 欧美在线一区亚洲| 12—13女人毛片做爰片一| 色视频www国产| 成人国产麻豆网| 黄色欧美视频在线观看| 观看美女的网站| 99视频精品全部免费 在线| 亚洲国产色片| 亚洲国产精品sss在线观看| 级片在线观看| 色哟哟·www| 国产精品99久久久久久久久| 一边摸一边抽搐一进一小说| 欧美+亚洲+日韩+国产| 校园春色视频在线观看| 亚洲一级一片aⅴ在线观看| 国产成人a区在线观看| 青春草亚洲视频在线观看| 国产精品一区二区在线观看99 | 国产av不卡久久| 久久久久久久久久成人| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 午夜福利成人在线免费观看| 久久精品影院6| 搞女人的毛片| 日本欧美国产在线视频| 少妇人妻一区二区三区视频| av在线老鸭窝| 乱人视频在线观看| av天堂中文字幕网| 秋霞在线观看毛片| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产三级中文精品| 久久精品国产鲁丝片午夜精品| 久久久久久国产a免费观看| 黄色一级大片看看| 人妻少妇偷人精品九色| 久久精品夜夜夜夜夜久久蜜豆| 成人一区二区视频在线观看| 69av精品久久久久久| 一区二区三区高清视频在线| 成熟少妇高潮喷水视频| 亚洲精品粉嫩美女一区| 色综合色国产| 亚洲国产精品成人久久小说 | 国产精品麻豆人妻色哟哟久久 | 国产视频首页在线观看| 小说图片视频综合网站| 国产视频内射| 欧美日韩精品成人综合77777| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 91狼人影院| videossex国产| 成人特级黄色片久久久久久久| 性色avwww在线观看| 久久久午夜欧美精品| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 一级黄色大片毛片| 简卡轻食公司| 91aial.com中文字幕在线观看| 午夜久久久久精精品| 成人漫画全彩无遮挡| 成人特级黄色片久久久久久久| 国产69精品久久久久777片| 99热只有精品国产| 久久久久久久久中文| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| 国产高清三级在线| 欧美性猛交╳xxx乱大交人| 你懂的网址亚洲精品在线观看 | 午夜视频国产福利| 嫩草影院新地址| 亚洲一区二区三区色噜噜| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 黄色日韩在线| 夜夜夜夜夜久久久久| 国产成年人精品一区二区| 少妇熟女aⅴ在线视频| 午夜爱爱视频在线播放| 久久久成人免费电影| 久久久久免费精品人妻一区二区| 男人的好看免费观看在线视频| 美女大奶头视频| 成人美女网站在线观看视频| 99国产精品一区二区蜜桃av| 91午夜精品亚洲一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 国产熟女欧美一区二区| 中出人妻视频一区二区| 国产av不卡久久| 波野结衣二区三区在线| 日本黄色片子视频| 久久人人爽人人爽人人片va| 黄色配什么色好看| 精品无人区乱码1区二区| 在线免费观看的www视频| 日本熟妇午夜| 51国产日韩欧美| 亚洲一级一片aⅴ在线观看| 亚洲最大成人中文| 最近2019中文字幕mv第一页| 久久精品夜夜夜夜夜久久蜜豆| 欧美高清成人免费视频www| 日韩欧美精品免费久久| 91av网一区二区| 看片在线看免费视频| 久久久久九九精品影院| 日本与韩国留学比较| 精品人妻一区二区三区麻豆| 免费看美女性在线毛片视频| 日本黄大片高清| 亚洲精品乱码久久久v下载方式| 国产视频首页在线观看| 亚洲中文字幕一区二区三区有码在线看| 如何舔出高潮| 国产av不卡久久| 小说图片视频综合网站| 性欧美人与动物交配| 国产一区二区激情短视频| 99视频精品全部免费 在线| 麻豆av噜噜一区二区三区| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人爽人人夜夜 | 青青草视频在线视频观看| 国产精品综合久久久久久久免费| 天堂影院成人在线观看| 一区二区三区四区激情视频 | 精品日产1卡2卡| 噜噜噜噜噜久久久久久91| 麻豆久久精品国产亚洲av| 亚洲国产精品久久男人天堂|