• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM

    2019-08-13 02:22:12HoZHOUXioyuZHANGHuizhongZENGHuningYANGHongshuiLEIXioLIYoingWANG
    CHINESE JOURNAL OF AERONAUTICS 2019年7期

    Ho ZHOU ,Xioyu ZHANG ,*,Huizhong ZENG ,Huning YANG ,Hongshui LEI ,Xio LI ,Yoing WANG

    a Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications,Beijing Institute of Spacecraft System Engineering,CAST,Beijing 100094,China

    b Institute of Advanced Structure Technology,Beijing Institute of Technology,Beijing 100081,China

    KEYWORDS Lattice structure;Lightweight;Selective laser melting(SLM);Spacecraft;Thermal controller

    Abstract Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft.Yet,the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity.A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering.In this work,we design a lightweight phase-change thermal controller structure based on lattice cells.The structure is manufactured entirely with AlSi10Mg by direct metal laser melting.The dimensions of the structure are 230 mm×170 mm×15 mm,and the mass is 190 g,which is 60%lighter than most traditional structures(500-600 g)with the same dimensions.The 3D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process.Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments.Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by 50%compared to that of traditional controllers with the same volume.

    1.Introduction

    Thermal control systems with phase-change materials(PCMs)are widely used for ensuring the normal functions of spacecraft and aircraft equipment.1-5This passive type of energy storage or release is suitable for situations in which heat dissipation is periodic or transient.6,7Forty years ago,Schelden and Golden introduced a practical thermal controller design for spacecraft,including PCM selection,container design,test setup,and data analysis.1However,given that circuit densities continue to increase at a rate of 30%per year,problems associated with thermal control of electronic devices increase as well.2PCMs have attracted considerable attention owing to insistent demands for high-performance thermal controllers and to their higher removal capabilities compared with those of liquid and air options.For example,Darkwa et al.developed a technique that reduces the porosities of composite materials exhibiting high thermal conductivities and energy storage densities.5In another study,the transient thermal control performance of an avionics module using PCM was investigated by measuring temperatures at various locations as functions of time until the module temperature reached an acceptable maximum limit.6Different types of phase-change materials were employed for fabrication of thermal management systems.4To improve the performance of a thermal controller,including its thermal conductivity,latent heat,and mechanical property,Nofal et al.proposed an additive manufacturing technique of PCM,in which paraffin wax is mixed with a thermally conductive expanded graphite layer by layer.7Meanwhile,the performance of a PCM package can be characterized systematically by varying the power input,the orientation of the package,and melting or freezing times under cyclic steady conditions.3Nevertheless,although PCMs and the thermal performances of thermal controllers have been extensively researched,studies on lightweight hermetic structure design remain scarce.

    The considerably heavy weights of structures in a spacecraft are due to thermal controllers.These heavy structures restrict the transport of scientific devices in the spacecraft owing to the limited capacities of rockets. Lightweight structures have become a major concern in space exploration operations,such as the Lunar and Mars exploration,apart from the risk of PCM leaks at the welding lines of hermetic structures fabricated by traditional manufacturing processes.In the past decade,the development of additive manufacturing techniques,such as selective laser melting(SLM)and electron beam melting,has enabled fabrication of high-precision lattice sandwich structures.8-11Lattice sandwich structures have been considered the most promising next-generation lightweight structures for spacecraft,and thus have started to gain interest from researchers.12-16For instance,Louvis et al.investigated the SLM processability of AlSi10Mg at the material scale,17and Tang et al.examined the weak anisotropy of the mechanical properties of AlSi10Mg specimens produced by SLM.8Zheng et al.presented that the hardness of SLM-processed FVS0812 samples far exceeded that of the as-cast FVS0812 alloy.18It has been found that the SLM processing of aluminum is challenging because of its poor laser beam absorption,high thermal conductivity,low viscosity,susceptibility to oxidation,high co-efficient of thermal expansion,and wide solidification temperature ranges19;nevertheless,aerospace engineers highly prefer aluminum because of its low density and high stiffness.Meanwhile,Yan et al.examined the mechanical properties of aluminum alloy cellular lattice structures at the lattice structure scale.11Tsopanos et al.investigated the dependence of mechanical properties of steel microlattice structures on processing parameters.9Additively-manufactured lattice sandwich structures are lightweight and welding-free,and thus enable designing novel phase-change thermal controller structures.

    In this paper,we design a lightweight phase-change thermal controller structure based on lattice cells.The structure is manufactured entirely with AlSi10Mg by direct metal laser melting.The dimensions of the structure are 230 mm×170 mm×15 mm,and the mass is 190 g,which is 60%lighter than most traditional structures (about 500-600 g) with the same dimensions.Whether the structure has sufficient strength is determined through inner pressure analysis and experiment.A thermal test shows that the thermal capacity of the latticebased thermal controller increases by 50%compared with those of traditional controllers.

    2.Structural design and mechanical analysis

    In this work,our aim is to fabricate a lightweight thermal controller structure.The emphasis is on the design flow and experimental verification of the engineering structure.The design flow is shown in Fig.1.In the‘‘Design objective”process,the main objective of design is set,i.e.,the light-weight property of the thermal controller structure.In the‘‘Structural configuration”process,the structural configuration is designed as lattices with an external closed shell because of the lightweight and open properties of lattice cells and their leak-proof shells.In the‘‘SLM limits”process,the minimum diameter of the lattice struts and the minimum thickness of the shell are determined by experiments.In the‘‘Lattices and shell parameters”process,the type of lattice cells,the diameter of the lattice struts,and the thickness of the shell are designed.In the‘‘Mechanical analysis”process,the finite element model of the thermal controller structure is built.The stress is calculated and compared with the yield strength of a material under an internal pressure load.In the‘‘Thermal controller model”process,the geometric model of the thermal controller is built with 3D modeling software.In the‘‘Structural fabrication”process,the thermal controller structure composed of lattices and shells is fabricated with the direct metal laser melting technique.In the‘‘Experimental verification”process,an internal pressure experiment, leak detection, and a thermal experiment are conducted.

    Fig. 1 Design flow of the lightweight thermal controller structure.

    Fig.2 Pyramid-type lattice cells and their dimensions.

    Fig.3 Structure of the phase-change thermal controller.

    Fig. 4 Schematic of connections between large and small lattices.

    Fig.5 Stress contours calculated under an internal pressure.

    The structure of the phase-change thermal controller is composed of internal lattices and an external shell.The lattices are of the same type(pyramid),but have different dimensions,as shown in Fig.2.Pyramid-type cells have low relative densities and high stiffness-to-weight ratios.20,21The dimensions of large cells are represented by D1=D2=D3,whereas those of the small cells are represented by d1=d2=d3.The angle among adjacent lattice struts is 70.5°.The relative density ρa(bǔ)nd the effective elastic modulus Eijin the principal direction of a cell are determined as follows:

    where ω is the angle between the lattice struts and the horizontal plane,δ is the diameter of the struts,D is the dimensions of the lattices,such as D1or d1,and E0is the elastic modulus of the parent material.This type of cell is lightweight and highly stiff.The lattices array all over the space inside the shell.The lattices not only support the external shell,but also facilitate the run-through internal space, thereby maintaining good mechanical stiffness and fluidity of the PCM.The small lattices are employed to avoid a collapse during the SLM process.

    The shape of the thermal controller is brick,which is usually identified with the mounting dimensions surface of the equipment to be thermally controlled.It is composed of a shell and lattices,as shown in Fig.3.The dimensions of the thermal controller(W×H×T)are 230 mm×170 mm×15 mm.The thickness of the shell(t)is 0.5 mm.The connections between large and small lattices are illustrated in Fig.4.The diameters of the lattice struts(δ)are 0.5 mm.The dimensions of a large unit cell are D1=D2=D3=(T-δ)/2=7.25 mm. The region filled by a large unit cell is W1×H1×T1, where W1=W-δ=229.5 mm, H1=H-δ=169.5 mm, and T1=T-δ=14.5 mm.The region filled by a large unit cell is smaller than the dimensions of the thermal controller,so the edges of the lattices do not exceed the outer surface of the shell.The dimensions of a small unit cell are half of those of a large unit cell,that is,d1=d2=d3=D1/2=3.625 mm.The region filled by a small unit cell is W2×H2×T2,where W2=W-δ=229.5 mm, H2=(1+0.25)×D1=9.0625 mm,and T2=T-δ=14.5 mm.The region filled by the small cells connects the struts and prevents the cantilevers.Two auxiliary tubes are designed for the output of internal powder and the input of PCM.The inner and outer diameters of the tubes are 4 mm and 6 mm,respectively.The lengths of the tubes are 4.5 mm.A chamfering with a radius of 0.5 mm is designed for reduction of the stress concentration at the edges inside and outside of the thermal controller structure.

    An inner pressure of 0.2 MPa must be tolerated by the cavity structure.A mechanical analysis is conducted with Patran/Nastran software.In finite element modeling,the lattice struts and the external shell are simulated with beam and shell elements.The dimensions of the elements range from 1 mm to 8 mm.The elastic modulus and yield strength of AlSi10Mg are 70 GPa and 220 GPa,respectively,which are obtained by subjecting the SLM specimens to tension tests.The shell elements are subjected to a 0.2 MPa pressure.The inertia relief approach is used for the static analysis,and the central node is used as the Wt.Gener.The stress contours calculated under an internal pressure are shown in Fig.5.The maximum stress(bar stress)of the lattices is 40.3 MPa,as shown in Fig.5(a),and the maximum stress(von Mises stress)of the shell is 3.2 MPa,as shown in Fig.5(b).The stress is much lower than the yield stress of AlSi10Mg,that is,220 MPa.Therefore,the safety margin(s)is 4.4(220 MPa/40.3 MPa-1),which is adequate for aerospace applications.

    Fig.6 Photographs of the AlSi10Mg powder,the lightweight phase-change thermal controller,and the internal pressure experimental setup.

    Fig.7 Schematic,photograph,and temperature-time curves of the thermal test.

    3.Fabrication and characterization

    The structure is fabricated with AlSi10Mg powder through a selective laser melting technique.A Concept X-line 1000R machine(Concept Laser Company)is employed.The laser power is 370 W,and the scanning speed is 1500 mm/s.The hatch spacing is 0.19 mm,and the layer thickness is 30 μm.The particles size is 0-62 μm in diameter.The equivalent diameters of the maximum particles with cumulative distributions of 10%, 50%, and 90% in the distribution curve are D10≥15 μm,30 μm ≤D50≤40 μm,and D90≤62 μm,respectively.The morphology of AlSi10Mg powder is shown in Fig.6(a)and(b).The diameters of several particles are labeled with[1]d,[2]d,[3]d,etc.The SLM parameters are determined by comparing the yield strengths of specimens fabricated with ten sets of processing parameters.The set of parameters used in this work achieves a superior mechanical strength.After the production,the internal powder is cleaned with argon and mechanical vibration.Thermal treatment at 250°C is conducted for 4 h for reduction of the residual stress inside the structure.The structure is finally polished with a grinding machine and abrasive paper.The weight of the final structure is 190 g, whereas the weight of a traditional structure fabricated using the brazing technique with the same capacity is 500-600 g.The mass reduction is more than 60%.It should be stated that the traditional structures refer to the thermal controller structures used by China Academy of Space Technology.The weight property of thermal controllers is scarcely reported in public literature.

    A picture of the phase-change thermal controller is shown in Fig.6(c).Owing to its light-weight property,the structure can stand on a plant.To test the mechanical performance of the lightweight structure,we conduct an internal pressure experiment.In this experiment,nitrogen is subjected to a pressure of 0.2 MPa at maximum in the cavity.The pressure is maintained for 10 min.Then,the pressure is removed.After the experiment,leak is detected with an INFICON UL1000 Fab helium mass spectrometer,as shown in Fig.6(d).The test result shows that the leak rate is less than 5×10-9Pa m3/s,and thus satisfies the desired leak rate of 5×10-7Pa m3/s.The flatness values of the top and bottom surfaces of the structure are 0.07 mm/100 mm×100 mm and 0.06 mm/100 mm×100 mm before and after the pressure experiment.The values are lower than the desired value(0.1 mm/100 mm×100 mm).A steady flatness can ensure a good area contact between electronic equipment and the phase-change thermal controller,and thus heat conduction is not blocked by the air gaps between the contact surfaces.

    After the pressure test, a phase-change material,n-Tetradecane(a type of organic phase-change material with a phase-change temperature of 279 K),is filled into the thermal controller via the auxiliary tube.The auxiliary tube is blocked by soldering after filling of the phase-change material.The thermal capacity of the phase-change thermal controller is tested in a vacuum chamber.The experimental setup is shown in Fig.7(a)and(b).Two heater bands glued on the top face of the thermal controller are used as heat sources.The heat power density of the heater bands is 0.5 W/cm2.The temperatures at the top and bottom surfaces of the phase-change thermal controller are measured with thermocouples.The temperature-time curves(B-P)at eight positions are plotted in Fig.7(c).The temperature at the top face of the controller is shown as the upper curves(B-H)in Fig.7(c).The temperature at the bottom face of the controller is shown as the lower curves(J-P)in Fig.7(c).After heat is applied,thermal energy transports from the upper face to the bottom face of the thermal controller,thereby heating the solid-state n-Tetradecane.The temperature at the top face of the thermal controller increases from 273 K to 287 K within 120 s,and then increases rapidly from 120 s to 190 s.The rapid rise of temperature indicates that most of the phase-change material has become liquid.The phase-change process stores large amount of energy.The heat energy G absorbed by the thermal controller in a unit area before the temperature increases rapidly can be calculated as

    where P is the power density of the heater bands,t1is the initial moment when the heater bands work,and t2is the moment when the temperature increases rapidly. The heat energy absorbed by the thermal controller in a unit area is 60 J/cm2,which is obtained by the formula.However,the energy capacities of thermal controllers with the same dimensions manufactured by a traditional technique are about 40 J/cm2.Therefore,the lattice-based thermal controller enables a 50%increase in thermal capacity compared with those fabricated by a traditional technique because of the increase in cubage.

    4.Conclusions

    This paper presents a design of a lightweight phase-change thermal controller structure based on lattice cells.The design is verified by mechanical and thermal tests.The following conclusions are drawn:

    (1)A lightweight structure of a phase-change thermal controller based on lattice cells is successfully designed and fabricated.The mass reduction is more than 60%of that observed in traditional products.

    (2)Mechanical analysis and experiments verify the strength of the structure under pressure and the satisfactory leakproof property of the thermal controller.

    (3)The lattice-based thermal controller enables a 50%increase in thermal capacity because of an increased cubage.

    Acknowledgements

    The authors acknowledge the supports from Beijing Institute of Spacecraft System Engineering and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Nos.2017QNRC001,2016QNRC001).The authors are grateful to Ms.He ZHAO from Capital Normal University for carefully proofreading the manuscript.

    精品久久久久久,| videosex国产| 黄频高清免费视频| 女人爽到高潮嗷嗷叫在线视频| 色尼玛亚洲综合影院| 制服诱惑二区| 午夜福利在线免费观看网站| 黑人巨大精品欧美一区二区蜜桃| 热99国产精品久久久久久7| 在线观看舔阴道视频| 国产成+人综合+亚洲专区| 热99国产精品久久久久久7| 欧美成人午夜精品| 亚洲av成人不卡在线观看播放网| 亚洲精品久久成人aⅴ小说| 国产成年人精品一区二区 | 成人亚洲精品一区在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲aⅴ乱码一区二区在线播放 | 搡老岳熟女国产| 亚洲成人免费电影在线观看| www日本在线高清视频| 欧美精品亚洲一区二区| 伊人久久大香线蕉亚洲五| 欧美+亚洲+日韩+国产| 精品人妻1区二区| 悠悠久久av| 亚洲精品一区av在线观看| 国产高清激情床上av| 长腿黑丝高跟| а√天堂www在线а√下载| a在线观看视频网站| 波多野结衣一区麻豆| 亚洲精品中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| 老司机福利观看| 久久影院123| 亚洲午夜理论影院| 两个人看的免费小视频| 国产成+人综合+亚洲专区| 夜夜看夜夜爽夜夜摸 | 欧美另类亚洲清纯唯美| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 91成人精品电影| 精品一区二区三卡| 亚洲男人天堂网一区| 亚洲国产欧美日韩在线播放| 免费看a级黄色片| 在线视频色国产色| 18美女黄网站色大片免费观看| 自线自在国产av| 亚洲精品成人av观看孕妇| 国产99久久九九免费精品| 国产成人啪精品午夜网站| 制服诱惑二区| 国产精品 国内视频| а√天堂www在线а√下载| 日本黄色日本黄色录像| 国产高清视频在线播放一区| 国产免费男女视频| 成人精品一区二区免费| 看免费av毛片| 日本三级黄在线观看| 久久久国产成人免费| 一边摸一边抽搐一进一小说| 久久久久精品国产欧美久久久| 无人区码免费观看不卡| 久久精品亚洲精品国产色婷小说| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 精品国产乱码久久久久久男人| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 欧美一级毛片孕妇| 99热只有精品国产| 欧美激情久久久久久爽电影 | 日日干狠狠操夜夜爽| 在线天堂中文资源库| 日本五十路高清| 国产蜜桃级精品一区二区三区| 成人免费观看视频高清| 久久性视频一级片| 免费av中文字幕在线| 看黄色毛片网站| 欧美日韩av久久| 欧美日韩黄片免| 搡老岳熟女国产| 国产欧美日韩一区二区三| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 9色porny在线观看| 777久久人妻少妇嫩草av网站| 久久人人97超碰香蕉20202| 亚洲男人天堂网一区| 麻豆av在线久日| av片东京热男人的天堂| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 日韩精品免费视频一区二区三区| 一夜夜www| 久9热在线精品视频| 日韩欧美在线二视频| 窝窝影院91人妻| 久热爱精品视频在线9| 免费看a级黄色片| 国产午夜精品久久久久久| 一个人观看的视频www高清免费观看 | 日本a在线网址| 久久99一区二区三区| 亚洲国产精品sss在线观看 | 久久性视频一级片| 国产有黄有色有爽视频| 最近最新中文字幕大全电影3 | 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 电影成人av| 久久人人97超碰香蕉20202| 老司机亚洲免费影院| 男女之事视频高清在线观看| 久久精品影院6| 大型黄色视频在线免费观看| 久热爱精品视频在线9| 老司机亚洲免费影院| 老司机亚洲免费影院| 两人在一起打扑克的视频| 国产激情久久老熟女| 高潮久久久久久久久久久不卡| 午夜日韩欧美国产| 精品福利观看| 欧美成人午夜精品| 一级a爱片免费观看的视频| 两个人免费观看高清视频| 久久久久久大精品| 18美女黄网站色大片免费观看| 视频区欧美日本亚洲| 久久精品人人爽人人爽视色| 人人妻人人爽人人添夜夜欢视频| 美女大奶头视频| 少妇被粗大的猛进出69影院| 日韩欧美一区视频在线观看| 少妇粗大呻吟视频| 免费观看精品视频网站| 午夜激情av网站| 久久 成人 亚洲| 久久伊人香网站| 三上悠亚av全集在线观看| 欧美久久黑人一区二区| 亚洲一区中文字幕在线| 91国产中文字幕| 成人亚洲精品一区在线观看| 波多野结衣av一区二区av| 女人被躁到高潮嗷嗷叫费观| 女人被躁到高潮嗷嗷叫费观| 欧美日本亚洲视频在线播放| 午夜免费观看网址| 国产一区二区三区在线臀色熟女 | 大型黄色视频在线免费观看| 久热爱精品视频在线9| 久久国产亚洲av麻豆专区| 中文字幕av电影在线播放| 欧美最黄视频在线播放免费 | 超色免费av| 午夜福利欧美成人| 色婷婷久久久亚洲欧美| 伦理电影免费视频| 黑人猛操日本美女一级片| 国产激情久久老熟女| 啦啦啦 在线观看视频| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 男女做爰动态图高潮gif福利片 | 亚洲美女黄片视频| 女人精品久久久久毛片| 亚洲成人久久性| 又大又爽又粗| 国产在线观看jvid| a级毛片黄视频| 欧美久久黑人一区二区| 波多野结衣一区麻豆| 亚洲狠狠婷婷综合久久图片| 无遮挡黄片免费观看| 手机成人av网站| xxxhd国产人妻xxx| 一级片免费观看大全| 嫁个100分男人电影在线观看| 很黄的视频免费| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 国产精品98久久久久久宅男小说| 免费高清视频大片| 欧美丝袜亚洲另类 | 日韩大尺度精品在线看网址 | 亚洲少妇的诱惑av| 亚洲精品中文字幕一二三四区| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 五月开心婷婷网| 日本黄色视频三级网站网址| 国产野战对白在线观看| 久久久久国内视频| 亚洲精品av麻豆狂野| 一进一出抽搐gif免费好疼 | 中出人妻视频一区二区| 一本综合久久免费| 欧美午夜高清在线| 麻豆av在线久日| 人人澡人人妻人| 久久婷婷成人综合色麻豆| 久久精品人人爽人人爽视色| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 色尼玛亚洲综合影院| 亚洲熟女毛片儿| 久久久水蜜桃国产精品网| 黄色片一级片一级黄色片| 黑人操中国人逼视频| 在线视频色国产色| 又大又爽又粗| 一级毛片高清免费大全| 亚洲少妇的诱惑av| 久久亚洲真实| 国产片内射在线| 在线观看免费高清a一片| 99久久人妻综合| 亚洲熟妇中文字幕五十中出 | av电影中文网址| 日日爽夜夜爽网站| 欧美日韩av久久| 国产在线观看jvid| 日本精品一区二区三区蜜桃| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 欧美久久黑人一区二区| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | 国内久久婷婷六月综合欲色啪| 韩国av一区二区三区四区| 纯流量卡能插随身wifi吗| 黄色女人牲交| 亚洲欧美一区二区三区黑人| 亚洲熟妇中文字幕五十中出 | 免费看十八禁软件| 欧美一级毛片孕妇| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久人人做人人爽| 免费看十八禁软件| 免费久久久久久久精品成人欧美视频| 国产精品乱码一区二三区的特点 | 丝袜在线中文字幕| 在线视频色国产色| 亚洲精品美女久久久久99蜜臀| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 中文字幕高清在线视频| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 色综合站精品国产| tocl精华| 91大片在线观看| 久热爱精品视频在线9| 亚洲国产毛片av蜜桃av| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 精品国产国语对白av| 18禁国产床啪视频网站| 性欧美人与动物交配| 999久久久国产精品视频| 国产成人精品久久二区二区91| 99国产精品99久久久久| 亚洲av美国av| 国产人伦9x9x在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 手机成人av网站| 叶爱在线成人免费视频播放| 亚洲午夜理论影院| 国产一区二区激情短视频| 久久影院123| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 亚洲伊人色综图| 中文欧美无线码| 久久久久国产精品人妻aⅴ院| 亚洲狠狠婷婷综合久久图片| 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 久热这里只有精品99| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 两性夫妻黄色片| 少妇 在线观看| 免费观看人在逋| 色综合婷婷激情| www.999成人在线观看| 多毛熟女@视频| 91成人精品电影| 欧美精品一区二区免费开放| 亚洲成人免费电影在线观看| 日韩高清综合在线| 亚洲专区国产一区二区| 视频在线观看一区二区三区| 国产精品99久久99久久久不卡| 性色av乱码一区二区三区2| 国产亚洲精品综合一区在线观看 | 国产亚洲精品综合一区在线观看 | 国产免费男女视频| 午夜福利在线免费观看网站| 看片在线看免费视频| 国产精品二区激情视频| 多毛熟女@视频| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av在线| 真人一进一出gif抽搐免费| 国产视频一区二区在线看| 交换朋友夫妻互换小说| 又黄又爽又免费观看的视频| 免费人成视频x8x8入口观看| 777久久人妻少妇嫩草av网站| 日韩欧美免费精品| 一本大道久久a久久精品| 90打野战视频偷拍视频| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 美国免费a级毛片| 久久久久久久午夜电影 | 1024香蕉在线观看| 黄色丝袜av网址大全| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 99久久人妻综合| 一进一出抽搐动态| 韩国精品一区二区三区| 午夜老司机福利片| 一进一出抽搐gif免费好疼 | 亚洲自拍偷在线| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 久久香蕉激情| 成人国产一区最新在线观看| 久99久视频精品免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品美女特级片免费视频播放器 | 国产成+人综合+亚洲专区| 美女高潮到喷水免费观看| 我的亚洲天堂| 国产精品一区二区三区四区久久 | av超薄肉色丝袜交足视频| 色老头精品视频在线观看| а√天堂www在线а√下载| 99国产精品一区二区三区| 欧美日韩乱码在线| 亚洲一区中文字幕在线| 电影成人av| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| videosex国产| 91九色精品人成在线观看| 午夜福利免费观看在线| 国产伦一二天堂av在线观看| 国产伦人伦偷精品视频| 不卡av一区二区三区| 久久人妻熟女aⅴ| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 免费日韩欧美在线观看| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区mp4| 视频在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 国产单亲对白刺激| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 国产精品国产av在线观看| 免费av中文字幕在线| 国产深夜福利视频在线观看| 亚洲欧美激情综合另类| 天天影视国产精品| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 国产精品一区二区在线不卡| 男人舔女人下体高潮全视频| 多毛熟女@视频| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 深夜精品福利| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 黄频高清免费视频| 曰老女人黄片| 大香蕉久久成人网| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 色在线成人网| 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 窝窝影院91人妻| 国产免费现黄频在线看| 美国免费a级毛片| 最近最新中文字幕大全免费视频| 变态另类成人亚洲欧美熟女 | 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 香蕉久久夜色| 电影成人av| 日本黄色视频三级网站网址| 视频区图区小说| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 国产精品久久久人人做人人爽| 精品第一国产精品| a级片在线免费高清观看视频| 欧美日韩亚洲国产一区二区在线观看| 久久国产乱子伦精品免费另类| 免费人成视频x8x8入口观看| 国产精品野战在线观看 | 69精品国产乱码久久久| 一本综合久久免费| 丝袜美腿诱惑在线| 亚洲av成人一区二区三| 久久精品影院6| 久久热在线av| 两个人免费观看高清视频| 精品午夜福利视频在线观看一区| 日本五十路高清| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 电影成人av| 欧美激情久久久久久爽电影 | 国产精品一区二区三区四区久久 | 韩国精品一区二区三区| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 视频在线观看一区二区三区| 日韩欧美免费精品| 精品久久久久久久毛片微露脸| 日本三级黄在线观看| 波多野结衣av一区二区av| 亚洲一码二码三码区别大吗| 咕卡用的链子| 亚洲精品美女久久av网站| 成人18禁在线播放| av欧美777| 69精品国产乱码久久久| 午夜激情av网站| 久久人妻熟女aⅴ| 午夜91福利影院| 国产一区二区在线av高清观看| 夜夜躁狠狠躁天天躁| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站| 麻豆成人av在线观看| 国产免费现黄频在线看| 窝窝影院91人妻| 成年人免费黄色播放视频| 两个人看的免费小视频| 两个人免费观看高清视频| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 成人国语在线视频| ponron亚洲| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| videosex国产| 真人做人爱边吃奶动态| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 级片在线观看| 亚洲国产看品久久| 校园春色视频在线观看| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 不卡一级毛片| 午夜精品在线福利| 动漫黄色视频在线观看| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 久久亚洲真实| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 少妇裸体淫交视频免费看高清 | 男人操女人黄网站| 一区二区三区激情视频| 亚洲av熟女| 午夜91福利影院| 国内毛片毛片毛片毛片毛片| 久久精品国产综合久久久| 亚洲熟妇中文字幕五十中出 | 国产成人影院久久av| 亚洲成人久久性| 免费不卡黄色视频| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| 69av精品久久久久久| 麻豆久久精品国产亚洲av | 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3 | 久久人人精品亚洲av| 国产高清国产精品国产三级| 19禁男女啪啪无遮挡网站| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 免费在线观看日本一区| 99国产精品一区二区蜜桃av| 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 黄片小视频在线播放| 国产1区2区3区精品| 国产成人精品久久二区二区91| 九色亚洲精品在线播放| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 亚洲成a人片在线一区二区| 日韩精品免费视频一区二区三区| 久久草成人影院| 国产真人三级小视频在线观看| 国产成人av激情在线播放| 天天添夜夜摸| 一区二区三区激情视频| www国产在线视频色| 99国产精品免费福利视频| 久久精品亚洲精品国产色婷小说| 高清毛片免费观看视频网站 | 中文字幕人妻熟女乱码| 美女午夜性视频免费| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 999精品在线视频| av网站在线播放免费| 国产精品九九99| 亚洲一区中文字幕在线| 无人区码免费观看不卡| 欧美午夜高清在线| 午夜福利影视在线免费观看| 国产色视频综合| 国产又爽黄色视频| 日日摸夜夜添夜夜添小说| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃| 成人影院久久| 欧美日韩乱码在线| 亚洲国产欧美日韩在线播放| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品欧美日韩精品| 国产精品99久久99久久久不卡| 精品一区二区三区四区五区乱码| 欧美激情 高清一区二区三区| 亚洲自偷自拍图片 自拍| 久久久国产成人免费| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 亚洲一区二区三区欧美精品| 亚洲成人免费av在线播放| 黄色怎么调成土黄色| 亚洲黑人精品在线| 人人妻,人人澡人人爽秒播| xxx96com| 69av精品久久久久久| 国产深夜福利视频在线观看| 丰满迷人的少妇在线观看| 亚洲国产精品一区二区三区在线| 身体一侧抽搐| 老司机午夜福利在线观看视频| 长腿黑丝高跟| 亚洲精品一卡2卡三卡4卡5卡| 国产麻豆69| 久久精品国产清高在天天线| 老司机深夜福利视频在线观看| 在线观看日韩欧美| 日本 av在线| 午夜日韩欧美国产| 中文欧美无线码| 男女下面进入的视频免费午夜 | 性少妇av在线| 日韩欧美三级三区| netflix在线观看网站| 桃红色精品国产亚洲av| 亚洲国产精品999在线| 国产精品野战在线观看 | 人人妻,人人澡人人爽秒播| 国产在线精品亚洲第一网站| 日韩av在线大香蕉| 亚洲精品一区av在线观看| 一级毛片女人18水好多| 日韩av在线大香蕉| 国产男靠女视频免费网站| 一级毛片女人18水好多| 亚洲一区二区三区欧美精品| 国产在线观看jvid| 热re99久久国产66热| 午夜精品在线福利| av视频免费观看在线观看|