• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radar maneuvering target tracking algorithm based on human cognition mechanism

    2019-08-13 02:22:00ShuliangWANGDapingBIHuailinRUANMingyangDU
    CHINESE JOURNAL OF AERONAUTICS 2019年7期

    Shuliang WANG,Daping BI,Huailin RUAN,Mingyang DU

    College of Electronic Engineering,National University of Defence Technology,Hefei 230037,China

    KEYWORDS Human visual attention;Memory;Radar Maneuvering Targets Tracking;Validation gate;Waveform selection

    Abstract Radar Maneuvering Targets Tracking(RMTT)in clutter is a quite challenging issue due to the errors in the models and the varying dynamics of the processes.Modern radar tracking system calls for the adaptive signal and data processing algorithm urgently to adapt the uncertainty of the environment.The mechanism of human cognition can help persons cope with the similar difficulties in visual tracking.Inspired by human cognition mechanism,a comprehensive method for RMTT is proposed.In the method,the model transition probability in Interacting Multiple Model(IMM)and the validation gate can be adjusted dynamically with target maneuver;the waveform in radar transmitter can vary with the perception of the environment.Experimental results in cluttered scenes show that the proposed algorithm is more accurate for perceiving the environment and targets,and the waveform selection algorithm is better than that with fixed waveform.

    1.Introduction

    There are mainly two challenging issues in the task of Radar Maneuvering Targets Tracking(RMTT).The first challenge is caused by the changing motion of targets.To reduce the motion uncertainty,there are two main directions for motion model1,2: (A) Single model. The Constant Velocity (CV)model,Constant Acceleration(CA)model,Singer model,Jerk model and Current Statistic(CS)model,can fall under the first category. (B) Multiple models. The Interacting Multiple Model(IMM)and Varied Structure Multiple Model(VSMM),can fall under the second category.

    The second challenging issue is caused by the measurementorigin uncertainty.The radar's measurements can consist of range,azimuth,elevation and other location features.The commonly used technique relies on the Mahalanobis distance metric,which is the square of the norm of the error with respect to its covariance.3According to the validation gate rule,the measurements whose distance is lower than a threshold are called candidate measurements.The typical methods include the Nearest Neighbor(NN)algorithm,the Probability Data Association(PDA)algorithm,the Joint Probability Data Association(JPDA)algorithm and so on.3,4The validation gate is an important factor affecting the radar's computing resources consumption and track loss.If the validation gate is too large,more measurements will fall into the gate to make the computing time larger.If the gate is too small,it may cause track loss when the maneuver of target happens.5

    The uncertainty of state estimation depends on the predicted uncertainty and the measurement uncertainty.The measurement error covariance can be quantified by the Cramer-Rao Lower Bound(CRLB),which is derived from the curvature of the waveform ambiguity function at the origin in the time delay-Doppler plane.6When the predicted error covariance ellipsoid(e.g.,the determinant of the error covariance matrix) and measurement error covariance ellipsoid are orthogonal,the uncertainty of state estimation will be the lowest.7Furthermore,inspired by human cognition mechanism,such as the Perception-Action Cycle(PAC),memory,attention and intelligence,Haykin et al.first explicitly proposed cognitive radar.8,9The intrinsic trait of cognitive radar is to adaptively change the transmitted waveform to improve the tracking performance.10-19The determinant of estimated error covariance matrix,called perceptual information entropy,is used to describe the radar's real-time perception for target's dynamics.19

    This paper presents a novel tracking framework for RMTT based on the mechanism of human cognition.This method attempts to contribute in the following three aspects:(A)Inspired by the three-stage memory mechanism of human brain,‘‘memory”is nested in IMM algorithm to overcome the tracking precision degradation problem when the model transition probability is set improperly.The model transition probability can be adaptively adjusted to weaken the bad competition of the mismatched model.(B)Inspired by the mechanism of human visual attention,an adaptive validation gate is designed.The center and volume of the validation gate are weighted by the models'interaction in IMM.The maneuvering model occupies the dominant position in the model interaction to make the maneuvering target fall into the gate.On the other hand, when the target is in weak maneuver, the nonmaneuvering model plays an important role which makes the validation gate smaller.The computing resources consumption and the tracking success rate are both improved.(C)Inspired by human PAC mechanism,radar waveform selection is also considered.Based on the criterion of minimum information entropy,19the transmitted waveform parameters can be adjusted dynamically to improve the tracking performance.

    The remainder of this paper is organized as follows.The mechanism of human cognition is given in Section 2.The tracking process,especially the adaptive filtering model,adaptive validation gate,and waveform selection are described in Section 3.Then,experimental results are given in Section 4.Finally,Section 5 concludes the paper.

    2.Mechanism of human cognition

    2.1.Perception-Action Cycle(PAC)

    The perception and action are the two important functions in the visual brain.9In the brain,the cortical sensory area is stimulated by cognitive tasks,and the information obtained is fed back to the cortical motion area.The cortical motion area adjusts the stimuli with the help of the existing knowledge and guidelines to better complete the cognitive task.The net result of these two functions,working together in a coordinated fashion,is the perception-action cycle.

    2.2.Human memory

    Memory is one of the key mechanisms of human perception,which can be divided into three levels,namely,sensory memory,short-term memory and long-term memory.As shown in Fig.1,20sensory memory refers to the retention of information input in a short time.Short-term memory refers to a memory system with a small amount of information stored in a short period of time.The information from the short-term memory is as the output and partly stored in the long-term memory. In the process, the useful information can be abstracted from the long-term memory to guide the information output.The long-term memory contains a large amount of information,such as the experience,knowledge and the rules,which can be maintained for a long time.

    2.3.Human visual attention

    Visual attention is another key mechanism of human perception that enables humans to effectively select the visual data with most potential interest.20,21The selective attention model that the information processing requires four stages:sensory memory,selective filter,detector and memory.The selective filter can identify the outside information based on the characteristics of the stimulus,while only allowing the information noticed into the detector,thus saving human resources.The attention is guided by two principles22: top-down and bottom-up factors. Top-down attention is driven by preknowledge,context,expectation,and current goals.On the other hand,bottom-up attention is derived solely from the perceptual data.

    3.Tracking process

    3.1.Target dynamic and measurement model

    3.1.1.Target dynamic model

    The target dynamics is modeled by a linear model1,15

    where j=1,2,···,r is the dynamic model at time k.We writefor the state of the track,which represent the range,velocity and acceleration in the Cartesian coordinates respectively.F1,F2,···,Frare the state transition matrices for the different maneuvers.U1,U2,···,Urare the acceleration input matrices.are mean acceleration matrices.Process noise is denoted by W1,W2,···,Wr.The covariance matrices of the process noise are Q1,Q2,···,Qr,which are zero-mean Gaussian white noise sequences.

    Fig.1 Information flow of human memory for information processing.20.

    We assume the changes in target trajectory can be modeled as a Markov chain with given transition probabilities as follows:15

    where M(k)is the model at timek.

    3.1.2.Target measurement model

    The measurement equation of the target is

    A Gaussian pulse base band signal envelope is as follows6:

    where,λ is the duration of the Gaussian envelope,b is the chirp rate.We use the vector θ= [λ,b ]as the waveform library parameter that will be used for waveform selection algorithm.The CRLB of measurement noise covariance(the measurement Y(k)=[rk,˙rk]T)can be achieved as

    where η is signal-to-noise ratio,c is speed of electromagnetic wave,fcis the carrier frequency.Furthermore,the measurement standard error covariance of bearing β is also considered,and its expression is14

    where Ψbwis the 3 dB beamwidth of the radar antenna;kmis the monopulse error slope.Then,the measurement error covariance Rθofcan be expressed as follows:

    3.2.Adaptive filtering model

    There are four main steps in IMM:Input interaction,Modelconditional filtering,Model probability updating,Estimation fusion.

    Step 1.Input interaction

    Calculate the mixed initial condition of various models Mj(k)in IMM tracking.

    Step 2.Model-conditional filtering

    The one-step predicted output of model j at time k areandAnd the corresponding filtering output areand

    Step 3.Model probability updating

    The likelihood function is

    where vj(k)is the filtering residual and Sj(k,θ)is the corresponding covariance.Update the model probability as

    Step 4.Estimation fusion

    Estimated state and covariance matrix can be obtained as

    From the above flow of IMM,the Markov model transition probability matrix πij(k)determines the degree of the input interaction.Generally,a fixed main diagonally dominant matrix is selected for IMM according to the prior information.However,the fixed transition probability matrix will bring unnecessary competition among models,and reduce the tracking accuracy.23Next,we propose a time-varying model Transition probability IMM(TIMM)with the following rule:(A)When the value λj(k)=μj(k)/μj(k-1)is bigger than 1,the contribution of the model j in IMM should be enhanced at the next time. (B) When the value λj(k)=μj(k)/μj(k-1) is smaller than 1, the contribution of model j should be weakened at the next time.The rule of modifying the model transition probability can be expressed as follows:

    Considering the sum of the probability that a model is transferred to all models at each time is 1,the updated model transition probability can be obtained by the following normalization:

    Fig.2 Time-varying model transition probability IMM based on human memory.

    The rule for time-varying πij(k)can be stored in the longterm memory to guide the adjustment of the filtering model structure.As shown in Fig.2,the sensory memory is used to calculate the current model probability,which is often reflected at the present time.The short-term memory is used to store the model probability at the last time.With the rule and knowledge from the long-term memory,the model transition probability is modified.Then,the model transition probability is stored in the short-term memory and also sent to the input interaction step of IMM.

    3.3.Adaptive validation gate

    The center and size of the validation gate at timekare determined by the one step prediction center Y(k|k -1)and the innovation covariance matrix S(k).The candidate measurement falling into the gate can be expressed as

    where,γ is the threshold.The measurements play a role of‘‘bottom-up attention”.With IMM algorithm,the state of each model filter is interacted at time k-1.The predicted center and innovation covariance of each filter are obtained through one step prediction.In traditional IMM-PDA algorithm,as shown in Fig.3(a),each model uses validation gate formed by their own predicted center and innovation covariance matrix.This structure with different sub filter using different validation gate may lead to computation resources consumption large and track loss.Inspired by the mechanism of human visual attention,we propose an adaptive validation gate algorithm,24in which the sub filter uses the common gate.The structure of proposed adaptive validation gate IMM-PDA algorithm is shown in Fig.3(b).In the algorithm,the predicted center and innovation covariance are weighted according to the model predicted probability.The weighted center is

    Covariance matrix of comprehensive innovation is

    The center and innovation covariance play a role of‘‘upbottom attention”.The volume of the validation gate is

    where nYis the dimension of measurements and cnYdepends on

    Fig.3 Target state estimation process with fixed validation gate and adaptive validation gate.

    3.4.Waveform selection

    It can be imagined that the waveform library is a twodimensional grid,each grid of which represents an available waveform,and the location of the grid is uniquely determined.The Waveform Library(WL)of Eq.(4)can be expressed as

    where min and max represent the minimum and maximum values of the designed parameters;Δ is the step values of the parameters.

    From Fig.4,the information flow can be described as follows:

    (1)First,the information entropycomputed with waveform library parameter from Θ and PDA algorithm is given at time k.

    (2)Then,the information entropy with different waveforms are preserved in a short-term memory for the next time.It is called short-term memory because the previous value will be overwritten at the next time.

    (3)Finally,the waveform parameteris selected with the optimal criterionand sent to perceive the environment and targets at the next time.

    3.5.Tracking framework for RMTT and performance analysis

    From the above analysis of the tracking process,the whole tracking framework for RMTT based on human cognition mechanism can be given as Fig.5.To explain the complexity of the proposed algorithm,we define the following parameters:(A)Ns:the number of model set in IMM;(B)Nv:the candidate measurements falling into the gate;(C)Ng:the waveformparameter grid size.

    The IMM model contains possible model set of the target motion,which can be switched according to the target maneuver.However,there is a dilemma in the selection of model set.More models are needed to adapt the target's maneuver,but too many models may result in large computation and may even reduce the performance.23In this paper,we use CS model and CV model as the model set of IMM.In the algorithm,CS model can be used to track the high maneuvering target,and the CV model is used to overcome the lower precision of CS model for weak maneuvering target.

    From Eqs.(20)and(21),the validation gate can be dynamically adjusted according to model prediction probability.If the current target is highly maneuverable,the CS model occupies the dominant position in the model interaction to make the maneuvering target fall into the gate.On the other hand,when the target is in weak maneuver,the validation gate will be reduced to obtain high tracking precision and low computation time consumption.

    Fig.4 Information flow in waveform selection.

    Fig.5 RMTT algorithm based on human cognition mechanism.

    With the criterion of Eq.(23),the waveform selection is greedy.This strategy may lead to two aspects of the problem:(A)the computation time consumption is large;(B)the waveform may fall into local optimal area.A mixed strategy(called greedy strategy κ)is proposed.The greedy strategy κ is as follows:(A)The waveform parameteris selected randomly from the waveform library Θ with the probability of κ;(B)With the probability of 1-κ,the waveform parameteris selected based on the optimal criterion as Eq.(23).

    4.Presentation of results

    The radar is deployed in(0,0)m,and can provide range,range rate and the bearing measurements.An airplane,starting from(1.25×104,1.5×104)m at time t=0 s,flies for 18 s with the initial velocity(-100,-50)m/s.Then,it turns left with the turn rate ω=4.77(°)/s for 25 s.After the turn,the airplane continues with current velocity for 10 s.Then,the airplane performs right turn with the turn rate ω=4.77(°)/s for 26 s.Finally,the airplane continues with current velocity for 21 s.The sampling interval is Δt=1 s.

    In the experiment,PDA algorithm is used for single target tracking in clutter,and the Extended Kalman Filter(EKF)algorithm is used for non-linear tracking.The adaptive filtering model is IMM,with the model set CV and CS.The maximum acceleration amaxin CS model is set to be 50 m/s2,and the maneuvering frequency constant is set to be 1/60.The initial model probability of the two models is assumed to be 1/2 respectively.The fixed Markov model transition probability matrix is set to be

    Monte Carlo simulations are performed.To evaluate the tracking performance, we select the following criteria for tracking accuracy,efficiency and the track loss.Here,(A)range and velocity estimation Root Mean Square Error(RMSE),and the Average RMSE(ARMSE) are used to describe the accuracy;(B)the computation time is used to describe the efficiency.(C)a track is considered to be lost when the estimated target falls out of the ten-sigma region centered around the true position in the measurement space.14The Successful Tracking Rate(STR)is measured as the ratio of successful tracking number to the total Monte Carlo simulations.

    4.1.Adaptive filtering model and validation gate

    The measurement accuracy of range,range rate and bearing are set to be 50 m,5 m/s,and 0.1°respectively.Time-varying model TIMM algorithm is compared with the CS model and the traditional IMM algorithm.Fig.6 shows the comparison of range and velocity RMSE of the three algorithms.Fig.7 shows the model probability using IMM and TIMM algorithms.

    CS model algorithm has poor performance for tracking weak maneuvering targets.26As shown in Fig.6,the IMM algorithm is used to improve the tracking accuracy of the weak maneuvering target by introducing the competition of the CV model.However,it also brings about the problem of poor tracking accuracy for strong maneuvering targets.The TIMM algorithm is used to make the model transition probability changing with the current measurements.The model with larger probability is easier to transfer to itself,thus reducing the undesirable competition of the mismatch model.As shown in Fig.7,using the TIMM algorithm,the probability is well separated from each other.

    The target detection probability Pdis assumed to be 1.The validation gate is set to be ellipsoid,and its region is set to be four-sigma.The density of the clutters ρ is the false measurement number per unit volume.The adaptive filtering model is TIMM. The Adaptive validation gate TIMM-PDA(ATIMM-PDA)algorithm is compared with the traditional TIMM-PDA algorithm.Table 1 shows the STR in 100 Monte Carlo simulations.Fig.8 is the volume curve of validation gate changing with time using ATIMM-PDA algorithm.Fig.9 is the computation time histogram under different clutter density background(clutter density 1,2,3 are ρ=0.01,ρ=0.10 and ρ=0.50 respectively).

    Fig.6 Comparisons of range and velocity RMSE for tracks.

    Fig.7 Comparisons of model probability with IMM and TIMM algorithms.

    Table 1 Comparison of performance metric for TIMM-PDA and ATIMM-PDA.

    Fig.8 Validation gate volume using ATIMM-PDA algorithm.

    Fig.9 Histogram of computing time in different clutter density.

    From Table 1,it can be seen that when the clutter density is ρ=0.10,the STR of the TIMM-PDA algorithm is only 29%,and it has been seriously invalid.Based on ATIMM-PDA framework,the predicted center and the innovation covariance can be adjusted dynamically according to the maneuver of target(the interacting model is the compromise of CS model and CV model as shown in Fig.8).As shown in Fig.9,the traditional TIMM-PDA algorithm has a large amount of time consuming,because these two sub models use their own candidate measurements.The proposed ATIMM-PDA algorithm uses a common adaptive validation gate and the measurements in the gate.Therefore,compared to TIMM-PDA,ATIMM-PDA algorithm has lower computation time when maintaining a higher STR.

    4.2.Adaptive waveform selection

    The radar transmitted waveform is X band, whose carrier frequency is 10.4 GHz,and the transmitted signal is shown in Eq.(4).For simplicity,the chirp rate b is set to be 0 in the simulation. The waveform parameter library iss in Θ and the grid step-size Δλ=2×10-6s.The half power beam width of the antenna is set to be 3o.Under constant transmitted energy constraint,the SNR can be obtained from η=(r0/r)4.ris the range between the target and radar.In the simulation,r0is set to be 50 km.

    The Fixed Waveform(FW)algorithm is with four different waveforms,which are λ=4×10-6s in θ1,λ=10×10-6s in θ2,λ=12×10-6s in θ3and λ=20×10-6s in θ4respectively.The Waveform Selection(WS)algorithm selects the waveform parameter from the librarys in Θ.The greedy parameter is set to be κ=10%.Table 2 shows the STR in 100 Monte Carlo simulations.

    Table 2 Comparison of performance metric for FW and WS algorithms.

    Fig.10 Comparisons of range and velocity RMSE for tracks.

    Table 3 Comparisons of performance metrics for FW and WS algorithms.

    Then,assume the density of clutter is ρ=0.01,the tracking performance comparison for the WS algorithm with 10%-greedy and FW algorithm is shown in Fig.10.The FW algorithm chooses the waveform parameter θ1and θ2respectively.Table 3 shows the tracking ARMSE with different algorithms.The dynamic selection of pulse duration time in one Monte Carlo simulation for the proposed algorithm is given in Fig.11.The comparison of tracking uncertainty is shown in Fig.12.

    It can be seen from Table 2 that the WS algorithm significantly improves the tracking performance in STR metrics.Using the minimum information entropy criterion,the WS algorithm is greedy,it may fall into the local optimal region,and lead to more track losses.WS algorithm 10%-greedy has 10%random waveform,which can make WS algorithm jump out of the local area.Therefore,it has a higher STR than the WS algorithm.

    Fig.11 Dynamic selection of Pulse duration time.

    It can be seen from Fig.10 and Table 3 that the range RMSE of waveform 2 is worse than that of waveform 1.The velocity RMSE of waveform 2 is better than the velocity RMSE of waveform 1.Considering all the waveform in the waveform library,the computation time of WS algorithm is larger than the FW algorithm and the WS algorithm 10%-greedy.The range and velocity ARMSE of the WS algorithm is similar to the range and velocity ARMSE of the 10%-greedy algorithm,both of which are obviously better than the FW algorithm.It can be seen from Fig.11 that the WS with 10%-greedy algorithm can dynamically select waveform parameters to continuously balance the measurement error covariance of range and range rate(λ=2×10-6s is selected with the probability 60%approximately;λ=20×10-6s is selected with the probability 30%approximately;the last 10%is for the random selection).

    Fig.12 Tracking uncertainty of three algorithms.

    From the comparison of tracking uncertainty in Fig.12,we can find that the algorithm with waveform 1 is better than that with waveform 2,and the waveform selection algorithm is much better than that with fixed waveform.Meanwhile,the tracking stability of WS algorithm with 10%-greedy is superior and robust.

    5.Conclusions

    Intelligence is the main function of human cognition,and also an important direction for the development of next generation radar.In this paper,radar signal and data adaptive processing based on human cognitive mechanism is an important exploration of this trend.The main conclusions of this paper are as follows:

    (1)The time-varying model transition probability IMM is an adaptive filtering model for RMTT.The ratio of model probability with current time and the last time is used to adjust the transition probability.This mechanism makes the cooperation and competition among models more proper to improve the tracking performance.

    (2)Adaptive validation gate is very similar to the selective attention in human cognition,which can capture the target of attention with the least computing resources.When the target is maneuvering,the validation gate becomes larger and the target is dropped into the gate.Similarly,when the target maintains a constant velocity,the validation gate becomes smaller, which reduces the candidate measurements in the gate to improve tracking accuracy and efficiency.Clutter environment adaptability with adaptive validation gate is far better than that with fixed validation gate.

    (3)Waveform selection algorithm includes perception of environment and adapting actions to environment.This is very similar to the mechanism of human Perception of Action Cycle (PAC). In this algorithm, the information entropy of different waveforms is stored in short-term memory by online learning from the environment.Then,according to a certain criterion,the appropriate waveform can be extracted to change the measurement noise covariance to adapt to the changing environment.

    (4)The greedy strategy κ for waveform selection has two aspects of advantages:(A)The optimal selected waveform makes the tracking performance better than that with the fixed waveform. (B) The random selection makes sure that it can easily jump out of the local optimal region.The computational resources are also allocated properly.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.61671453)and the Anhui Province Natural Science Fund Project, China (No.1608085MF123).

    亚洲成国产人片在线观看| 精品国产国语对白av| 亚洲国产精品成人久久小说| 日韩精品免费视频一区二区三区| 久久人妻福利社区极品人妻图片| 国产精品秋霞免费鲁丝片| av一本久久久久| 美女国产高潮福利片在线看| 亚洲第一av免费看| 成年美女黄网站色视频大全免费| 99热网站在线观看| 老司机深夜福利视频在线观看 | 伊人亚洲综合成人网| 午夜老司机福利片| 人人澡人人妻人| 久久人人爽人人片av| 成年动漫av网址| 日韩欧美免费精品| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 91成年电影在线观看| 日韩有码中文字幕| 窝窝影院91人妻| 韩国高清视频一区二区三区| 欧美变态另类bdsm刘玥| 国产精品偷伦视频观看了| 丰满人妻熟妇乱又伦精品不卡| 女性被躁到高潮视频| 一个人免费看片子| 欧美xxⅹ黑人| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡 | 一进一出抽搐动态| 国产免费一区二区三区四区乱码| 91成人精品电影| 久久女婷五月综合色啪小说| 欧美日韩福利视频一区二区| 色播在线永久视频| 日本91视频免费播放| 国产一区二区三区在线臀色熟女 | tube8黄色片| 国产一区二区激情短视频 | 巨乳人妻的诱惑在线观看| 91av网站免费观看| 亚洲avbb在线观看| 女性被躁到高潮视频| 巨乳人妻的诱惑在线观看| 亚洲欧美精品自产自拍| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 国产精品 国内视频| 午夜成年电影在线免费观看| 热re99久久精品国产66热6| 蜜桃在线观看..| 亚洲精品日韩在线中文字幕| 青春草亚洲视频在线观看| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 亚洲人成电影免费在线| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看| 老司机影院毛片| 日韩制服骚丝袜av| 成年人午夜在线观看视频| 国产精品久久久av美女十八| 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 国产成人欧美| 国产男女超爽视频在线观看| 日本av免费视频播放| 国产高清国产精品国产三级| 成人av一区二区三区在线看 | 一本久久精品| 亚洲第一av免费看| www.999成人在线观看| 中文字幕制服av| 免费不卡黄色视频| 久久精品亚洲av国产电影网| 这个男人来自地球电影免费观看| 亚洲国产av新网站| 国产人伦9x9x在线观看| 国产免费一区二区三区四区乱码| 亚洲欧美激情在线| 亚洲少妇的诱惑av| 在线精品无人区一区二区三| 久久99一区二区三区| 精品熟女少妇八av免费久了| 亚洲欧洲日产国产| 色播在线永久视频| 午夜两性在线视频| 免费黄频网站在线观看国产| 精品人妻熟女毛片av久久网站| 最近最新中文字幕大全免费视频| av福利片在线| 男女国产视频网站| 国产在视频线精品| 成人av一区二区三区在线看 | 两性夫妻黄色片| 9色porny在线观看| 好男人电影高清在线观看| 视频区欧美日本亚洲| 女警被强在线播放| 看免费av毛片| 免费黄频网站在线观看国产| 久久精品成人免费网站| 我的亚洲天堂| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 久久青草综合色| 久久人人97超碰香蕉20202| 国产一区二区三区在线臀色熟女 | 久久久欧美国产精品| 亚洲五月婷婷丁香| 精品国产国语对白av| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 国产成人av激情在线播放| 免费在线观看影片大全网站| 国产亚洲欧美在线一区二区| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 丝袜在线中文字幕| 亚洲欧美一区二区三区黑人| 久久久久久久久免费视频了| 国产野战对白在线观看| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 国产av一区二区精品久久| 青草久久国产| 亚洲专区字幕在线| 国产91精品成人一区二区三区 | 啦啦啦在线免费观看视频4| 久久精品国产a三级三级三级| 精品国产乱码久久久久久男人| 美女扒开内裤让男人捅视频| 成人av一区二区三区在线看 | 久久人人爽人人片av| 亚洲国产日韩一区二区| 中文字幕色久视频| 欧美日韩黄片免| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 欧美激情久久久久久爽电影 | 一区二区三区精品91| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 欧美日韩成人在线一区二区| 亚洲精品国产av成人精品| 精品一区二区三卡| 99精品久久久久人妻精品| 亚洲欧美一区二区三区久久| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx| 少妇 在线观看| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频| 美女高潮喷水抽搐中文字幕| 日本vs欧美在线观看视频| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 久久久久视频综合| 日韩一区二区三区影片| 久久人妻福利社区极品人妻图片| 我的亚洲天堂| 国产淫语在线视频| 人人妻人人澡人人看| 久久久久网色| 国产在线免费精品| svipshipincom国产片| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 欧美少妇被猛烈插入视频| 国产高清视频在线播放一区 | 麻豆乱淫一区二区| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频 | 69精品国产乱码久久久| 日韩 亚洲 欧美在线| 国产精品九九99| 色婷婷av一区二区三区视频| 真人做人爱边吃奶动态| 侵犯人妻中文字幕一二三四区| 丝瓜视频免费看黄片| 亚洲国产日韩一区二区| 一区在线观看完整版| 精品一区在线观看国产| 国产精品免费视频内射| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩有码中文字幕| av天堂久久9| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人 | 亚洲一码二码三码区别大吗| 18禁黄网站禁片午夜丰满| 色播在线永久视频| 老熟妇仑乱视频hdxx| 久久久久精品人妻al黑| 久久久精品国产亚洲av高清涩受| 中文字幕高清在线视频| 国产成人系列免费观看| 大型av网站在线播放| 欧美国产精品一级二级三级| 日韩中文字幕欧美一区二区| 国产伦理片在线播放av一区| 中文欧美无线码| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| cao死你这个sao货| 大片电影免费在线观看免费| 一本大道久久a久久精品| 18禁观看日本| 久久中文看片网| 99国产精品一区二区蜜桃av | 欧美黑人精品巨大| 亚洲精华国产精华精| 国产精品欧美亚洲77777| 五月天丁香电影| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 国产激情久久老熟女| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 国产成人影院久久av| 久久人人爽av亚洲精品天堂| 久久久久久免费高清国产稀缺| 91精品三级在线观看| 视频区图区小说| 日日摸夜夜添夜夜添小说| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 十八禁高潮呻吟视频| 一区二区三区精品91| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 中国国产av一级| 日本91视频免费播放| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 美女大奶头黄色视频| 中文字幕高清在线视频| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 三上悠亚av全集在线观看| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 国产精品.久久久| 欧美精品av麻豆av| 日韩电影二区| 亚洲第一欧美日韩一区二区三区 | tube8黄色片| 别揉我奶头~嗯~啊~动态视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 亚洲一码二码三码区别大吗| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 一区二区三区精品91| a级毛片黄视频| 90打野战视频偷拍视频| 91老司机精品| 97在线人人人人妻| 这个男人来自地球电影免费观看| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 69精品国产乱码久久久| 超碰97精品在线观看| 国产精品 国内视频| 一本久久精品| 美女脱内裤让男人舔精品视频| 免费在线观看日本一区| 免费在线观看完整版高清| 日本猛色少妇xxxxx猛交久久| 国产亚洲精品第一综合不卡| 性少妇av在线| 老汉色∧v一级毛片| 中亚洲国语对白在线视频| 一本综合久久免费| 黄色视频,在线免费观看| 高潮久久久久久久久久久不卡| 考比视频在线观看| 欧美少妇被猛烈插入视频| 搡老岳熟女国产| 99久久国产精品久久久| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 午夜老司机福利片| 成人国产一区最新在线观看| 波多野结衣一区麻豆| www日本在线高清视频| 亚洲男人天堂网一区| 少妇裸体淫交视频免费看高清 | 国产国语露脸激情在线看| 国产亚洲精品一区二区www | 亚洲精品av麻豆狂野| av线在线观看网站| 美女大奶头黄色视频| 男女高潮啪啪啪动态图| 人人妻人人澡人人看| 国产1区2区3区精品| 精品亚洲乱码少妇综合久久| 欧美精品一区二区大全| 天堂8中文在线网| 99久久人妻综合| 天堂中文最新版在线下载| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 两个人免费观看高清视频| 久9热在线精品视频| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 女警被强在线播放| 久久久久网色| 欧美激情极品国产一区二区三区| 亚洲精品国产一区二区精华液| 亚洲精品国产区一区二| 免费观看av网站的网址| 制服人妻中文乱码| 国产精品成人在线| 久久久久久久久久久久大奶| 午夜91福利影院| 高清视频免费观看一区二区| 午夜老司机福利片| 国产视频一区二区在线看| 精品少妇黑人巨大在线播放| 日本撒尿小便嘘嘘汇集6| 水蜜桃什么品种好| videosex国产| 日本猛色少妇xxxxx猛交久久| 蜜桃国产av成人99| 亚洲一码二码三码区别大吗| 多毛熟女@视频| 中国国产av一级| 亚洲情色 制服丝袜| 亚洲伊人色综图| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看 | a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 国产精品 欧美亚洲| 热re99久久国产66热| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 日韩电影二区| 日本wwww免费看| 久久久久网色| 日韩三级视频一区二区三区| 亚洲精品国产一区二区精华液| 亚洲国产成人一精品久久久| www.av在线官网国产| 欧美另类亚洲清纯唯美| 国产成人欧美| 美女大奶头黄色视频| av天堂久久9| 欧美 日韩 精品 国产| 国产精品 国内视频| 国产免费一区二区三区四区乱码| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 在线十欧美十亚洲十日本专区| 一二三四社区在线视频社区8| 视频区图区小说| 97精品久久久久久久久久精品| 亚洲精品中文字幕一二三四区 | 国产成人精品无人区| 老司机福利观看| 水蜜桃什么品种好| 99国产极品粉嫩在线观看| 人人妻,人人澡人人爽秒播| 亚洲人成77777在线视频| 亚洲免费av在线视频| 狂野欧美激情性bbbbbb| 啦啦啦 在线观看视频| 免费久久久久久久精品成人欧美视频| 老熟妇仑乱视频hdxx| 日韩人妻精品一区2区三区| 丝袜美足系列| 人妻一区二区av| 久久久久视频综合| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 国产在线观看jvid| 免费在线观看黄色视频的| 国产视频一区二区在线看| 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 一区福利在线观看| 性少妇av在线| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 天天躁日日躁夜夜躁夜夜| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 爱豆传媒免费全集在线观看| 精品一品国产午夜福利视频| 国产高清国产精品国产三级| 啦啦啦 在线观看视频| 亚洲中文日韩欧美视频| 久久国产精品大桥未久av| 无限看片的www在线观看| 国产福利在线免费观看视频| 国产视频一区二区在线看| 中文欧美无线码| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 国产成人系列免费观看| 男女国产视频网站| 久久久水蜜桃国产精品网| 国产1区2区3区精品| 99国产综合亚洲精品| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 久久久精品区二区三区| 久久久精品国产亚洲av高清涩受| 国产日韩欧美在线精品| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 少妇猛男粗大的猛烈进出视频| 亚洲性夜色夜夜综合| 五月天丁香电影| 视频在线观看一区二区三区| 亚洲天堂av无毛| 久久国产精品影院| 欧美日韩视频精品一区| 精品人妻一区二区三区麻豆| 欧美中文综合在线视频| 少妇的丰满在线观看| 久久狼人影院| 国产精品一区二区免费欧美 | 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美在线一区二区| av不卡在线播放| av超薄肉色丝袜交足视频| 性色av一级| 国产极品粉嫩免费观看在线| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| 久久亚洲精品不卡| 青青草视频在线视频观看| 久久精品人人爽人人爽视色| 超碰成人久久| 桃红色精品国产亚洲av| 日韩欧美国产一区二区入口| 久久久国产一区二区| 黄片小视频在线播放| 91精品国产国语对白视频| 国产亚洲精品久久久久5区| av免费在线观看网站| 成年人黄色毛片网站| 国产精品影院久久| www.精华液| 热99久久久久精品小说推荐| 久久国产亚洲av麻豆专区| 亚洲九九香蕉| 亚洲五月色婷婷综合| 欧美日韩福利视频一区二区| 天天影视国产精品| 久久久久久久久免费视频了| 国产av精品麻豆| 精品福利观看| 欧美日韩视频精品一区| tube8黄色片| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| 黄色视频在线播放观看不卡| 后天国语完整版免费观看| 国产日韩欧美亚洲二区| 国产高清videossex| 国产精品九九99| 两性午夜刺激爽爽歪歪视频在线观看 | 91精品国产国语对白视频| 天堂中文最新版在线下载| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 久久99一区二区三区| 热re99久久精品国产66热6| 性少妇av在线| 热99久久久久精品小说推荐| 大片免费播放器 马上看| 99国产精品一区二区蜜桃av | 狂野欧美激情性bbbbbb| 国产欧美日韩综合在线一区二区| 国产真人三级小视频在线观看| 国产一区二区 视频在线| 黑丝袜美女国产一区| 一二三四在线观看免费中文在| 亚洲人成电影免费在线| 亚洲国产看品久久| av在线播放精品| 久久久久久亚洲精品国产蜜桃av| 超碰97精品在线观看| 麻豆国产av国片精品| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 91字幕亚洲| 久久久久视频综合| 99re6热这里在线精品视频| 夜夜骑夜夜射夜夜干| 黄片大片在线免费观看| 亚洲成人免费av在线播放| 亚洲国产精品一区三区| 精品国产乱码久久久久久男人| 一边摸一边做爽爽视频免费| 久久久精品国产亚洲av高清涩受| 午夜福利一区二区在线看| 美女福利国产在线| 亚洲国产欧美一区二区综合| 纯流量卡能插随身wifi吗| 高清av免费在线| 精品人妻熟女毛片av久久网站| 热99国产精品久久久久久7| 香蕉国产在线看| 国产成人系列免费观看| 黄色怎么调成土黄色| 日本a在线网址| 国产成人欧美| 高清av免费在线| 大香蕉久久网| 国产精品免费视频内射| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 精品少妇内射三级| 丝袜人妻中文字幕| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 欧美激情高清一区二区三区| 婷婷色av中文字幕| 亚洲综合色网址| 黄色视频不卡| av免费在线观看网站| 精品一区二区三区四区五区乱码| 国产不卡av网站在线观看| 99久久综合免费| 汤姆久久久久久久影院中文字幕| 十八禁高潮呻吟视频| 成人18禁高潮啪啪吃奶动态图| 久久人妻福利社区极品人妻图片| 欧美日韩黄片免| 亚洲综合色网址| 美女高潮到喷水免费观看| 777久久人妻少妇嫩草av网站| 午夜老司机福利片| 欧美老熟妇乱子伦牲交| 国产精品久久久久成人av| 国产欧美日韩一区二区精品| 精品一区二区三卡| 国产成人a∨麻豆精品| 国产黄色免费在线视频| 午夜福利视频在线观看免费| 国产一区二区 视频在线| 日本a在线网址| 中文字幕制服av| 欧美另类一区| 美女脱内裤让男人舔精品视频| 久久久精品区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线免费精品| 亚洲精品第二区| 一本色道久久久久久精品综合| 欧美黑人欧美精品刺激| a级毛片黄视频| 久久久精品国产亚洲av高清涩受| 亚洲成人国产一区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区久久| 久久精品亚洲av国产电影网| 美女午夜性视频免费| 一区二区三区四区激情视频| a级毛片在线看网站| 国产亚洲精品第一综合不卡| 看免费av毛片| 男女边摸边吃奶| av在线老鸭窝| 啦啦啦在线免费观看视频4| 一级,二级,三级黄色视频| 在线观看人妻少妇| 久久久久久久精品精品| 国产精品 国内视频| 丁香六月天网| 窝窝影院91人妻| 最新的欧美精品一区二区| 无遮挡黄片免费观看| 中文字幕av电影在线播放| 麻豆av在线久日| 精品亚洲成国产av| 国精品久久久久久国模美| 亚洲精品久久久久久婷婷小说| 日本欧美视频一区| 日日摸夜夜添夜夜添小说| 十八禁人妻一区二区| 国产又爽黄色视频| 午夜日韩欧美国产| tocl精华| 久久毛片免费看一区二区三区| 亚洲自偷自拍图片 自拍| 视频区图区小说|