• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An efficient algorithm for calculating Profust failure probability

    2019-08-13 02:21:48XiaoboZHANGZhenzhouLYUKaixuanFENGChunyanLING
    CHINESE JOURNAL OF AERONAUTICS 2019年7期

    Xiaobo ZHANG,Zhenzhou LYU,Kaixuan FENG,Chunyan LING

    School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China

    KEYWORDS Failure probability;Fuzzy-state assumption;General performance function;Kriging model;Profust reliability;Reliability

    Abstract For efficiently estimating the Profust failure probability based on probability input variables and fuzzy-state assumption,a General Performance Function(GPF)expression is established under the strict mathematical derivation for the Profust reliability model.By constructing the GPF,the calculation of the Profust failure probability can be transformed into the calculation of the traditional failure probability.Then various existing methods for the traditional failure probability can be used to estimate the Profust failure probability.Due to the high efficiency of the Adaptive Kriging(AK)model and the universality of the Monte Carlo Simulation(MCS),AK inserted MCS(abbreviated as AK-MCS)has been proven to be an efficient method for estimating the failure probability.Therefore,the AK-MCS combined with the GPF(abbreviated as AK-MCS+GPF)is proposed for estimating Profust failure probability.The proposed method greatly reduces the computational cost while ensuring the accuracy.Finally,four examples are given to validate the proposed AK-MCS+GPF.The results of the examples show the rationality and the efficiency of the proposed AK-MCS+GPF.

    1.Introduction

    By considering random input variables,reliability analysis devotes to analyze the failure probability of the structure.1-5The traditional reliability model is based on the binary-state assumption, which shows that there is a clear boundary between the failure state and the safety state.However,the boundary between‘‘safety”and‘‘failure”may be often not clear for the gradual failure in practical engineering problems.There is a fuzzy state between the safety state and the failure state.When the structure is under fuzzy state,the relevant outputs belong to the safety sate or failure state at a certain membership degree.

    The concept of fuzzy reliability was proposed and developed by several authors.1,6-9Under the probability input variables assumption, Cai et al.6-9established the Profust reliability model and the Probist reliability model respectively based on the fuzzy-state assumption and the binary-state assumption respectively.The Probist model is based on probability input variables and the binary-state assumption,while the Profust model is based on probability input variables and the fuzzy-state assumption.

    This paper mainly concerns with efficient method for estimating Profust failure probability.The fuzziness of the state can be described by the membership function of the performance function to the fuzzy failure domain.Profust failure probability is defined as the integral of the Probability Density Function(PDF)of the performance function multiplied by the membership function.10,11The most common method for estimating Profust failure probability is the direct Monte Carlo Simulation(MCS).MCS is accurate,simple and easy to implement.The result of MCS can be used as the reference to verify the accuracy of the new method.However,the obvious disadvantage of the MCS is low computational efficiency,and it is unaffordable for the engineering application.Refs.10-15 proposed some methods to estimate Profust failure probability.However,these methods need to evaluate a large number of the performance functions to achieve high accuracy,and the computational efficiency is still low.In this paper,starting from the definition of Profust failure probability,a new equivalent expression for calculating Profust failure probability is obtained by the strict mathematical derivation,and the concept of the General Performance Function(GPF)is proposed.Then,the Profust failure probability is converted into the traditional failure probability by means of the GPF.The Adaptive Kriging(AK)model combined with MCS(abbreviated as AK-MCS)16was proposed by Echard,it combines the high efficiency of the AK model with the universality of the MCS method to estimate the traditional failure probability.AKMCS only needs a small number of performance function evaluations to estimate the failure probability with high precision,and it greatly improves the computational efficiency compared with direct MCS.This paper combines the AK-MCS method with the established GPF to estimate the Profust failure probability and forms AK-MCS+GPF method.

    The rest of the paper is organized as follows.In Section 2,the definition of Profust failure probability is introduced first.Then a new equivalent expression of the Profust failure probability is obtained through the strict mathematical derivation,and the corresponding concept of the GPF is proposed.In Section 3,after the basic principle of the AK-MCS is briefly described,the steps of AK-MCS+GPF are given for estimating the Profust failure probability.Four examples are used to verify the rationality and high efficiency of AK-MCS+GPF method in Section 4. Finally, conclusions are drawn in Section 5.

    2.Definition of Profust failure probability and its equivalent expression by GPF

    2.1.Definition of Profust failure probability

    In the traditional reliability analysis based on the binary-state assumption,the state of the structure is clearly classified as the safety one and the failure one.g(X)is a performance function related to the n-dimensional probability input variables denoted by.The following Eq.(1)is called the limit state equation.

    g(X)=0 is the boundary between the failure state and the safety state,and it is shown in Fig.1.

    The traditional failure probability Pfunder the binary-state assumption is defined by

    where xk(k=1,2,...,N)are N samples generated according to fX(x);Nfis the number of samples falling into F.

    The coefficient of variation Covofcan be estimated by

    where Var[·]is the variance operator.

    When the function of the structure is gradually degraded,the fuzziness of the state shown in Fig.2 can describe gradual failure well.In the fuzzy domain,the structure belongs neither to failure nor to safety completely,but belongs to failure or safety with a certain membership level.Denote the fuzzy failure domain asand the membership function of g( x)belonging tocan be used to describe the fuzzy failure state.

    Common types of membership function of g(x)to fuzzy failure stateinclude Linear typeNormal typeand Cauchy typeThe corresponding expressions to these common memberships and their images(Fig.3)are given as follows:

    Fig.1 Binary-state assumption.

    Fig.2 Fuzzy-state assumption.

    where a1and a2,b1and b2,and c1and c2are respectively the position and shape parameters of the Linear,Normal and Cauchy membership functions derived from the statistical data by the expert.

    Under the probability input and fuzzy state assumption,the Profust failure probabilitycan be defined by2

    Using the mean of the sample to estimate expectation,an estimatebased on the MCS is shown in

    where xi(i=1,2,...,N)are N samples generated according to fX(x).The coefficient of variation ofcan be derived as

    Since the guaranty of the law of large number,the convergent solution shown in Eq.(9)can be used as the reference to verify the accuracy of the new method.

    2.2.GPF

    The Profust failure probability defined by Eq.(8)can also be succinctly expressed as the integral form of the PDF fG(g)of the performance function multiplied by the membership function u~F(g).6

    Fig.4 Linear-type membership function.

    Taking the linear membership function as an example,when g(x)<a1,u~F(g)=1,and when g(x)>a2,u~F(g)=0,while a1<g(x)<a2,0 ≤u~F(g)≤1.It can be known from the membership function in Fig.4 that u~F(g)is monotonic when a1<g(x)<a2.In general,most of the membership function has the monotonicity similar to that of Fig.4 or has the segmented monotonicity.We will use the linear membership function as an example to derive the equivalent expression of the Profust failure probability in Eq.(11).By segmenting the integral domain in Eq.(11),the equivalent expression for Profust failure probability can be obtained by

    Since g(x)<a1, u~F(g)=1, and g(x)>a2, u~F(g)=0,Eq.(12)can be further deduced into

    where FG(g)is the Cumulative Distribution Function(CDF)of the performance function.

    Fig.3 Three types of membership functions.

    Substitute Eq.(15)into Eq.(13),and Eq.(16)is obtained.

    Introduce an auxiliary random variable Xn+1following a standard normal distribution,and then CDF Φ(xn+1)of Xn+1obeys the uniform distribution within the interval[0,1].Because λ ∈[0,1],we can assume λ=Φ(xn+1)and substitute λ=Φ(xn+1)into Eq.(16).Therefore,the equivalent expression of the Profust failure probability can be obtained by

    where φ(xn+1)is the PDF of the introduced auxiliary Xn+1.is the JPDF of the extended random input variable

    Then the new performance functiondefining the integral domain in Eq.(17)is defined as the GPF,and it is shown as

    From Eq.(17),it can be seen that by defining the GPFdue to the introduction of the auxiliary Xn+1in Eq.(18),the Profust failure probabilitycan be expressed as the traditional failure probability with respect to the GPF as shown in

    Introduce the indicator functionof the clear failure domaindefined by the GPF in the extended input variable spaceandis defined as

    In fact,the auxiliary variable Xn+1can also follow the nonnormal distribution,such as uniform distribution,lognormal distribution,etc.The distribution type of Xn+1does not affect the accuracy of the proposed method.This paper takes standard normal variables as an example.

    The advantage of Eq.(19)is that it can not only employ MCS for estimating the Profust failure probability,but also adopt the existing efficient calculation methods of traditional failure probability such as Line Sampling(LS)method,Subset Simulation(SS)method,Important Sampling(IS)method,Directional Sampling(DS)method,AK-MCS method,etc.

    3.Solution of Profust failure probability by AK-MCS based on GPF

    The AK-MCS method16was proposed by Echard,and it combines the high efficiency of the AK model17,18with the universality of the MCS to calculate the traditional failure probability.In the following part,based on the principle of AK model and AK-MCS,the solution steps of the Profust failure probability by AK-MCS based on GPF are presented in detail.

    3.1.U learning function

    The basic theory of the Kriging model is given in Appendix.In general,the Kriging model constructed by the training set selected by a Design Of Experiment(DOE)process cannot meet the accuracy requirements,so it needs a corresponding update iteration strategy and convergence criterion to ensure that the converged Kriging model has satisfactory approximate accuracy.For different approximate goals,the strategy to update the Kriging model is different.For the Profust failure probability studied in this paper,its failure domain is defined by the GPF.The main purpose of constructing the Kriging model of the GPF is to identify the value of the indicator function of the failure domain at each sample in Eq.(21).In other words,the established Kriging model needs to identify the sign of the GPF at each sample.The exact value of the GPF at the sample is not the focus for estimatingTherefore,we choose the U learning function to iteratively select the new training point for updating the Kriging model so as to correctly identify the sign of the GPF at the sample.

    The U learning function is most commonly used.It is shown in

    The U learning function is a good measure of the probability that the sign of the performance function of the sample is misjudged.of the prediction point is larger(i.e.,is farther from the boundaryand σ^ykis smaller(it represents that the Kriging model is more accurate),the value of the U learning function is larger,and the probability that the sign of the performance function at the sample is misjudged is smaller.When the lower bound of the U learning function is 2,the probability of misjudging the prediction sign is Φ(-2 )=0.023.Therefore,the candidate sample with the smallest U learning function is selected as a new training point to update the Kriging model step by step,and the U learning function of all the samples greater than 2 is taken as the convergence condition.

    3.2.Steps of AK-MCS+GPF method

    According to the basic principles of the Kriging model and the nature of the U learning function,the steps for calculating Profust failure probability by the AK-MCS+GPF method constructed in this paper are as follows,and the flowchart is shown in Fig.5.

    Step 1 Generate N-size sampleaccording to the JPDFof the input variableand store them in the sample pool S.

    Step 2 Randomly select N 1 samples (Ref. 16 suggests 12 samples)from S as an initial training set,and calculate the performance function values according to the constructed GPF.

    Step 3 Construct an initial Kriging model by training sets.

    Step 4 Calculate the U learning function of each candidate sample point in S by the current Kriging model.

    Step 5 Search a new training pointin S with the smallest U learning function,i.e.,

    Step 7 Calculate Profust failure probability estimate

    Fig.5 Flowchart of AK-MCS+GPF method.

    From the flowchart (Fig. 5) of the AK-MCS+GPF method for estimating Profust failure probability,it can be seen that Profust failure probability can be transformed into a traditional failure probability with the clear boundaries through the derivation process of the GPF.In the AK-MCS+GPF method,by iteratively updating the Kriging model and employing the convergent Kriging model to predict the failure samples in the sample pool of the extended input variable space,the number of evaluating the GPF can be greatly reduced,and the computational cost of estimating the Profust failure probability is greatly reduced.Moreover,by using the U learning function greater than 2 as the convergence criterion,the probability that the Kriging model misjudges the failure sample in S can be controlled to be less than Φ(-2 )=0.023,so that the proposed algorithm can keep the calculation accuracy of MCS.In summary,the reason that the AK-MCS+GPF method has high accuracy and efficiency in estimating the Profust failure probability is realized by adopting the following three strategies:(1)Construction of the GPF,(2)Inserting AK model instead of the actual GPF into the MCS process to recognize failure samples from the sample pool generated by MCS,(3)Using U learning function to control the probability of misjudging the failure samples.

    4.Example analysis

    Four examples are employed to verify the rationality and efficiency of the proposed AK-MCS+GPF.The results based on the MCS method shown in Eq.(9)can be used as the reference to verify the accuracy of the new method.The subset simulation method is applied to estimate Profust failure probability in Ref.10,and it is marked as SS.The SS method is used as the comparison to verify the efficiency of the new method. IS+GPF denotes the Important Sampling (IS)method combined with the GPF.Ncalldenotes the number of evaluating the performance function,and Cov denotes coefficient of variation.

    4.1.Example 1:Exponential performance function

    Consider a performance function g(X)=exp(0.2X1+1.4)-X2-0.5,where the basic variables X1and X2are independent and obey the standard normal distribution,i.e.Xi~N(0,1)(i=1,2).According to Eq. (18),the GPF is constructed aswhere X3~N(0,1).The results of Profust failure probabilities calculated by different methods are listed in Table 1.

    Example 1 is an exponential performance function.The parameters of linear,normal and Cauchy membership functions are listed respectively in Table 1.It can be seen from Table 1 that the numbers of evaluating the GPF for the IS+GPF method are 5000,5000 and 8000 respectively corresponding to the linear,normal and Cauchy membership function,and those for the SS method10are 3×104,3×104and 3×104respectively.Obviously,compared with the SS method,the IS+GPF method has higher computational efficiency under the same computational accuracy. The AK-MCS+GPF method combines the high efficiency of the AK model with the universality of the MCS.From Table 1,it can be seen that the Ncallof AK-MCS+GPF method is less than 100,so the computational efficiency of AK-MCS+GPF method is better than those of IS+GPF method and SS method.Therefore,the AK-MCS+GPF method has the highest computational efficiency under the same computational accuracy in the listed methods,and can significantly reduce the computational cost.

    4.2.Example 2:Creep-fatigue failure model19

    Based on the experimental data,the performance function of the nonlinear creep fatigue is as follows:

    Table 2 Distribution parameters of input variables for Example 2.

    From Table 3,it can also be seen that the proposed GPFbased method established in this paper is more efficient than SS method.At the same level of accuracy as the MCS,the AK-MCS+GPF method greatly improves computational efficiency. It demonstrates that AK-MCS+GPF method has the high efficiency of the AK model and the universal applicability of the MCS,and the proposed method is applicable to different distribution types of the random input.

    4.3.Example 3:an automobile front axle20

    In the automobile engineering,the front axle is utilized to support the weight of the front part of the vehicle.Nowadays,theI-beam structure is popular in the design of front axle due to its high bend strength and light weight.As shown in Fig.6,the dangerous location is in cross-section of the I-beam part.The maximum normal stress and shear stress are σmax=M/Wxand τmax=T/Wρ,respectively,where M,T,Wxand Wρa(bǔ)re the bending moment,torque,section factor and polar section factor,respectively.Wxand Wρcan be estimated by the following equations:

    Table 1 Results offor Example 1.

    Table 1 Results offor Example 1.

    Table 3 Results of for Example 2.

    Table 3 Results of for Example 2.

    Fig.6 Automobile front axle structure.

    To check the strength of front axle,the performance function in the Probist model is expressed as

    where σsis the yield strength.According to the material property of the front axle,σs=580 MPa.The geometry variables of I-beam including a,B,C and h shown in Fig.6 and the load variables including M and T are mutually independent with normal distribution.The distribution parameters are listed in Table 4.Also three types of membership functions are selected.Profust failure probabilities calculated using various methods are shown in Table 5.

    Table 4 Distribution parameters of input variables for Example 3.

    It can be seen from Table 5 that the AK-MCS+GPF method still has high accuracy and efficiency for the engineering example.

    4.4.Example 4:a headless rivet model21

    In the aircraft industry,assembling the widely used sheet metal parts is usually through riveting.This example adopts a headless rivet model.In the riveting process,there are many factors affecting the quality of rivets.Squeeze stress is one of the main factors.The rivet will fail when the squeeze stress exceeds its limitation.In this paper,a simplified riveting process with headless rivet is constructed.The riveting process contains two stages21shown in Fig.7.

    Table 5 Results of for Example 3.

    Table 5 Results of for Example 3.

    Fig.7 Riveting process.

    The maximum squeeze stress for a certain riveting process can be obtained as21

    where d is the rivet diameter of state A,h is the rivet length of state A,and D0is the rivet diameter of state B.t denotes the whole thickness of two sheets.K represents the strength coefficient.The height of the driven rivet head is H=2.2 mm.The strain hardening exponent of this material is nSHE=0.15.

    The ultimate squeeze strength is σsq=582 MPa.When the maximum squeeze stress exceeds the ultimate squeeze strength,the failure of the rivet will happen.Thus,the following performance function can be obtained:

    Table 6 Distribution parameters of input variables in Example 4.

    The distribution parameters of input variables are illustrated in Table 6(Cov denotes the coefficient of variation).This example also selects three types of membership functions.The results of the different methods are shown in Table 7.

    Headless rivets have a safety-failure transition state in addition to the safety state and failure state.Therefore,it is necessary to introduce fuzzy failure domain to describe this state.It can be seen from Table 7 that the AK-MCS+GPF method established in this paper is the most efficient among the four methods under the condition of ensuring accuracy.

    5.Conclusions

    In this paper,by introducing an auxiliary input,the GPF expression is established under the strict mathematical derivation for the Profust reliability model.Thus,the calculation of Profust failure probability is converted into the calculation of traditional failure probability.From the contents of Sections 2 and 3,it can be seen that the AK-MCS+GPF method established in this paper is mainly composed of the following three key parts:(1)derive the GPF by the introduced auxiliary input;(2)insert AK model instead of GPF into MCS process to identify failure samples;(3)use U learning function to control the probability of misjudging failure samples.The proposed method has the high efficiency of the AK model and the universality of the MCS.Four examples indicate that the AK-MCS+GPF method can achieve the same accuracy as the MCS method but with a smaller number of evaluating per-formance function.In addition,through the introduction of GPF,various methods of traditional failure probability calculation (line sampling method, subset simulation method,important sampling method,etc.)can also be used to calculate Profust failure probability.

    Table 7 Results of for Example 4.

    Table 7 Results of for Example 4.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.NSFC 51475370 and 51775439).

    Appendix.Basic principle of Kriging model17,18

    where R(xi,xj)is the correlation function.Several models exist to define the correlation function.In this paper,the anisotropic Gaussian model is selected.It can be expressed as

    where θ=[θ1,θ2,...,θn]Tis the required parameter vector,anddenotes the kth dimension component of the training point xi.For the vector of regression coefficients β and the Gaussian process variance σ2,their estimated values can be obtained from the training points,as shown in Eqs.(A4)and(A5).

    where F is the matrix of regression model,which consists of the vectors of the regression basis function f(xi)for all training points,and R is the matrix of correlation between each pair of points.

    The unknown parameter in the model is θ=[θ1,θ2,...,θn]T,which can be obtained by maximum likelihood estimation as follows:

    For any unknown point(prediction point)x,the Kriging model can give its optimal unbiased estimationand prediction varianceas shown in Eqs.(A7)and(A8).

    where r(x)is the vector formed by the correlation function between the prediction point and the known training points.

    svipshipincom国产片| 9191精品国产免费久久| 午夜日韩欧美国产| 久久久久久久国产电影| 九色亚洲精品在线播放| 三上悠亚av全集在线观看| 18禁国产床啪视频网站| 免费观看精品视频网站| 国产精品亚洲一级av第二区| 搡老岳熟女国产| 老司机影院毛片| 两性夫妻黄色片| 国产精品免费大片| 亚洲欧美精品综合一区二区三区| 欧美av亚洲av综合av国产av| 黄色视频,在线免费观看| 在线观看午夜福利视频| 一区二区三区精品91| a级毛片在线看网站| 视频在线观看一区二区三区| 亚洲一区二区三区欧美精品| 午夜成年电影在线免费观看| 91大片在线观看| 9色porny在线观看| 久久国产亚洲av麻豆专区| 99久久99久久久精品蜜桃| 丝袜在线中文字幕| 五月开心婷婷网| 亚洲熟女精品中文字幕| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 19禁男女啪啪无遮挡网站| 国产av又大| 最近最新中文字幕大全电影3 | 纯流量卡能插随身wifi吗| 国产精品二区激情视频| 亚洲一区二区三区欧美精品| 国产成人av教育| 亚洲av日韩在线播放| 99在线人妻在线中文字幕 | 免费看十八禁软件| bbb黄色大片| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 热99国产精品久久久久久7| 不卡av一区二区三区| 久久精品国产a三级三级三级| 亚洲精品在线观看二区| 久久天堂一区二区三区四区| 国产99久久九九免费精品| 亚洲情色 制服丝袜| 欧美人与性动交α欧美软件| 麻豆成人av在线观看| 纯流量卡能插随身wifi吗| 19禁男女啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 我的亚洲天堂| 91字幕亚洲| 国产一区二区激情短视频| 国产熟女午夜一区二区三区| 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| av在线播放免费不卡| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 91在线观看av| 搡老岳熟女国产| 69av精品久久久久久| 日本vs欧美在线观看视频| 日本一区二区免费在线视频| 欧美激情极品国产一区二区三区| 一本一本久久a久久精品综合妖精| 成人免费观看视频高清| 国产亚洲精品久久久久5区| 又大又爽又粗| 99热国产这里只有精品6| 午夜成年电影在线免费观看| 中文字幕高清在线视频| 麻豆成人av在线观看| 丝瓜视频免费看黄片| 丰满的人妻完整版| 国产男女超爽视频在线观看| 中国美女看黄片| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 涩涩av久久男人的天堂| 久久亚洲真实| 久久青草综合色| 999久久久国产精品视频| 日韩熟女老妇一区二区性免费视频| 1024香蕉在线观看| 久久精品亚洲av国产电影网| 狂野欧美激情性xxxx| 国产午夜精品久久久久久| 亚洲熟女精品中文字幕| 免费观看精品视频网站| 色在线成人网| 久久精品91无色码中文字幕| 丁香六月欧美| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| 精品久久蜜臀av无| 日韩中文字幕欧美一区二区| 91成年电影在线观看| 欧美丝袜亚洲另类 | 很黄的视频免费| 女人爽到高潮嗷嗷叫在线视频| 午夜福利视频在线观看免费| 18在线观看网站| 亚洲情色 制服丝袜| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 麻豆成人av在线观看| 国产精品二区激情视频| 三级毛片av免费| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲| 69av精品久久久久久| 在线播放国产精品三级| 亚洲熟女毛片儿| 啦啦啦 在线观看视频| 很黄的视频免费| 老司机亚洲免费影院| 国产高清激情床上av| 久久久久国内视频| 中文字幕高清在线视频| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 高潮久久久久久久久久久不卡| 三上悠亚av全集在线观看| 俄罗斯特黄特色一大片| xxx96com| 在线视频色国产色| 亚洲人成电影观看| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | 国产乱人伦免费视频| 欧美午夜高清在线| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 十八禁人妻一区二区| 9色porny在线观看| 亚洲精品成人av观看孕妇| 国产蜜桃级精品一区二区三区 | 老司机亚洲免费影院| 在线视频色国产色| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 脱女人内裤的视频| 国产视频一区二区在线看| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区久久久樱花| 亚洲熟女精品中文字幕| 国产精品一区二区在线不卡| 色老头精品视频在线观看| 午夜两性在线视频| 国产又色又爽无遮挡免费看| 欧美午夜高清在线| 亚洲七黄色美女视频| 女警被强在线播放| 9色porny在线观看| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av香蕉五月 | 午夜福利影视在线免费观看| 亚洲av成人不卡在线观看播放网| 精品人妻熟女毛片av久久网站| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 亚洲熟妇中文字幕五十中出 | 99热国产这里只有精品6| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 男人操女人黄网站| 精品福利观看| 亚洲人成77777在线视频| 国产亚洲欧美精品永久| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利视频在线观看免费| 久久性视频一级片| 热99国产精品久久久久久7| 人妻一区二区av| 操美女的视频在线观看| 丰满饥渴人妻一区二区三| 亚洲av电影在线进入| 大片电影免费在线观看免费| av线在线观看网站| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| 两个人看的免费小视频| 国产野战对白在线观看| 嫁个100分男人电影在线观看| 亚洲成人手机| 人妻一区二区av| 首页视频小说图片口味搜索| 久久久久久人人人人人| 日韩大码丰满熟妇| 国产亚洲精品一区二区www | 久久精品亚洲熟妇少妇任你| 色94色欧美一区二区| 国产精品 欧美亚洲| 精品电影一区二区在线| a在线观看视频网站| 亚洲av片天天在线观看| 天堂动漫精品| 黑人猛操日本美女一级片| 韩国精品一区二区三区| 男人操女人黄网站| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 1024香蕉在线观看| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 超色免费av| 成人永久免费在线观看视频| 久久久久精品人妻al黑| 久久ye,这里只有精品| av线在线观看网站| 久久久国产成人免费| 又黄又粗又硬又大视频| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 国产亚洲精品第一综合不卡| 国产国语露脸激情在线看| 欧美日韩精品网址| 久久中文字幕一级| 男男h啪啪无遮挡| 国产免费av片在线观看野外av| 日本wwww免费看| 亚洲精品成人av观看孕妇| 久久人妻福利社区极品人妻图片| 精品高清国产在线一区| 天堂√8在线中文| 法律面前人人平等表现在哪些方面| 999久久久国产精品视频| 亚洲精品自拍成人| 欧美性长视频在线观看| 黄色视频,在线免费观看| 黄片播放在线免费| 热99久久久久精品小说推荐| 性少妇av在线| 国产精品综合久久久久久久免费 | 国产精品久久电影中文字幕 | 亚洲色图 男人天堂 中文字幕| 不卡av一区二区三区| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 热99久久久久精品小说推荐| www.精华液| 日韩制服丝袜自拍偷拍| 日韩有码中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 啦啦啦 在线观看视频| 国产高清videossex| 国产日韩欧美亚洲二区| 国产麻豆69| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 国产成人欧美| 99热只有精品国产| 国产av又大| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 国产精品美女特级片免费视频播放器 | 精品国产乱码久久久久久男人| 黄色怎么调成土黄色| 国产av一区二区精品久久| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 亚洲五月天丁香| 一本综合久久免费| 精品国产一区二区三区久久久樱花| 免费观看精品视频网站| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 色在线成人网| 国产区一区二久久| 国产精品影院久久| 大香蕉久久成人网| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 美女扒开内裤让男人捅视频| 曰老女人黄片| 亚洲成人国产一区在线观看| 国产亚洲欧美98| 美女视频免费永久观看网站| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 亚洲一码二码三码区别大吗| 高清欧美精品videossex| 成人亚洲精品一区在线观看| av国产精品久久久久影院| 在线永久观看黄色视频| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| a级毛片黄视频| 亚洲人成77777在线视频| 啦啦啦在线免费观看视频4| 宅男免费午夜| www.熟女人妻精品国产| 一区二区日韩欧美中文字幕| 高清av免费在线| 免费看a级黄色片| 亚洲人成电影免费在线| 成人av一区二区三区在线看| 国产精华一区二区三区| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 午夜福利影视在线免费观看| 国产亚洲精品久久久久5区| 黑人操中国人逼视频| 日韩熟女老妇一区二区性免费视频| 黄色a级毛片大全视频| 欧美午夜高清在线| 丰满迷人的少妇在线观看| 另类亚洲欧美激情| 丰满人妻熟妇乱又伦精品不卡| 免费少妇av软件| 国产成人欧美在线观看 | 美女扒开内裤让男人捅视频| avwww免费| 精品午夜福利视频在线观看一区| 国产精品久久久av美女十八| 中文字幕色久视频| 波多野结衣av一区二区av| 免费不卡黄色视频| 村上凉子中文字幕在线| 久久久国产成人精品二区 | 俄罗斯特黄特色一大片| 欧美乱色亚洲激情| 性色av乱码一区二区三区2| 一本综合久久免费| 久久精品国产亚洲av高清一级| 亚洲专区字幕在线| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 51午夜福利影视在线观看| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 久久精品亚洲熟妇少妇任你| 啪啪无遮挡十八禁网站| 久热爱精品视频在线9| 交换朋友夫妻互换小说| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 少妇 在线观看| 久久久久久久久久久久大奶| 黑人巨大精品欧美一区二区mp4| 亚洲黑人精品在线| 女同久久另类99精品国产91| 久久性视频一级片| 欧美日韩亚洲高清精品| x7x7x7水蜜桃| 午夜福利视频在线观看免费| 久久久国产一区二区| 精品国产一区二区三区四区第35| svipshipincom国产片| 人妻 亚洲 视频| 国产精品免费大片| 亚洲精品一二三| 国产高清videossex| 久久精品国产清高在天天线| 亚洲情色 制服丝袜| 中文字幕人妻丝袜一区二区| 久久青草综合色| 啦啦啦 在线观看视频| 国产激情欧美一区二区| videosex国产| 精品久久久精品久久久| 男女免费视频国产| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 少妇粗大呻吟视频| 日本vs欧美在线观看视频| 村上凉子中文字幕在线| 亚洲精品国产一区二区精华液| 国产高清激情床上av| 国产高清videossex| 宅男免费午夜| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 欧美日韩中文字幕国产精品一区二区三区 | 大香蕉久久网| 亚洲精品av麻豆狂野| 国产三级黄色录像| 成人永久免费在线观看视频| 精品福利永久在线观看| 日本黄色视频三级网站网址 | tube8黄色片| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| www.精华液| 亚洲精品一二三| 我的亚洲天堂| 国产精品一区二区在线观看99| 亚洲国产欧美网| 亚洲人成77777在线视频| 国产在视频线精品| 日韩人妻精品一区2区三区| 麻豆成人av在线观看| 久久性视频一级片| 韩国精品一区二区三区| 99久久综合精品五月天人人| 热99久久久久精品小说推荐| 精品国产乱子伦一区二区三区| 日本黄色日本黄色录像| 咕卡用的链子| av网站免费在线观看视频| 女同久久另类99精品国产91| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 91麻豆av在线| 黄片小视频在线播放| 精品国内亚洲2022精品成人 | 脱女人内裤的视频| 黄色视频,在线免费观看| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 少妇粗大呻吟视频| 亚洲成国产人片在线观看| 在线观看免费视频网站a站| av一本久久久久| 高清欧美精品videossex| 久久精品人人爽人人爽视色| 国产免费男女视频| videosex国产| 热99国产精品久久久久久7| a级毛片在线看网站| 国产无遮挡羞羞视频在线观看| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 亚洲综合色网址| 两个人免费观看高清视频| 国产成人av激情在线播放| 久久精品人人爽人人爽视色| av电影中文网址| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女 | 视频在线观看一区二区三区| 午夜视频精品福利| 中文字幕色久视频| 久久中文看片网| 窝窝影院91人妻| 天天添夜夜摸| 激情在线观看视频在线高清 | 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色 | 两个人看的免费小视频| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 如日韩欧美国产精品一区二区三区| 18禁观看日本| 777米奇影视久久| 精品国产美女av久久久久小说| 多毛熟女@视频| 99re在线观看精品视频| 久久午夜亚洲精品久久| 9热在线视频观看99| 欧美日韩亚洲综合一区二区三区_| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 王馨瑶露胸无遮挡在线观看| 国产成人精品无人区| 在线观看免费视频日本深夜| 黄色片一级片一级黄色片| 啦啦啦免费观看视频1| 精品第一国产精品| 亚洲性夜色夜夜综合| 国产精品国产高清国产av | videos熟女内射| 高清在线国产一区| 视频区欧美日本亚洲| 女性被躁到高潮视频| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 黄色视频不卡| 亚洲一区中文字幕在线| 久久香蕉激情| 国产在线观看jvid| 欧美久久黑人一区二区| 黄色视频,在线免费观看| 九色亚洲精品在线播放| bbb黄色大片| 成年动漫av网址| av国产精品久久久久影院| 亚洲av第一区精品v没综合| 一区二区三区激情视频| aaaaa片日本免费| 国产一区在线观看成人免费| 一级毛片女人18水好多| 在线看a的网站| 国产99白浆流出| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 国产1区2区3区精品| 狠狠狠狠99中文字幕| 亚洲精品国产区一区二| 成年女人毛片免费观看观看9 | 日韩欧美在线二视频 | 不卡av一区二区三区| 成人手机av| 日韩成人在线观看一区二区三区| 黄片播放在线免费| 51午夜福利影视在线观看| 超碰97精品在线观看| 亚洲免费av在线视频| 精品国产美女av久久久久小说| 色播在线永久视频| 日韩大码丰满熟妇| 精品亚洲成国产av| 制服人妻中文乱码| 成在线人永久免费视频| 精品少妇一区二区三区视频日本电影| 极品人妻少妇av视频| 热99久久久久精品小说推荐| 午夜91福利影院| 1024视频免费在线观看| 老熟女久久久| 制服人妻中文乱码| 狠狠婷婷综合久久久久久88av| 午夜两性在线视频| 18禁裸乳无遮挡动漫免费视频| 欧美激情 高清一区二区三区| 亚洲一区二区三区不卡视频| 大香蕉久久成人网| 国产精品久久久av美女十八| av国产精品久久久久影院| cao死你这个sao货| 久久久久久人人人人人| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 久久国产精品影院| 国产97色在线日韩免费| 91精品三级在线观看| 又黄又爽又免费观看的视频| 国产欧美日韩综合在线一区二区| 午夜福利乱码中文字幕| 一级毛片高清免费大全| 视频在线观看一区二区三区| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 夜夜爽天天搞| 十八禁高潮呻吟视频| 久久人妻av系列| 午夜亚洲福利在线播放| 美女视频免费永久观看网站| 欧美日韩亚洲国产一区二区在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲第一av免费看| 真人做人爱边吃奶动态| 最新的欧美精品一区二区| 新久久久久国产一级毛片| 精品一区二区三区av网在线观看| 男女下面插进去视频免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液| 91成年电影在线观看| 建设人人有责人人尽责人人享有的| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| 欧美日韩av久久| 99热网站在线观看| 亚洲成av片中文字幕在线观看| 不卡av一区二区三区| 免费在线观看黄色视频的| 人妻 亚洲 视频| av电影中文网址| 69精品国产乱码久久久| 国产不卡一卡二| netflix在线观看网站| 香蕉国产在线看| 国产主播在线观看一区二区| 欧美乱码精品一区二区三区| 欧美色视频一区免费| 国产高清激情床上av| 香蕉久久夜色| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三| 99国产精品一区二区三区| 久99久视频精品免费| 国产一卡二卡三卡精品| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 1024香蕉在线观看| 女性被躁到高潮视频| 久久这里只有精品19| 亚洲久久久国产精品| 亚洲午夜精品一区,二区,三区| 99久久精品国产亚洲精品| 91精品三级在线观看| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 天堂√8在线中文|