• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Erahertz spectral analysis of Xiling Zhimu with different geological conditions and plant age

    2019-08-09 02:40:26LiNaZhangYuHuiMaZeJiaZhangKaiXuanHouMiaoMiaoLinGuoWeiZhangCunGuangLou
    TMR Modern Herbal Medicine 2019年3期
    關(guān)鍵詞:西陵知母赫茲

    Li-Na Zhang, Yu-Hui Ma, Ze-Jia Zhang, Kai-Xuan Hou, Miao-Miao Lin, Guo-Wei Zhang*, Cun-Guang Lou

    Erahertz spectral analysis of Xiling Zhimu with different geological conditions and plant age

    Li-Na Zhang1, Yu-Hui Ma1, Ze-Jia Zhang1, Kai-Xuan Hou2, Miao-Miao Lin1, Guo-Wei Zhang1*, Cun-Guang Lou2*

    1College of Chinese Medicine, Hebei University, Baoding, Hebei, China.2School of Electronics and Information Engineering, Hebei University, Baoding, Hebei, China.

    : In order to identify the quality of different geological conditions and plant ages of XilingZhimu.: This article uses the terahertz spectroscopy to detect and analyze different geological conditions and ages of Zhimu () from the same origin.: The terahertz time-domain spectroscopy of different geological conditions and ages has a decrease relative to the reference amplitude and has a delay. The refractive index has obvious differences, and the refractive index can be used as a way to identify the tablets. The absorption coefficients of different ages Zhimu samples has significant differences in the range of 1.0-2.0 THz. The absorption coefficients of different geological conditions Zhimu samples has significant differences in the range of 1.1-2.0 THz.: The differences caused by different production methods should be considered in the identification of genuine regional drug. When the Zhimu is grown due to different geological conditions and plant ages, its efficacy will also change. we can detect this change by terahertz spectroscopy.

    terahertz spectrum, XilingZhimu, index of refraction, absorption coefficients

    The terahertzian time-domain spectrum of Zhimu () at different plant ages and different geological environments decreased relative to the reference amplitude and showed a delay. The refractive index has obvious difference, which can be used as a way to identify the film. The absorption coefficients of Zhimu at different plant ages were significantly different in the range of 1.0-2.0THz, and the absorption coefficients of Zhimu in different geological environments were different in the range of 1.1-2.0THz. Therefore, the differences caused by different preparation methods should be considered in the identification of authentic medicinal materials. When Zhimu grows at different plant ages and in different geological environments, its pharmacodynamics will change, and we can detect this change by terahertz spectroscopy, which can provide a basis for the identification of Xiling Zhimu.

    Background

    Zhimu () is the dry rhizome of, which has bitter and cold taste, and has the effect of nourishing yin and moistening dryness, clearing heat and purging fire[1]. Yixian County, Hebei Province, is the genuine producing area of Zhimu. The quality and curative effect of Zhimu is excellent, which called "XilingZhimu"[2]. The content of active ingredients in wild Zhimu and Xiling Zhimu in Yixian County is approximately the same, with similar quality characteristics [3]. Most of the active ingredients in traditional Chinese medicine usually increase with the increase of plant age, but generally it will stop increasing or even turn down after a certain period, or because of the difference of growth geology, the composition is also different. Therefore, the determination of the Zhimu’s quality with different plant ages and different geological conditions is an important development direction to improve the clinical efficacy.

    In order to understand the inherent differences of traditional Chinese medicine grown in different plant ages and geological conditions, this article study on the terahertz time-domain spectroscopy, refractive index and absorption spectrum of Anemarrhena Xiling from different plant ages and geologies in Yixian County, Hebei Province, which provided a basis for the identification of Xiling Zhimu from terahertz.

    Experimental Part

    Experimental samples and preparation

    The experimental samples were selected from Xiling Zhimu of Yixian County, Hebei Province,and collected from Taiping Village and Longquanzhuang Village in Xiling Town and Gem Village in Po Cang Town. Its growth geology is divided into gneiss and limestone. The age of the plants is 3 years, 5 years and 6 years (Figure 1). The samples were identified as certified products by Professor Liang Xianmao, a senior experimenter of College of traditional Chinese Medicine, Hebei University. Samples were dried by dryer, crushed by crusher and splited charging. In the process of crushing,attention should be paid to cleaning up the powder remaining in the crusher before crushing the next sample, so as to prevent the ingredients from mixing, otherwise, the accuracy of the final results of the experiment will be seriously affected. The crushed sample powders were sifted through No.100 narrow sieve. Then the powders with the same particle diameter were obtained. Finally, the powders were pressed into 13 mm slice by infrared manual tablet press (JOSVOK (Tianjin) Technology Co.,Ltd,YP-15) with pressure of 3 t. Sample name and thickness as shown in Table 1.

    Table 1. Plant type and thickness ofZhimu

    Experimental device

    In this experiment, terahertz time domain spectrometer (Daheng Science&Technology Co.,Ltd,DH-OTB-1000mm*600mm*500mm) and femtosecond laser (Spectra-Physics,Mai Tai) were used. The laser is a pumping and detecting light source.The wavelength of the central light source is 1560 nm. The output pulse width is about 92.3 fs. The pulse repetition rate is 100 MHz, and the Gauss TEM00 beam is less than 1.2 mm. The emitter is InAs crystal and the detector is ZnTe crystal. The spectrum width of the light source ranges from 0.1 to 3.0 THz.

    Experimental method and data processing

    Terahertz radiation can penetrate various materials [4, 5], so it can be used for the testing of traditional Chinese medicine. All data in this experiment were collected by terahertz spectroscopy system. Each acquisition adopted several parallel measurement methods, and then the related data were processed. In the course of the experiment, the ambient temperature of the instrument was set at 25+1℃ and the relative humidity was controlled at or below 7% [6].Under this condition,the terahertz time-domain wave of air was measured accurately, and the measured results were taken as the reference basis for the experiment. The terahertz time-domain spectroscopy of Zhimu in different plant ages and geological conditions were then measured. The experiments in each group were repeated twice and the average was calculated. In the process of testing, the terahertz instrument was filled with nitrogen, which reduced the influence of moisture in the air on terahertz generation. The reference signal and the sample signal can be obtained during the experiment, the signal distribution of the two were calculated by Fourier transform to obtain the corresponding frequency domain spectrum [7], the spectra Er(ω) and Es(ω). The amplitude ratio is p(ω)=AS/Ar,the phase difference isφ(ω)=φs-φr, and the calculation formula for refractive index is:

    The calculation formula of absorption coefficient is:

    The approximate calculation formula for the absorption coefficient is:

    In the calculation of the above formulas, c is the velocity of light in vacuum, ωis the angular frequency, n(ω)represents the real number of the refractive index, which is closely related to the dispersion characteristics of the sample, and k(ω) represents the extinction coefficient, where n(ω)=2ωk(ω)/c. This coefficient is also closely related to the absorption characteristics of the sample. A(ω)represents the ratio of the amplitude between the sample and the reference signal. φ(ω)represents the phase difference of terahertz pop signal. d represents the thickness of the measured sample. The value can be obtained during the experiment.The unit of phase is amplitude. Because of the noise effect at low frequency, the phase will jump by 2π [8].In order to make the phase at zero frequency closer to zero, the phase value between the linear range of 0.5-1.2 THz can be recived by linear fitting method to obtain the phase valueφat zero frequency. For example, the phase value at zero frequency can be obtained by integral N ofφ/2π, and then the phase of all frequencies can be subtracted by 2πN [9].

    Results

    Terahertz time-domain spectroscopyand analysis

    According to the experimental data, terahertz time-domain spectroscopy of different plant age samples and reference, different geological samples and reference (Figure 2 and 3) were made respectively. Figure 2 and Figure 3 show the time-domain spectra of different plant age samples and reference, different geological samples and reference at 0-15 PS. From the time-domain spectra, it can be seen that the THz spectral amplitude of the samples decreases to a certain extent compared with the reference wave due to the scattering, reflection and absorption of the samples. At the same time, the THz spectrum of the sample has a certain delay compared with the reference wave because of the difference of the thickness and refractive index of the samples.

    Refractive index curve and analysis

    The refractive index of three species Zhimu with different plant ages and Xiling Zhimu with different geological conditions were calculated according to the refractive index formula mentioned above. Corresponding refractive index curves were made separately (Figure 4 and 5). By comparing and analyzing the refractive index curves of three species of Zhimu with different plant ages (Figure 4), it is easy to see that the refractive indexes have significant differences in the range of 0-2.0 THz, and generally present a downward trend with the increase of frequency.Among them, the average refractive index of 3 years’Zhimu is about 1.04, that of 5 years’Zhimu is about 0.43, and that of 6 years’Zhimu is about 0.75.

    By comparing and analyzing the refractive index curves of Xiling Zhimu from different geologies (Figure 5), it can be concluded that the refractive indexes of Xiling Zhimu from 0 to 1.2 THz have significant difference between the two geologies; in the range of 0-0.3 THz, the refractive indexes increase with the rised frequency; and in the range of 0.3-1.2 THz, the refractive indexes maintain at about 1.1-1.3. Among them, the average refractive index of limestone is 1.28, and that of gneiss is 1.18. The refractive indexes of limestone in two geologies are higher than that of gneiss.

    Because the internal structure and component content ofZhimu samples of different plant ages and geological conditions have discrepances, the differences of refractive indexes should be related to the internal structure and component content of the samples.

    Figure.2 The terahertz time-domain spectroscopy of different plant ages samples

    Figure.3 The terahertz time-domain spectroscopy of different geological samples

    Figure.4 The index of refraction of different plant ages samples

    Figure.5 The index of refraction of different geological samples

    Curve and analysis of absorption coefficients

    The experimental datas were calculated according to the absorption coefficient formula as described above, and the absorption coefficients of three kinds of Xiling Zhimu with different geological conditions and plant age were obtained. Then we made corresponding absorption coefficient curves respectively (Figure 6 and 7).

    Absorption coefficient curve and analysis

    From the absorption spectrums of different ages Zhimu (Figure 6), we can find that when the frequency is between 1.0 and 2.0 THz, the absorption curves of three kinds of Zhimu samples fluctuates greatly and crisscrosses with each other. In the low frequency region, there are some differences between three kinds of samples relative to the absorption spectra., but the difference is small. Given that this curve may be influenced by the Fabry–Pérot effect, there is little significance for reference [10]. However, when the frequency is between 0.1 and 1.0 THz, the absorption coefficients of three kinds of samples also increase linearly with the wave frequency of terahertz incident increased. The trend further shows that the basic substances of Zhimu with different plant age are very similar to some extent. It's related to the fact that all of them are ZhimuIn the high frequency region, the sensitivity of three kinds of samples to terahertz wave is increased, which is convenient to distinguish the three kinds of Zhimu samples. The absorption coefficients of three kinds of samples are 3 years > 5 years > 6 years, and there is no obvious characteristic absorption peak in the range of 0.1 to 0.9 THz. However, the absorption coefficients are obviously different, which can be used as intuitive identification.

    From the absorption spectrums of different geological Zhimu (Figure 7), we can find that when the frequency is between 1.0 and 2.0 THz, the absorption curves of different geological Zhimu samples fluctuates greatly and crisscrosses with each other. The sensitivity to terahertz wave tends to increase, which is beneficial to distinguish the Zhimu samples in different geological environments. When the frequency is between 0.1 and 1.1 THz, the absorption coefficients of two different geological samples increase linearly with the wave frequency of terahertz incident increased. The trend shows that the basic substances of Zhimu with different geological conditions are similar. It's related to the fact that both of them are ZhimuThe absorption coefficient of the two geological samples is gneiss > limestone, while in the range of 0.1 to 1.1 THz, there is a linear growth trend and no obvious characteristic absorption peak. However, the absorption coefficients of them are obviously different, which can be used as intuitive identification.

    Figure.6 The absorption coefficient of different plant ages samples

    Figure.7 The absorption coefficient of different geological samples

    Conclusion

    Terahertz wave (Terahertz, 1 THz=1012Hz) is an electromagnetic wave with the frequency of 0.1 to 10 THz (wavelength is at 3mm to 30μm) between millimeter wave and infrared light. It is a special transitional region from electronics to photology in electromagnetic spectrum. It is also a transitional region from macroscopic classical theory to micro quantum theory [11], which has been listed as a strategic development direction by Europe, the United States and Japan [12]. Terahertz wave has superior characteristics, which makes it has important academic research and practical application value in physics, biomedicine, material science and so on. Domestic studies have shown that Terahertz time-domain spectroscopy (THz-TDS) technology is an effective method to identify the authenticity, evaluate the quality and analyze the composition of traditional Chinese medicine [13], which has a broad application prospect in the field of quality control or identification of traditional Chinese medicine.

    Through the THz-TDS experiment of Zhimu at constant room temperature and dry condition, it was found that the terahertz time-domain spectrum of different geological conditions and plant ages has a decrease relative to the reference amplitude and has a delay. The refractive index of three kinds of Zhimu samples with different plant ages is obviously different. All show a decreasing trend with the increase of frequency. The average refractive index of samples is 1.04, 0.43 and 0.75 for 3 years, 5 years and 6 years in the range of 0 to 10 THz, respectively. The refractive index of Zhimu samples with different geological conditions is also obviously different. The difference of refractive index may be due to the different internal structure and composition of the sample, so the refractive index can be used as a guiding significance for the harvest and commodity identification of Xiling Zhimu. The genuine quality of medicinal materials strengthens the influence of producing area, which means that the quality and the curative effect is good [14]. The absorption coefficients of three kinds of Zhimu samples with different plant ages were significantly different in the range of 1.0-2.0 THz, and the absorption coefficients of two kinds of Zhimu samples with different geological conditions were significantly different in the range of 1.1-2.0 THz. This indicates that even Zhimu from the same place of origin has different absorption coefficients due to different processing methods, so we should consider the difference in the identification of genuine medicinal materials. When the plant age and geological conditions of Zhimu is different, the internal material structure and the interaction between molecules will change, which may be one of the reasons why the clinical efficacy of Zhimu is different in different plant ages and geological conditions. We can detect this change by terahertz spectroscopy.

    Due to the sensitivity, safety and strong penetration of terahertz wave, the preliminary application of terahertz wave in the fields of blood detection, canceration tissue and drug detection has achieved good effects [15-19]. The application of terahertz spectroscopy to the quality analysis or identification of traditional Chinese medicine will play an important role in the research and production, such as commodity quality, specification and famous region drug, which will be of positive significance to the modernization of traditional Chinese medicine. With the continuous combination of terahertz technology and traditional Chinese medicine research, it will provide researchers with more diverse Chinese medicine identification and analysis methods.

    1. National Pharmacopoeia Commission. Chinese Pharmacopoeia. China Medical Science and Technology Press. 2010: 197.

    2. Zhong K, Wang WQ, Jin FY, et al. Discussion on the history of anemarrhena materia medica. Inf Tradi Chin Med, 2013. 30: 29-33.

    3. Chen QL, Shi ZY, Sun XM, et al. Comparison research on quality of cultivated and wild Anemarrhena Rhizome from Yi County. Chin J Chin Mater Med, 2011. 36: 2316-2320.

    4. J.B. Federici, B. Schulkin, F. Huang,. THz imaging and sensing for security applications-explosives, weapons and drugs Semicond. Sci. Technol., 2005. 20, pp. S266-S280

    5. Zhang XC, Xu J. Terahertz Radiation: Introduction to THz Wave Photonics Springer Science+Business Media, LLC, New York, 2010: 13.

    6. Zou D Z, Li D, Zhang Q, et al. Determination of the Content of Benzoyl Peroxide in Flour Based on Terahertz Spectroscopy. Food Science. 2017, 38: 298-302.

    7. Zhang YC, Wu QF, Liu X. Evaluation and analysis of Chinese residents' quality of life. Stat Decision, 2013. 24, 106-108.

    8. Zhang SZ. THz spectra of biodegradable polymers. Capital Normal University, 2008.

    9. Li XX, Deng H, Liao HT, et al. Analysis of the terahertz spectrum of Chinese herbal medicine aconite at room temperature. Laser Infrared, 2013. 43: 1282-1285.

    10. Hu QY, Yao JP, Li DC. Application value analysis of terahertz spectroscopy in the detection of processed rhubarb products. World Latest Med Inf, 2018. 18: 265-267.

    11. Liang PL, Dai JM. Review of Terahertz Science and Technology. Tech Autom Appl, 2015. 34: 1-8+15.

    12. Chen TN, Li J, Wang YY,Intraoperative in situ recognition of brain glioma in mice based on terahertz spectroscopy. J Third Mil Med uni, 2018. 40: 1444-1449.

    13. Liu XH, Shi QW, Zhang J,. Terahertz time-domain spectroscopy and its application prospects in Chinese materia medica. Chin Tradi Herb Drugs, 2009. 40, 1508-1511.

    14. Li ZY, Qu T, Wang PF, et al. Advance on quality control of toad venom and its key influence factors. Chin J Chin Mater Med, 2017. 42: 863-869.

    15. Cai JW, Xiong Y, Zhu LG,. Properties of human dental hard tissues by THz-SDs transmission system. J Third Mil Med Uni, 2018. 40: 1048-1053.

    16. Zhu JX, He X, Wang P, et al. Development of Terahertz Imaging Technology in the Assessment of Burn Injuries. J Biomed Eng, 2016. 33: 184-187.

    17. Zhang MY, Wu YY, Xiao Z. Application and Progress of Terahertz in Medical Detection. Chin Med Equip J, 2013. 34: 84-86.

    18. Hu MB, Dong F, Ding Q. Research progress and prospect of terahertz technique in urinary system diseases. Natl Med J Chin, 2014. 94: 2557-2559.

    19. Qi F, Wang YL. Terahertz technology utilized to achieve early accurate diagnosis of skin cancer. Chin J Med Phys, 2016. 33: 1195-1198.

    :對(duì)不同地質(zhì)條件和株齡西陵知母的質(zhì)量進(jìn)行鑒別研究。:本文采用了太赫茲光譜技術(shù)對(duì)同一產(chǎn)地不同地質(zhì)和株齡的西陵知母進(jìn)行了檢測(cè)與分析。:不同株齡、不同地質(zhì)環(huán)境生長(zhǎng)知母的太赫茲時(shí)域譜相對(duì)于參考幅度均有所下降,并具有延遲;折射率具有明顯的差異性,折射率可以作為鑒別制片的一種方式;不同株齡知母樣品的吸收系數(shù)在1.0-2.0THz范圍內(nèi)存在顯著的差異性,不同地質(zhì)環(huán)境生長(zhǎng)知母的吸收系數(shù)在1.1-2.0THz范圍內(nèi)存在差異性,故而在道地性藥材鑒別時(shí)應(yīng)考慮由于不同制片方式引起的差異。:當(dāng)知母因生長(zhǎng)的株齡不同、所生地質(zhì)環(huán)境不同時(shí),其藥效也會(huì)有所改變,我們可以通過太赫茲光譜技術(shù)檢測(cè)這種變化。

    太赫茲光譜;西陵知母;折射率;吸收系數(shù)

    :Zhang LN, Ma YH, Zhang ZJ, et al.Terahertz spectral analysis of Xiling Zhimu with different geological conditions and plant age.TMR Modern Herbal Medicine, 2019, 2 (3): 158-166.

    10.12032/TMRmhm2017A53

    Submitted: 31 May 2019,

    19 July 2019,

    Guo-Wei Zhang, College of Chinese Medicine, Hebei University, Baoding, Hebei, China. E-mail:xxzgw@126.com.Cun-Guang Lou, School of Electronics and Information Engineering, Hebei University, Baoding, Hebei, China. E-mail: loucunguang@163.com.

    22 July 2019.

    This work was Financial supported by Baoding philosophy social planning project (2018121).

    Competing interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

    Executive Editor: Jing Sun

    猜你喜歡
    西陵知母赫茲
    Systematic review of robust experimental models of rheumatoid arthritis for basic research
    清泰陵卜建影響西陵寺廟布局考析
    紫禁城(2020年9期)2020-10-27 02:05:50
    ICP-MS法測(cè)定不同產(chǎn)地知母中5種重金屬
    中成藥(2018年9期)2018-10-09 07:19:06
    知母中4種成分及對(duì)α-葡萄糖苷酶的抑制作用
    中成藥(2018年5期)2018-06-06 03:11:58
    基于雙頻聯(lián)合處理的太赫茲InISAR成像方法
    太赫茲低頻段隨機(jī)粗糙金屬板散射特性研究
    太赫茲信息超材料與超表面
    知母多糖治療糖尿病大鼠
    中成藥(2017年9期)2017-12-19 13:34:18
    千年之戀(二十二)
    處理土地權(quán)屬糾紛要講『 鐵證』
    午夜激情福利司机影院| 婷婷色av中文字幕| 亚洲人与动物交配视频| 日日啪夜夜爽| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 亚洲怡红院男人天堂| 日本爱情动作片www.在线观看| 黄色视频在线播放观看不卡| 国产日韩欧美在线精品| h视频一区二区三区| 免费观看av网站的网址| 一本色道久久久久久精品综合| 精品少妇内射三级| 中文字幕制服av| 久久av网站| 亚洲精品视频女| 一边亲一边摸免费视频| av女优亚洲男人天堂| tube8黄色片| av天堂中文字幕网| 日韩大片免费观看网站| 能在线免费看毛片的网站| 亚洲国产成人一精品久久久| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 美女xxoo啪啪120秒动态图| 欧美精品亚洲一区二区| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 欧美少妇被猛烈插入视频| 久久久久网色| 午夜免费男女啪啪视频观看| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 人体艺术视频欧美日本| av在线观看视频网站免费| 免费看日本二区| 高清欧美精品videossex| 人人澡人人妻人| 亚洲高清免费不卡视频| 少妇人妻精品综合一区二区| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 国产在线免费精品| 成年美女黄网站色视频大全免费 | 观看免费一级毛片| 国产日韩欧美在线精品| 一个人看视频在线观看www免费| 大香蕉久久网| 男女啪啪激烈高潮av片| 亚洲欧洲国产日韩| 久久影院123| 插阴视频在线观看视频| 欧美日韩亚洲高清精品| 欧美成人精品欧美一级黄| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 欧美bdsm另类| 精品一区二区免费观看| 啦啦啦在线观看免费高清www| a级毛片免费高清观看在线播放| 99久久中文字幕三级久久日本| 极品人妻少妇av视频| 十分钟在线观看高清视频www | 欧美xxxx性猛交bbbb| av在线播放精品| 老司机亚洲免费影院| 国产精品伦人一区二区| 亚洲第一av免费看| 黄色配什么色好看| 伊人亚洲综合成人网| av播播在线观看一区| 精品午夜福利在线看| 偷拍熟女少妇极品色| 一本一本综合久久| 人妻 亚洲 视频| freevideosex欧美| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 人妻系列 视频| 欧美老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 毛片一级片免费看久久久久| 国产色爽女视频免费观看| 日本免费在线观看一区| 男女国产视频网站| 免费看av在线观看网站| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边摸边吃奶| 成人漫画全彩无遮挡| 久久精品久久久久久久性| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 大香蕉97超碰在线| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| videossex国产| tube8黄色片| 日韩欧美 国产精品| 夫妻午夜视频| 国产一级毛片在线| 日本免费在线观看一区| 青春草亚洲视频在线观看| 热re99久久精品国产66热6| 黄色配什么色好看| 国产成人精品婷婷| 欧美3d第一页| 插逼视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 丰满饥渴人妻一区二区三| 新久久久久国产一级毛片| 一本大道久久a久久精品| 国国产精品蜜臀av免费| 久久99热这里只频精品6学生| av国产久精品久网站免费入址| 91精品国产国语对白视频| 免费在线观看成人毛片| 国产又色又爽无遮挡免| 看十八女毛片水多多多| 久久久久久伊人网av| 最近中文字幕高清免费大全6| 久久99热6这里只有精品| kizo精华| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 亚洲成人手机| 曰老女人黄片| 亚洲精品中文字幕在线视频 | 国产午夜精品久久久久久一区二区三区| 亚洲精品日韩av片在线观看| 国产精品三级大全| 高清欧美精品videossex| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 国产视频首页在线观看| 日韩大片免费观看网站| 久久久久视频综合| 久久久久精品久久久久真实原创| 激情五月婷婷亚洲| 女性被躁到高潮视频| 三上悠亚av全集在线观看 | 色5月婷婷丁香| av网站免费在线观看视频| 国产精品秋霞免费鲁丝片| 欧美日韩视频高清一区二区三区二| 丰满少妇做爰视频| 秋霞在线观看毛片| 国产成人精品一,二区| 欧美区成人在线视频| 日韩大片免费观看网站| 在线观看国产h片| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 欧美日韩一区二区视频在线观看视频在线| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 男人狂女人下面高潮的视频| 另类精品久久| 亚洲国产欧美日韩在线播放 | 久久久久精品久久久久真实原创| 一区二区av电影网| 日日撸夜夜添| 国产高清国产精品国产三级| 久久97久久精品| 99热全是精品| 国产深夜福利视频在线观看| 国产毛片在线视频| 免费观看在线日韩| 精品久久久久久久久亚洲| 国产亚洲午夜精品一区二区久久| 一本大道久久a久久精品| 三上悠亚av全集在线观看 | 中文字幕av电影在线播放| 黄色视频在线播放观看不卡| 熟妇人妻不卡中文字幕| 黄色欧美视频在线观看| 亚洲av欧美aⅴ国产| 国产欧美日韩综合在线一区二区 | 精品一区在线观看国产| av在线播放精品| videossex国产| 欧美日韩av久久| 三级国产精品片| 91精品一卡2卡3卡4卡| 亚洲精品一二三| 青春草视频在线免费观看| 午夜影院在线不卡| 99热这里只有是精品50| 丝袜喷水一区| 国产高清不卡午夜福利| 国产高清不卡午夜福利| 人妻夜夜爽99麻豆av| 亚洲av中文av极速乱| 中国国产av一级| 啦啦啦啦在线视频资源| 伦精品一区二区三区| 最新中文字幕久久久久| 啦啦啦中文免费视频观看日本| 18禁在线无遮挡免费观看视频| 黄色视频在线播放观看不卡| 久久久久国产精品人妻一区二区| 欧美丝袜亚洲另类| 美女视频免费永久观看网站| 亚洲人成网站在线播| 在线观看人妻少妇| 日韩一本色道免费dvd| 97在线视频观看| 日韩一区二区三区影片| 99热这里只有精品一区| 亚洲丝袜综合中文字幕| 欧美日本中文国产一区发布| 美女脱内裤让男人舔精品视频| 国产女主播在线喷水免费视频网站| 街头女战士在线观看网站| 日本wwww免费看| 久久久国产一区二区| 久久人人爽av亚洲精品天堂| av国产久精品久网站免费入址| 成年人午夜在线观看视频| a 毛片基地| 99热全是精品| 国产视频内射| 老熟女久久久| 欧美老熟妇乱子伦牲交| 性高湖久久久久久久久免费观看| 国产真实伦视频高清在线观看| 午夜av观看不卡| 日韩三级伦理在线观看| 日日摸夜夜添夜夜爱| av线在线观看网站| 国产又色又爽无遮挡免| 高清午夜精品一区二区三区| 国产精品福利在线免费观看| 精品久久久久久久久av| 高清欧美精品videossex| 九九爱精品视频在线观看| 日本黄色日本黄色录像| 午夜av观看不卡| 久久6这里有精品| 2021少妇久久久久久久久久久| 欧美xxxx性猛交bbbb| 久久久久久人妻| 亚洲丝袜综合中文字幕| 99国产精品免费福利视频| 精品国产一区二区三区久久久樱花| 伊人亚洲综合成人网| 免费黄网站久久成人精品| 中文字幕免费在线视频6| 性色av一级| 乱码一卡2卡4卡精品| 久久毛片免费看一区二区三区| av有码第一页| 天天操日日干夜夜撸| 色吧在线观看| 9色porny在线观看| 久久 成人 亚洲| 国产淫片久久久久久久久| 男人狂女人下面高潮的视频| 老女人水多毛片| 精品国产露脸久久av麻豆| 黑人猛操日本美女一级片| 成年av动漫网址| 99精国产麻豆久久婷婷| 亚洲国产精品专区欧美| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久久电影| 日日啪夜夜撸| 色婷婷av一区二区三区视频| 成人特级av手机在线观看| 午夜福利视频精品| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 少妇的逼水好多| 国产高清不卡午夜福利| 最新的欧美精品一区二区| 桃花免费在线播放| 天堂8中文在线网| 日本欧美国产在线视频| 亚洲av综合色区一区| 国产成人精品一,二区| 国产欧美亚洲国产| 男女啪啪激烈高潮av片| 亚洲伊人久久精品综合| 在线 av 中文字幕| 香蕉精品网在线| 免费人成在线观看视频色| 成人免费观看视频高清| 各种免费的搞黄视频| 日韩成人av中文字幕在线观看| 久久久久久人妻| 男人添女人高潮全过程视频| 看免费成人av毛片| 久久免费观看电影| 成人国产av品久久久| 亚洲伊人久久精品综合| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 成人午夜精彩视频在线观看| 久久女婷五月综合色啪小说| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| 日本爱情动作片www.在线观看| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 久久久欧美国产精品| 欧美xxⅹ黑人| 免费久久久久久久精品成人欧美视频 | 国产高清国产精品国产三级| 六月丁香七月| 妹子高潮喷水视频| a级一级毛片免费在线观看| 国产av码专区亚洲av| 街头女战士在线观看网站| 色哟哟·www| 国产在视频线精品| 欧美3d第一页| 少妇的逼水好多| 日本黄大片高清| 国产一区二区在线观看av| 国产精品女同一区二区软件| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| 国产成人一区二区在线| 久久久亚洲精品成人影院| av又黄又爽大尺度在线免费看| 热re99久久国产66热| 香蕉精品网在线| 熟女av电影| 亚洲激情五月婷婷啪啪| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 嘟嘟电影网在线观看| kizo精华| 在线观看av片永久免费下载| av免费在线看不卡| 嫩草影院入口| 国产爽快片一区二区三区| 久久精品国产亚洲av涩爱| 免费高清在线观看视频在线观看| 欧美精品国产亚洲| 春色校园在线视频观看| 乱人伦中国视频| 九草在线视频观看| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 一级黄片播放器| 久久这里有精品视频免费| 三级国产精品欧美在线观看| 最近最新中文字幕免费大全7| av卡一久久| 在线观看www视频免费| 国产又色又爽无遮挡免| 精品人妻偷拍中文字幕| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频 | 精华霜和精华液先用哪个| 9色porny在线观看| 亚洲精品在线美女| 亚洲av美国av| 亚洲五月婷婷丁香| 精品第一国产精品| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 伊人亚洲综合成人网| 亚洲综合色网址| 又黄又粗又硬又大视频| 无遮挡黄片免费观看| 国产精品av久久久久免费| 亚洲av男天堂| 咕卡用的链子| 精品亚洲成国产av| 精品国产乱码久久久久久男人| 桃花免费在线播放| 亚洲精品国产av成人精品| 国产亚洲av片在线观看秒播厂| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 欧美激情极品国产一区二区三区| 桃花免费在线播放| 成人av一区二区三区在线看 | 国产高清国产精品国产三级| 一级黄色大片毛片| 亚洲第一青青草原| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 91精品三级在线观看| 久9热在线精品视频| 国产1区2区3区精品| 亚洲av成人不卡在线观看播放网 | 亚洲 欧美一区二区三区| 91字幕亚洲| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 久久精品亚洲熟妇少妇任你| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 亚洲av电影在线观看一区二区三区| 欧美成人午夜精品| 精品少妇黑人巨大在线播放| 日韩有码中文字幕| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 日韩电影二区| 国产成人精品久久二区二区91| 精品国产国语对白av| 国产精品久久久av美女十八| 69av精品久久久久久 | 老司机福利观看| 亚洲精品第二区| 在线精品无人区一区二区三| 18禁黄网站禁片午夜丰满| 女人爽到高潮嗷嗷叫在线视频| 免费少妇av软件| 中亚洲国语对白在线视频| 久久人人爽av亚洲精品天堂| 国产高清视频在线播放一区 | 久久青草综合色| 亚洲精品一区蜜桃| 亚洲一码二码三码区别大吗| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 日韩大片免费观看网站| 欧美日韩av久久| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久小说| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 超色免费av| 中文字幕高清在线视频| 国产又爽黄色视频| 日韩大码丰满熟妇| 欧美性长视频在线观看| 1024视频免费在线观看| 亚洲欧洲日产国产| 欧美精品亚洲一区二区| 精品国产一区二区三区四区第35| 满18在线观看网站| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 欧美成狂野欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 视频区欧美日本亚洲| 少妇人妻久久综合中文| 亚洲精品在线美女| 一二三四社区在线视频社区8| 欧美日韩视频精品一区| av国产精品久久久久影院| 国产高清视频在线播放一区 | 久久久久久久久免费视频了| 91字幕亚洲| 天天操日日干夜夜撸| 看免费av毛片| 国产一区有黄有色的免费视频| cao死你这个sao货| 亚洲精品久久午夜乱码| 国产野战对白在线观看| 又大又爽又粗| 精品高清国产在线一区| 日韩欧美一区视频在线观看| 精品熟女少妇八av免费久了| 老司机影院成人| 在线精品无人区一区二区三| 成人国语在线视频| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区大全| 亚洲色图综合在线观看| 美女中出高潮动态图| av福利片在线| 下体分泌物呈黄色| 欧美激情极品国产一区二区三区| 啦啦啦视频在线资源免费观看| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站| 999久久久国产精品视频| 1024视频免费在线观看| 色播在线永久视频| a级片在线免费高清观看视频| 亚洲av男天堂| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费| 欧美久久黑人一区二区| 波多野结衣av一区二区av| 91国产中文字幕| 在线 av 中文字幕| 色94色欧美一区二区| 国产人伦9x9x在线观看| 精品亚洲成国产av| 麻豆国产av国片精品| 丝袜脚勾引网站| 国产一区二区三区在线臀色熟女 | 成人影院久久| av在线老鸭窝| 欧美日韩福利视频一区二区| 欧美日韩精品网址| 久久国产精品大桥未久av| 欧美久久黑人一区二区| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| 天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 亚洲欧美日韩另类电影网站| 日本a在线网址| 一本久久精品| 日韩三级视频一区二区三区| 精品一区在线观看国产| 一个人免费看片子| 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 少妇裸体淫交视频免费看高清 | 日本五十路高清| 男人操女人黄网站| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | 黄色视频不卡| 中国国产av一级| 一区福利在线观看| 十分钟在线观看高清视频www| 女人被躁到高潮嗷嗷叫费观| 丝袜人妻中文字幕| 制服诱惑二区| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 久久久国产一区二区| 国产日韩欧美亚洲二区| 欧美日韩福利视频一区二区| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 亚洲午夜精品一区,二区,三区| 日韩欧美免费精品| 美女福利国产在线| 精品人妻熟女毛片av久久网站| svipshipincom国产片| tube8黄色片| 99热网站在线观看| 999久久久国产精品视频| 成人手机av| 亚洲三区欧美一区| 麻豆av在线久日| 下体分泌物呈黄色| 亚洲av日韩在线播放| 亚洲专区字幕在线| 一个人免费在线观看的高清视频 | 一边摸一边做爽爽视频免费| cao死你这个sao货| www日本在线高清视频| 日韩视频一区二区在线观看| 91精品国产国语对白视频| 十八禁网站免费在线| 亚洲情色 制服丝袜| 欧美变态另类bdsm刘玥| 亚洲avbb在线观看| 日韩 欧美 亚洲 中文字幕| 精品久久蜜臀av无| av在线老鸭窝| 各种免费的搞黄视频| 亚洲成人免费av在线播放| 亚洲av男天堂| 女人高潮潮喷娇喘18禁视频| 日韩制服骚丝袜av| av线在线观看网站| bbb黄色大片| 日韩制服丝袜自拍偷拍| 国产国语露脸激情在线看| 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久小说| 男人舔女人的私密视频| 操出白浆在线播放| 在线亚洲精品国产二区图片欧美| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 女人被躁到高潮嗷嗷叫费观| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 亚洲人成电影免费在线| 在线亚洲精品国产二区图片欧美| 午夜精品久久久久久毛片777| 国产一级毛片在线| 久久香蕉激情| 三上悠亚av全集在线观看| 视频区图区小说| 亚洲av成人不卡在线观看播放网 | 国产精品久久久久久精品古装| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 精品熟女少妇八av免费久了| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 大码成人一级视频|