• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitochondrial membrane stabilization by Angelica sinensis polysaccharide in murine aplastic anemia

    2019-08-09 02:38:48PingZhongXingCui
    TMR Modern Herbal Medicine 2019年3期
    關(guān)鍵詞:膜電位骨髓線粒體

    Ping Zhong, Xing Cui

    Mitochondrial membrane stabilization by Angelica sinensis polysaccharide in murine aplastic anemia

    Ping Zhong1#, Xing Cui2#

    1Department of rehabilitation medicine, The 960th hospital of the people's Liberation Army, Jinan, Shandong, China.2Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

    In order to investigate the mechanism of mitochondrial membrane stabilization by Angelica sinensis polysaccharide (ASP) in murine aplastic anemia (AA).ICR mice were randomly divided into control, AA and ASP-treated groups. The AA group mice were treated with 60Coγand intraperitoneal injections of cyclophosphamide and chloramphenicol. The control animals were treated with lead shielding irradiation and saline injection. The treated AA mice were fed with ASP for 2 wk. Mitochondrial ultrastructure of the bone marrow was observed by transmission electron microscopy, and the transmembrane potential of bone marrow-nucleated cells (BMNC)was examined by fluorescence spectrophotometry. The Cox and MDH contents of the medium were also studied in the three groups.The mitochondrial number and transmembrane potential of BMNC in the bone marrow decreased in the AA group as compared to the control group, but improved in the ASP-treated group as compared to the AA group. Complete mitochondrial cleavage in the ASP-treated group was significantly delayed (< 0.05) as compared to the AA group. We conclude that ASP might improve mitochondrial membrane stabilization, and suppress the downregulation of transmembrane potential and apoptosis of BMNC in AA.

    aplastic anemia, Angelica sinensis polysaccharide, mitochondria, membrane potential, ICR mice

    Acquired deletions of mtDNA and abnormal mitochondrial function are crucial reasons in some blood disease include aplastic anemia. Angelica sinensis helps in tonifying the blood and promoting its circulation via anti-oxidative and neuroprotective effects. In this paper, we demonstrated that Angelica sinensis polysaccharide can improve improve the mitochondrial ultrastructure, and suppress the downregulation of transmembrane potential and apoptosis of myeloid element to cure bone marrow failure.

    Background

    Aplastic anemia (AA) is a blood disorder in which the bone marrow and the associated blood stem cells are damaged causing a deficiency of red blood cells, white blood cells, and platelets. These deficiencies are individually known as anemia, leucopenia and thrombocytopenia, respectively, and collectively known as pancytopenia. Exposure to chemicals, drugs, radiation, radioactive materials, radiation-producing devices, infection, immune disease, heredity (in 50% of the cases) and unknown etiology can also lead to the development of AA.

    Mitochondria are considered to be the “powerhouses of the cell” because they produce adenosine triphosphate (ATP) by systematically extracting energy from nutrient molecules (substrates) [1]. Moreover, mtDNA is replicated with a high mutation rate since it lacks protective histones and an effective DNA repair system. Mutations in mtDNA are associated with hematological diseases such as acquired sideroblastic anemia, myelodysplastic syndromes and acquired AA [2-4]. Our previous study [5] showed that functional impairment of the mitochondrial respiratory chain induced by mutations might be involved in hematopoietic failure in AA patients. Irrespective of the morphological features of end-stage cell death (apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event between survival and death [6].

    According to traditional Chinese medicine, Angelica sinensis helps in tonifying the blood and promoting its circulation [7]. Recent studies have shown that extracts of Angelica sinensis have anti-oxidative and neuroprotective effects [8,9]. However, the anti-oxidative function of ASP remains unclear. This study examined the early cell damage using mitochondrial lysis time curve and the mitochondrial membrane stabilizing effect of ASP in AA.

    Materials and Methods

    Grouping of animals

    Healthy ICR male mice, weighing 18-22 g, aged 6-8 weeks, were provided by the Experimental Animal Center of Shandong University (China). Animals were housed in a warm, quiet environment with free access to food and water, and acclimatized for one week before beginning the experiments.

    The mice were randomly divided into three groups: normal group, AA group, and treated group, respectively. The aplastic anemia model was generated as previously described [10].

    Briefly, the mice were irradiated with 2.0Gy 60Coγ and then treated with daily intraperitoneal injections of 40 mg/kg/day cyclophosphamide and 50 mg/kg/day chloramphenicol for the next three days. The treated group was intragastrically fed with ASP (200 mg/kg/d, according to the Chinese Medical Dictionary). The control group and the AA group mice were intragastrically fed with physiological saline (10 ml/kg/d) supplemented diet. Furthermore, all mice received a standard diet during the study. After treatment with ASP or physiological saline for 2 wk, the mice were sacrificed by cervical dislocation.

    Hematological examination

    The tail blood samples from the three groups were collected on the first and fourteenth day, respectively. WBC and platelets were counted in the peripheral blood samples, and Hb levels were determined. On completion of the experiments, the mice were sacrificed and femur smears were prepared for differential counting of bone marrow-nucleated cells (BMNCs) (Figure 1).

    Transmission electron microscopy

    The femoral marrow was smeared and sliced into ultrathin sections. Mitochondria of hematopoietic cells in the femoral marrow were analyzed and counted by transmission electron microscopy (JEM-2000EX, Japan) under 50 fields of vision.

    Figure 1. Effects of ASP on the mitochondria of hematopoietic cells from AA mice.

    After treatment with ASP or physiological saline for 2 wk, representative transmission electron micrographs (×25000) of mitochondrial structures from hematopoietic cells are shown (B and C). Panel A is the control group. Panel C shows more mitochondria in the ASP-treated group as compared to the AA group (Panel B).

    Mitochondrial lysis time curve

    Mitochondria were extracted from murine BMNCs according to the manufacturer’s protocol of the mitochondria isolation kit (Pierce Biotechnology Inc., USA). The concentration of monoamine oxidase (MAO) indicates the concentration of mitochondria, and was determined using 200U/ml mitochondrial suspensions from 20 serum cultures, within 12 hours at different time points (30 min intervals). The contents of cytochrome oxidase (Cox) and malate dehydrogenase (MDH) in the medium were also determined. The peak time analysis of the mitochondrial membrane and matrix specific enzyme concentration time curves showed the extent of mitochondrial membrane lysis.

    Mitochondrial membrane potential

    After pre-incubation with MAO or ASP, the isolated mitochondria from the three groups were resuspended in 0.5 ml phosphate?buffered saline (Wuhan Boster Biotechnology, Ltd., China), and 10 μl rhoda-mine 123 working solution (Sigma-Aldrich, USA) was added and incubated at 37?C in 5% CO2 for 15 min. The mitochondrial membrane potential was analyzed by flow cytometry using an excitation wavelength of 490 nm and emission wavelength of 520 nm.

    Statistical analysis

    Statistical analysis was performed using SPSS 19.0 software. Data are expressed as means and standard deviations. Student’s t-test was used to compare the different groups.was considered to be statistically significant.

    Results

    Peripheral blood and BMC counts

    Using a fully automatic blood cell analyzer, the number of peripheral blood cells and BMCs in the AA mice was found to be notably decreased (), indicating that the AA mouse model was successfully established (Table 1).

    Table 1. Peripheral blood cell counts (x±SD) in the three groups of mice

    *< 0.01, **< 0.05, as compared to the control group; △< 0.01, as compared to the AA group.

    Table 2. Effect of ASP on the mitochondrial number and mitochondrial membrane potential(MMP)of bone marrow in mice(x±SD)

    *< 0.01, **< 0.05, as compared to the control group; △< 0.01, as compared to the AA group.

    Mitochondrial ultrastructure in aplastic anemia mice

    Transmission electron microscopy of the bone marrow of AA mice showed that the mitochondrial ultrastructure significantly improved with ASP in the treated group (Table 2 and Figure 1), indicating that ASP stabilizes the mitochondria in AA mice. The size and shape of mitochondria of the control group were normal. In contrast, the mitochondria of the AA group had enlarged globular structures, along with the disruption or disappearance of cristae (Figure 1A–C).

    Mitochondrial membrane potential (MMP) in aplastic anemia mice

    As transmission electron microscopy revealed mitochondrial damage, we determined the effect of ASP on the MMP in AA mice by measuring the relative differences in the fluorescence of Rh 123 among the three groups using a fluorescence spectrophotometer.

    The results showed that the Rh 123 fluorescence of bone marrow cells in the AA group (19.6±3.03) was lower than that in the control group (31.7±2.59,). However, the Rh 123 fluorescence of the ASP-treated AA group was higher than that in the AA group () (Table 2 and Figure 2), indicating that ASP facilitated recovery of the MMP in AA mice.

    Early cell damage mitochondrial lysis time curve

    In the control group, the contents of mitochondrial in vitro culture Cox and MDH took 3.5 hours to reach the peak. The MAO content in the culture did not change significantly over time, but the contents of COX and MDH gradually increased with time, reaching a peak, and then gradually declining. Thus, the complete mitochondrial contents released by cells took about 3.5 hours to reach the cleavage peak.

    The COX and MDH peaks in the AA group appeared at 1.5 hours, 1.375U/l, 36.732U/l, respectively. The COX and MDH peaks in the treated group appeared at 5.5 hours, 6.5 hours, 1.341U/l, 33.994U/l, respectively. Two sets of data at each time point were used for statistical analysis. At 1.5 hours, the COX and MDH levels in the AA group were significantly higher than the treated group ().

    Therefore, complete mitochondrial cleavage in the serum was significantly delayed after addition of ASP (), with a slight decrease in the peak (Figure 3).

    Discussion

    Aplastic anemia (AA) is a bone marrow failure syndrome characterized by peripheral pancytopenia and marrow hypoplasia. Mutations and instability of mtDNA have been demonstrated in several diseases. Mitochondrial dysfunction and decrease in the number of mitochondria may result in the reduction of mtDNA. Acquired deletions of mtDNA in the hematopoietic compartment have been found to occur in severe pancytopenia and reticulocytopenia [11]. Based on our previous research [5], we examined whether ASP can stabilize the mitochondrial membrane of AA mice.

    Figure 2. Effects of ASP on the mitochondrial membrane potential (MMP) in bone marrow cells of aplastic anemia (AA) mice. Bone marrow cells from AA mice and ASP-treated AA mice were stained with rhodamine 123.

    Figure 3. The concentration time curves of COX and MDH

    Angelica sinensis polysaccharide-iron complex (APIC) not only has a superior therapeutic effect on IDA but also on supplementing blood and promoting blood circulation [12]. ASP may be useful for the treatment of diseases induced by hepcidin overexpression by preventing the janus-kinase (JAK), son of mothers against decapentaplegic (SMAD) and extracellular signal-regulated kinase (ERK) pathways to downregulate hepcidin expression in IDA rats [13]. Qin J found that ASP can improve proteoglycan (PG) synthesis of chondrocytes in rat OA model in vivo and IL-1β-stimulated chondrocytes in vitro by promoting the expression of aggrecan and GTs involved in PG synthesis [14].

    In our study, the AA mouse model was induced by a combination of acetylphenylhydrazine, X-rays and cyclophosphamide. The AA mice showed statistically significant reductions in peripheral blood leucocytes, Hb and platelets (Table 1), and severe reductions in humeral marrow cells and marrow-committed progenitor cells, which are clinical characteristics of AA. The AA mice treated with ASP showed a progressive increase in BM cells as compared to the AA group. Additionally, the number of mitochondria in the hematopoietic cells was also affected. ASP resulted in significantly higher number of mitochondria in the treated group as compared to the AA group (Figure 1). These results showed that ASP could promote marrow nucleated cells proliferation, increase the number of mitochondria, and stabilize the mitochondrial membrane in AA mice.

    Mitochondrial injury is reflected by mtDNA damage and a decline in the levels of mtRNA transcripts, protein synthesis, and mitochondrial function, which might result in decreased cellular energy, disruption of cell signaling, and interference with cellular differentiation and apoptosis. Furthermore, deficient mitochondrial ATP production might promote chromosomal instability [15]. Since mtDNA encodes components of four out of five mitochondrial respiratory complexes, alterations in mtDNA result in mitochondrial disease [16-18]. Apart from mitochondrial disease, mutations in mtDNA are linked to cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, hematological diseases such as leukemia as well as the normal process of aging [19]. Importantly, mtDNA mutations as well as reduction in mtDNA copy number can be pathogenic [20, 21]. Understanding cellular mechanisms for the maintenance of mtDNA integrity and copy number is of utmost importance since it can provide targets for clinical interventions aimed at prevention and treatment of hematological diseases such as AA. These factors might also result in decreased energy metabolism, which will affect self-renewal and differentiation of the hematopoietic stem cells.

    The findings of the present study demonstrate that ASP can improve the mitochondrial ultrastructure, and suppress the downregulation of transmembrane potential and apoptosis of myeloid element to cure bone marrow failure.

    1. Chinnery PF, Schon EA. Mitochondria. J Neurol Neurosurg Psychiatry 2003, 74: 1188-1199.

    2. Gattermann N. Mitochondrial DNA mutations in the hematopoietic system. Leukemia 2004, 18:18–22.

    3. Gattermann N, Retzlaff S, Wang YL,Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997, 90: 4961–4972.

    4. Kim HR, Shin MG, Kim MJ,Mitochondrial DNA aberrations of bone marrow cells from patients with aplastic anemia. Korean Med Sci 2008, 23:1062–1067.

    5. X Cui, JQ Wang,ZGCai,Complete sequence analysis of mitochondrial DNA and telomere length in aplastic anemia. Int J Mol Med 2014, 34: 1309-1314.

    6. Chiu TL, Su CC. Tanshinone IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential.Int J Mol Med 2010, 25:231-236.

    7. Liu PJ, Hsieh WT, Huang SH,Hematopoietic effect of water-soluble polysaccharides from Angelica sinensis on mice with acute blood loss. Exp Hematol 2010, 38:437-445.

    8. Kuang X, Yao Y, Du JR,Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Res 2006, 1102:145-153.

    9. Xin J, Zhang J, Yang Y,Radix Angelica Sinensis that contains the component Z-ligustilide promotes adult neurogenesis to mediate recovery from cognitive impairment. Curr Neurovasc Res 203, 10:304-315.

    10. Chen YF,Wu ZM,Xie C,ExpressionlevelofIL-6secretedbybonemarrowstromalcellsinmicewithaplasticanemia. ISRN Hematol 2013:986219.

    11. Hatfill SJ, La Cock CJ, Laubscher R,A role for mitochondrial DNA in the pathogenesis of radiation-induced myelodysplasia and secondary leukemia. Leuk Res 1993, 17: 907-913.

    12. Wang PP, Zhang Y, Dai LQ,Effect of Angelica sinensis polysaccharide-iron complex on iron deficiency anemia in rats. Chin J Integr Med 2007, 13:297-300.

    13. Zhang Y, Cheng Y, Wang N,The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia. Food Funct 2014, 5:1381-1388.

    14. Qin J, Liu YS, Liu J,Effect of angelica sinensis polysaccharides on osteoarthritisand: apossible mechanism to promote proteoglycans synthesis. Evid Based Complement Alternat Med 2013, 79476.

    15. Gattermann N. Mitochondrial DNA mutations in the hematopoietic system. Leukemia 2004, 18: 18-22.

    16. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988, 331:717-719.

    17. Lestienne P, Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1988, 1:885.

    18. Wallace DC, Singh G, Lott MT,Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 1988, 242:1427-1430.

    19. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005, 39:359-407.

    20. Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009, 36:125-131.

    21. R?tig A, Poulton J. Genetic causes of mitochondrial DNA depletion in humans. Biochim Biophys Acta 2009, 1792:1103-1108.

    為了證實(shí)當(dāng)歸多糖可以通過調(diào)控線粒體膜穩(wěn)定性干預(yù)鼠再障模型設(shè)計(jì)了該實(shí)驗(yàn)。ICR小鼠隨機(jī)分為對照組、再障組和當(dāng)歸多糖治療組。其中再障小鼠使用60Coγ照射和腹腔注射環(huán)磷酰胺和環(huán)孢素的方法造模。對照組小鼠采用鉛屏蔽照射。對照組和再障組小鼠使用生理鹽水腹腔注射,治療組小鼠口服當(dāng)歸多糖兩周。分別檢測骨髓單個(gè)核細(xì)胞的線粒體超微結(jié)構(gòu)和膜電位。檢測COX、MDH在三組中的寒涼差異。結(jié)果顯示,再障組中線粒體數(shù)量和膜電位較對照組均有顯著下降,應(yīng)用當(dāng)歸多糖干預(yù)后,有不同程度的回升。治療組的線粒體裂解時(shí)間較再障組大幅延遲(< 0.05)。我們認(rèn)為當(dāng)歸多糖可以提升再障骨髓單個(gè)核細(xì)胞的線粒體膜穩(wěn)定性,并可能抑制線粒體通路的凋亡。

    再生障礙性貧血; 當(dāng)歸多糖; 線粒體; 膜電位; ICR小鼠

    :Zhong P, Cui XMitochondrial membrane stabilization by Angelica sinensis polysaccharide in murine aplastic anemia. TMR Modern Herbal Medicine 2019, 2 (3): 151-157.

    10.12032/TMRmhm2017A50.

    Submitted: 17 April 2019,

    19 June 2019,

    Xing Cui, Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China. E-mail: cdz45@163.com.

    # Both authors contributed equally to this work.

    20 June 2019.

    Abbreviations:AA: Aplastic anemia, ATP: adenosine triphosphate, MMP: mitochondrial membrane permeabilization, BMNCs: bone marrow-nucleated cells, MAO: monoamine oxidase, JAK: janus-kinase, SMAD: son of mothers against decapentaplegic, ERK: extracellular signal-regulated kinase.

    This study was supported by the National Natural Science Foundation of China (No. 81202839), the National Natural Science Foundation of China (No. 81774080), the “Taishan Scholar” Project Special Fund, the Study Abroad Funding by the Shandong health science and technology association and the Affiliated Hospital of Shandong University of Traditional Chinese Medicine.

    Competing interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

    Executive Editor: Jing Sun

    猜你喜歡
    膜電位骨髓線粒體
    Ancient stone tools were found
    有關(guān)動(dòng)作電位的“4坐標(biāo)2比較”
    參芪復(fù)方對GK大鼠骨骼肌線粒體膜電位及相關(guān)促凋亡蛋白的影響研究
    棘皮動(dòng)物線粒體基因組研究進(jìn)展
    線粒體自噬與帕金森病的研究進(jìn)展
    宮頸癌術(shù)后調(diào)強(qiáng)放療中骨髓抑制與骨髓照射劑量體積的關(guān)系
    贊美骨髓
    文苑(2018年18期)2018-11-08 11:12:42
    骨髓穿刺涂片聯(lián)合骨髓活檢切片在骨髓增生異常綜合征診斷中的應(yīng)用
    魚藤酮誘導(dǎo)PC12細(xì)胞凋亡及線粒體膜電位變化
    NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
    丰满人妻熟妇乱又伦精品不卡| 在现免费观看毛片| 国产成人影院久久av| 男的添女的下面高潮视频| 大片电影免费在线观看免费| 母亲3免费完整高清在线观看| 天天添夜夜摸| 99国产精品免费福利视频| 女性被躁到高潮视频| av又黄又爽大尺度在线免费看| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 人人澡人人妻人| 一边亲一边摸免费视频| e午夜精品久久久久久久| 汤姆久久久久久久影院中文字幕| 成人午夜精彩视频在线观看| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 91国产中文字幕| av在线app专区| 国产精品偷伦视频观看了| 国产成人一区二区在线| 午夜免费成人在线视频| 韩国高清视频一区二区三区| 热re99久久国产66热| av又黄又爽大尺度在线免费看| 久久99一区二区三区| 91老司机精品| 日韩av免费高清视频| 各种免费的搞黄视频| 可以免费在线观看a视频的电影网站| 国产国语露脸激情在线看| 满18在线观看网站| 黄色一级大片看看| 看免费成人av毛片| 搡老岳熟女国产| 热99久久久久精品小说推荐| 丝袜人妻中文字幕| avwww免费| av天堂在线播放| 欧美日韩亚洲高清精品| 我的亚洲天堂| 精品亚洲成a人片在线观看| 久久久精品区二区三区| 亚洲精品国产av蜜桃| 国产片特级美女逼逼视频| 麻豆乱淫一区二区| 国产日韩欧美视频二区| 性少妇av在线| 在线观看www视频免费| 国产一区二区激情短视频 | 久久av网站| 欧美在线黄色| 国产99久久九九免费精品| 成年人免费黄色播放视频| 精品国产一区二区三区四区第35| 一二三四在线观看免费中文在| 91九色精品人成在线观看| 色播在线永久视频| 欧美性长视频在线观看| 王馨瑶露胸无遮挡在线观看| 黄片播放在线免费| 精品福利观看| 高潮久久久久久久久久久不卡| 亚洲精品久久午夜乱码| 久久ye,这里只有精品| 精品一区二区三区av网在线观看 | 国产精品国产三级国产专区5o| 后天国语完整版免费观看| 99香蕉大伊视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品三级大全| 精品一区在线观看国产| 我的亚洲天堂| 久久久久久久精品精品| 亚洲成国产人片在线观看| 悠悠久久av| 妹子高潮喷水视频| 手机成人av网站| 国产免费一区二区三区四区乱码| av网站在线播放免费| 狂野欧美激情性xxxx| 国产成人精品久久二区二区91| 久久影院123| 成人影院久久| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 久久久久网色| 欧美性长视频在线观看| 国产片特级美女逼逼视频| 国产日韩欧美视频二区| 欧美精品啪啪一区二区三区 | 飞空精品影院首页| 男女床上黄色一级片免费看| 国产淫语在线视频| 欧美日本中文国产一区发布| 成人亚洲欧美一区二区av| 国产精品九九99| 免费看不卡的av| 国产一卡二卡三卡精品| 大香蕉久久网| 午夜福利在线免费观看网站| 亚洲国产欧美一区二区综合| 又大又黄又爽视频免费| 国产视频首页在线观看| 一区二区三区四区激情视频| 老司机影院成人| 大片免费播放器 马上看| 女人久久www免费人成看片| 亚洲成人国产一区在线观看 | 亚洲一区二区三区欧美精品| 日韩一本色道免费dvd| 大香蕉久久成人网| 只有这里有精品99| 久久久久久久久久久久大奶| 熟女av电影| 国产人伦9x9x在线观看| 人人妻人人添人人爽欧美一区卜| 无限看片的www在线观看| 我要看黄色一级片免费的| 亚洲精品日本国产第一区| 18禁观看日本| 午夜91福利影院| 免费高清在线观看日韩| 男女床上黄色一级片免费看| 黄片小视频在线播放| 午夜福利,免费看| 免费高清在线观看日韩| 午夜福利免费观看在线| 国产成人av教育| 日本av免费视频播放| 国产极品粉嫩免费观看在线| 欧美日韩亚洲国产一区二区在线观看 | 999久久久国产精品视频| 在线av久久热| 丝袜人妻中文字幕| 国产成人av教育| 日韩大片免费观看网站| 在线观看国产h片| 午夜免费鲁丝| 高清不卡的av网站| 中国国产av一级| 久久久久视频综合| 国产精品一区二区在线不卡| 男男h啪啪无遮挡| 国产精品一二三区在线看| 一个人免费看片子| 性色av一级| 少妇裸体淫交视频免费看高清 | 亚洲欧美一区二区三区国产| 咕卡用的链子| 亚洲伊人久久精品综合| 美女中出高潮动态图| 欧美av亚洲av综合av国产av| 亚洲少妇的诱惑av| 久久久欧美国产精品| 大陆偷拍与自拍| 岛国毛片在线播放| 91麻豆av在线| 欧美日韩成人在线一区二区| 18禁黄网站禁片午夜丰满| 日韩av免费高清视频| 国产成人啪精品午夜网站| 免费久久久久久久精品成人欧美视频| 青春草亚洲视频在线观看| 夫妻午夜视频| 天天躁夜夜躁狠狠久久av| 高清黄色对白视频在线免费看| 国产黄色免费在线视频| 久久综合国产亚洲精品| 国产成人欧美| 精品亚洲乱码少妇综合久久| 一区福利在线观看| 亚洲av日韩在线播放| av片东京热男人的天堂| 色综合欧美亚洲国产小说| 亚洲 欧美一区二区三区| 国产精品一区二区精品视频观看| 国产精品香港三级国产av潘金莲 | 亚洲欧洲日产国产| 亚洲自偷自拍图片 自拍| 天堂俺去俺来也www色官网| 国产免费又黄又爽又色| 夫妻性生交免费视频一级片| 18在线观看网站| 在线av久久热| 国产激情久久老熟女| 香蕉国产在线看| 老熟女久久久| 午夜影院在线不卡| 香蕉丝袜av| 夫妻性生交免费视频一级片| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩高清在线视频 | 久热爱精品视频在线9| 狂野欧美激情性bbbbbb| 国产视频一区二区在线看| 精品福利观看| 久久久久视频综合| 大片免费播放器 马上看| 我的亚洲天堂| 日本a在线网址| 人体艺术视频欧美日本| 久久鲁丝午夜福利片| 午夜福利在线免费观看网站| 亚洲精品久久久久久婷婷小说| 99久久精品国产亚洲精品| 91精品国产国语对白视频| 免费高清在线观看视频在线观看| 人妻 亚洲 视频| 午夜福利,免费看| 久久久亚洲精品成人影院| 精品久久久久久电影网| 午夜91福利影院| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 中国美女看黄片| 国产精品三级大全| 中文字幕高清在线视频| 黄网站色视频无遮挡免费观看| 午夜免费观看性视频| 大型av网站在线播放| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕| 波野结衣二区三区在线| 丝袜人妻中文字幕| 国产免费视频播放在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| 国产免费又黄又爽又色| 黄色视频不卡| 成人手机av| 久久久久久亚洲精品国产蜜桃av| 啦啦啦在线观看免费高清www| 在线观看国产h片| 美女福利国产在线| 中文字幕最新亚洲高清| 亚洲国产最新在线播放| av线在线观看网站| 国产伦人伦偷精品视频| 久久久久国产一级毛片高清牌| 水蜜桃什么品种好| 无遮挡黄片免费观看| 国产成人精品久久久久久| 一本色道久久久久久精品综合| netflix在线观看网站| 亚洲伊人色综图| 中文字幕人妻丝袜制服| 满18在线观看网站| 日韩av免费高清视频| 丝袜美足系列| 国产精品久久久av美女十八| 伊人亚洲综合成人网| 国产精品三级大全| 丝袜脚勾引网站| 成年av动漫网址| 国产亚洲欧美在线一区二区| 日韩伦理黄色片| 免费在线观看日本一区| 免费日韩欧美在线观看| 国产免费又黄又爽又色| 男女之事视频高清在线观看 | 99香蕉大伊视频| 日日爽夜夜爽网站| 女人高潮潮喷娇喘18禁视频| 成年美女黄网站色视频大全免费| 精品久久蜜臀av无| 丝袜脚勾引网站| 一区福利在线观看| 男女之事视频高清在线观看 | av不卡在线播放| 亚洲精品久久成人aⅴ小说| 日韩一本色道免费dvd| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看 | 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 亚洲欧美清纯卡通| 国产又爽黄色视频| 中国美女看黄片| 国产av国产精品国产| 在线观看人妻少妇| 精品免费久久久久久久清纯 | 久久国产精品影院| 久久毛片免费看一区二区三区| 又大又爽又粗| 国产成人av激情在线播放| www.自偷自拍.com| 亚洲av日韩精品久久久久久密 | 国产免费视频播放在线视频| 成人国产一区最新在线观看 | 亚洲中文日韩欧美视频| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 水蜜桃什么品种好| 亚洲视频免费观看视频| 大型av网站在线播放| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 18在线观看网站| 丁香六月欧美| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 水蜜桃什么品种好| 欧美日本中文国产一区发布| 桃花免费在线播放| 免费在线观看视频国产中文字幕亚洲 | 亚洲自偷自拍图片 自拍| 日韩视频在线欧美| 国产精品国产三级专区第一集| 国产99久久九九免费精品| 老司机靠b影院| 色94色欧美一区二区| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 考比视频在线观看| 国产精品成人在线| 亚洲国产中文字幕在线视频| 亚洲精品国产区一区二| 亚洲人成77777在线视频| 国产精品免费大片| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 一区二区三区精品91| 日本av手机在线免费观看| 丝袜喷水一区| 永久免费av网站大全| 精品一区二区三区av网在线观看 | 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 亚洲三区欧美一区| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 欧美成人午夜精品| 久久久国产精品麻豆| 日本猛色少妇xxxxx猛交久久| 悠悠久久av| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 丁香六月天网| 青草久久国产| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一二三| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 久久亚洲国产成人精品v| 国产成人91sexporn| 久久人人爽人人片av| 天天添夜夜摸| 男的添女的下面高潮视频| 中文字幕色久视频| 亚洲中文字幕日韩| www.999成人在线观看| 欧美黄色淫秽网站| 秋霞在线观看毛片| 看免费成人av毛片| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 在线看a的网站| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 国产成人影院久久av| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 久久天堂一区二区三区四区| 日韩制服骚丝袜av| 一级黄片播放器| 国产精品av久久久久免费| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 亚洲一码二码三码区别大吗| 欧美日韩视频高清一区二区三区二| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 五月开心婷婷网| 亚洲综合色网址| 女人被躁到高潮嗷嗷叫费观| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 人妻 亚洲 视频| 99久久精品国产亚洲精品| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 久久亚洲精品不卡| 精品熟女少妇八av免费久了| 国产精品熟女久久久久浪| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| 亚洲av在线观看美女高潮| 免费高清在线观看视频在线观看| 99久久综合免费| 久久国产精品男人的天堂亚洲| 女警被强在线播放| 另类精品久久| 大型av网站在线播放| 午夜91福利影院| 十八禁网站网址无遮挡| 欧美久久黑人一区二区| 国产欧美日韩一区二区三 | 宅男免费午夜| 女警被强在线播放| 精品国产超薄肉色丝袜足j| 国产福利在线免费观看视频| 日日摸夜夜添夜夜爱| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 久久精品亚洲熟妇少妇任你| 大陆偷拍与自拍| 国产免费视频播放在线视频| 欧美人与善性xxx| 国产视频首页在线观看| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 黄色 视频免费看| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 国产免费现黄频在线看| 9色porny在线观看| 亚洲国产中文字幕在线视频| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠躁躁| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久男人| 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产 | 黄色一级大片看看| 国产成人啪精品午夜网站| 十八禁高潮呻吟视频| 中国美女看黄片| 免费在线观看视频国产中文字幕亚洲 | 国产精品一二三区在线看| 亚洲成色77777| 久久影院123| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| 国产成人精品久久久久久| 国产1区2区3区精品| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜脚勾引网站| 午夜福利一区二区在线看| 久久精品久久久久久噜噜老黄| 国产成人欧美| 欧美成狂野欧美在线观看| 一边摸一边做爽爽视频免费| 大型av网站在线播放| 99国产精品一区二区三区| 美女脱内裤让男人舔精品视频| 欧美性长视频在线观看| 777米奇影视久久| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版| 欧美国产精品va在线观看不卡| 男女免费视频国产| 日本欧美国产在线视频| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲 | 一区二区三区乱码不卡18| 午夜福利在线免费观看网站| 亚洲精品av麻豆狂野| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 日本一区二区免费在线视频| 美女视频免费永久观看网站| 精品国产一区二区三区久久久樱花| 夫妻性生交免费视频一级片| 黄片播放在线免费| 午夜免费观看性视频| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 国产精品一国产av| 99热全是精品| av网站免费在线观看视频| 欧美日韩av久久| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 中文精品一卡2卡3卡4更新| 91成人精品电影| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播 | 91精品国产国语对白视频| 90打野战视频偷拍视频| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 91精品伊人久久大香线蕉| av有码第一页| 脱女人内裤的视频| 人人妻人人爽人人添夜夜欢视频| av天堂久久9| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| 国产精品一国产av| 欧美日韩黄片免| 1024视频免费在线观看| 亚洲精品日本国产第一区| 亚洲欧美精品自产自拍| 老司机深夜福利视频在线观看 | 亚洲人成77777在线视频| 啦啦啦视频在线资源免费观看| 91精品伊人久久大香线蕉| 少妇粗大呻吟视频| 久久精品亚洲av国产电影网| 亚洲专区国产一区二区| 中国美女看黄片| 国产视频一区二区在线看| 免费看十八禁软件| 一边摸一边做爽爽视频免费| 午夜av观看不卡| 亚洲 国产 在线| 日韩制服骚丝袜av| 波多野结衣av一区二区av| 亚洲欧洲国产日韩| 国产高清视频在线播放一区 | 国产亚洲av高清不卡| 黄片小视频在线播放| 国产高清videossex| 免费看不卡的av| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免| 亚洲国产精品一区三区| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看 | 日韩伦理黄色片| 成年av动漫网址| 99热国产这里只有精品6| 亚洲精品一区蜜桃| 成人国语在线视频| 天天影视国产精品| 亚洲欧洲日产国产| 亚洲视频免费观看视频| 制服人妻中文乱码| 在线天堂中文资源库| 大片免费播放器 马上看| 亚洲七黄色美女视频| 美女国产高潮福利片在线看| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 久久精品久久久久久噜噜老黄| 午夜福利视频在线观看免费| 亚洲精品国产一区二区精华液| 久久精品aⅴ一区二区三区四区| 丰满迷人的少妇在线观看| 国产在线视频一区二区| 黄色毛片三级朝国网站| 五月开心婷婷网| 91精品国产国语对白视频| 99精国产麻豆久久婷婷| 曰老女人黄片| 最新的欧美精品一区二区| 亚洲av综合色区一区| av福利片在线| 97在线人人人人妻| 777米奇影视久久| 国产不卡av网站在线观看| 黄片播放在线免费| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 大陆偷拍与自拍| 黄色视频在线播放观看不卡| 国产黄频视频在线观看| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片| 一区福利在线观看| 久久影院123| 大香蕉久久网| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| a 毛片基地| 久久99一区二区三区| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 中文字幕高清在线视频| 亚洲 国产 在线| 各种免费的搞黄视频| 国产主播在线观看一区二区 | av天堂在线播放| 色综合欧美亚洲国产小说| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 91麻豆精品激情在线观看国产 | 亚洲国产av影院在线观看| 亚洲成人免费av在线播放| 成人影院久久| 亚洲av日韩精品久久久久久密 | 天天影视国产精品| svipshipincom国产片| 大香蕉久久网| 老司机影院成人| 男人操女人黄网站| 极品少妇高潮喷水抽搐| 高清av免费在线| 精品视频人人做人人爽| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 少妇猛男粗大的猛烈进出视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲三区欧美一区| av片东京热男人的天堂| 80岁老熟妇乱子伦牲交|