• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于水分散納米無定形水楊酸甲酯鋱配合物的三價(jià)鉻離子高靈敏熒光傳感器

    2019-08-08 06:53:14劉笑君孫麗婷劉艷珠周雪珍李永繡

    劉笑君 孫麗婷 張 澍 周 晨 劉艷珠 周雪珍 李永繡

    (南昌大學(xué)稀土與微納功能材料研究中心,南昌 330031)

    0 Introduction

    The preparation and application of inorganic rare earth luminescent materials are classical research fields in chemistry,physics and material science.Therefore,a lot of papers on rare earth phosphors with high luminescence efficiency have been reported[1-2].However,in the past decades,luminescent lanthanide complexes (LLCs)have attracted more great attention due to their excellent photophysical properties and showed potential applications in many fields,such as drug delivery,bioimaging,optical imaging,luminescent sensors and OLEDs[3-7].Typically,an LLC contains organic ligand (an “antenna”to harvest energy)and central lanthanide ion(luminous center to emit characteristic light)[8-10].According to previous reports,LLCs of Tbバ and Euバ offer strong characteristic emission spectra and have advantage of long lifetime and large stokes shift[6,9,11].

    To prepare LLCs with strongly luminescent properties,the organic ligands are usually selected according their coordination ability and excited triplet-state energy levels (ETSEL)because of the idea that only the ligands with strong coordination ability and suitable ETSEL can effectively sensitize the luminescent emitting of rare earth ions[12-17].However,most of the reported LLCs show poor water solubility and dispersion which limit their application as luminescent materials or sensors under aqueous conditions[18]. Therefore, the application fields of synthesized LLCs can be greatly extended when their stability,solubility or dispersion performance in aqueous systems are improved.

    LLCs can be used as sensors for various metal ions and organic compounds[19-23].For this application,the enhancement and quenching of the luminescence of rare earth complexes by these alien species are more concerned about.Therefore,we suggest that coordination systems with insufficient luminescence intensity will provide more and better choices,because they are more susceptible to the external environment,ions and molecules,thus contributing to the construction of more sensitive and effective sensing systems and the development of new detection methods.

    Methyl salicylate (MS)and its derivatives are a class of materials widely used in pharmaceutical molecules and optical functional materials[24-25].They are typical o-hydroxybenzoyl compounds with poor coordination ability towards metal ions and can form strong intramolecular hydrogen bond (IMHB)which produces ketone tautomer by excited-state intramolecular proton transfer (ESIPT)[26-27].Omagari et al.[28-30]have reported a series of salicylate terbium complexes with characteristic luminescence of Tbバattributed to the energy transfer process from ligands to Tbバions.The synthesized complex (molar ratio 16∶9 of MS to Tb)is a Tbバ nine-nuclear cluster (Tb9)compound.The distance between the Tb-Tb was investigated by doping gadolinium into the complex,and suggested that the increase in luminescence efficiency of terbium due to the enhanced energy transfer between Tb-Tb can cut down the energy back transfer from excited state to the ligand[29].However,their stability and solubility as well as the dispersion performance are not idea for their applications in systems containing water.

    Chromium,one of the essential trace elements in the human body,plays an important role in maintaining human health[31-33].Naturally,it mainly includes Crバ and Crボ[34].As we know,Crバ ions are more important in maintaining life in animals and plants,and excess Crバions may destroy cellular components in the human body through bind to DNA[31,35].The standards of the European Community and World Health Organization regulate the maximum allowable level of Crバ in drinking water is 50 μg·L-1[36]. Several Crバ sensing methods have been developed,but most of them use organic molecules or multi-step modified nanomaterials as sensing platforms,and the preparation process is cumbersome[37-38].In addition,some sensing platforms have the disadvantage of poor selectivity and low luminous efficiency in aqueous solution[39-40].Therefore,we urgently need a simple,economical and good selective Crバdetection method[41].

    In the present study,we synthesized a LLC directly in water using MS as ligand and Tb as emitting center.It was found that the synthesized solid product is a water dispersed nano-sized amorphous methyl salicylate terbium (A-MS-Tb)complex with particle size ranging from 50 to 100 nm and similar composition to the reported crystalline methyl salicylate terbium (C-MS-Tb)complex.This complex also shows strong green luminescence at 494,549,591,625 nm,and it can be used as strong green luminescence materials for display and sensors in systems containing water because its luminescent intensity in water suspension remains the same as that in ethanol.More interesting,the aqueous dispersion of nano-sized AMS-Tb shows more stability than that of C-MS-Tb,and the green emitting can been quenched with the addition of Cr3+,which is caused by the weakening of coordination between MS and Tb3+.Accordingly,a highly sensitive sensor for detecting Cr3+was established according to the relationship between the luminescence quenching amplitude and the concentration of chromium ion,and the selectivity and antiinterference ability were evaluated.

    1 Experimental

    1.1 Reagents and apparatus

    All chemical reagents and solvents were obtained from commercial suppliers and used as received.Tb(NO3)3·6H2O was obtained from Siyu Chemical Co.,Ltd.MSwas purchased from Shanghai Jingxi Chemical Technology Co.,Ltd.NaOH,KNO3,NaNO3,Ca(NO3)2,Mn(NO3)2,Cd(NO3)2,HgI2,Cu(NO3)2,Al(NO3)3,Fe(NO3)3,Cr (NO3)3,K2CO3,K2CrO4,KBr,KCl,K2SO4,Ni(NO3)2,Fe(NO3)2, Zn (NO3)2, Mg(NO3)3,Co(NO3)3and 2-(4-(hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid(HEPES)were purchased from China pharmaceutical chemical reagent Co.,Ltd.

    Luminescence spectra were collected on an F-4600 spectrometer (Hitachi,Japan)with an excitation spectrum set at 380 nm.UV-Vis absorption spectra were examined on a UV-2550 spectrophotometer(Shimadzu,Kyoto,Japan)using a 1.0 cm quartz cell.Fourier transform infrared (FT-IR)spectra were recorded by an ALPHA FT-IR Spectrometer(Bruker,Germany)with KBr pellets.The luminescent lifetimes was determined on a C11367-11 Quantaurus-Tau(Hamamatsu,Japan).Transmission electron microscopy (TEM)image were measured by JEM-2100 transmission electron microscope (JEOL Ltd.Japan)with operational accelerating voltage being 200 kV.Powder X-ray diffraction (PXRD)patterns were measured by XD-3diffractometer(Beijing Purkinje General Instrument Co.,Ltd.)with Cu Kα radiation (λ=0.154 06 nm)operating at 40 kV and 15 mA with a Kβfoil filter in a range of 5°~90°.Thermogravimetric analysis (TG)was carried on a NETZSCH TG 209 F1 thermogravimetric analyzer at a heating rate of 10℃·min-1under a vacuum atmosphere.Contents of C,H,N were determined by a VarioELcube elemental analyzer.Particle size distribution was obtained by laser nanoparticle size analyzer NPA152.All luminescence images were taken under 365 nm UV lamp.All determination experiments were conducted at room temperature.

    1.2 Preparation of salicylate sodium

    MS and sodium hydroxide were dissolved in an appropriate amount of absolute ethanol with a molar ratio of 1∶1.After the dissolution was completed,the sodium hydroxide was slowly poured into MS while stirring.After 30 min,the mixture was filtrated,and the precipitate was finally placed in an oven at 60℃,taken out and allowed to cool naturally into a fluffy shape,placed in a desiccator containing silica gel for use.

    1.3 Preparation of nano-sized amorphous methyl salicylate terbium (A-MS-Tb)comp lex

    In general,2 mL Tb(NO3)3aqueous solution (10 mmol·L-1)and 2 mL MS-Na aqueous solution (10 mmol·L-1)were fully mixed for reacting.One hour later,the white precipitate was separated by centrifuging and washed several times[26].The obtained precipitate was dried in air and re-dispersed in 4 mL HEPES (pH=6.7,0.1 mmol·L-1)to prepare an A-MS-Tb suspension for further measurement and testing.

    1.4 Cr 3+sensing

    Cr3+detection was carried out under the following experimental conditions.10μL of different concentrations of Cr3+aqueous solution were added to the above prepared nano-sized A-MS-Tb suspension(1 mL,2.5 mg·mL-1,pH=6.7),then incubated for 3 minutes (time experiment excepted)at room temperature.Subsequently,the fluorescence spectrum was collected.

    9.3 后熟:早熟品種后熟期20~30天,中早熟品種后熟期30~40天。溫度控制在15~18℃,空氣相對(duì)濕度控制在40%~50%。

    2 Results and discussion

    2.1 Synthesis and characteristic of nano-sized A-MS-Tb

    The transmission electron microscope (TEM)image of A-MS-Tb is shown in Fig.1(a),indicating the morphology of A-MS-Tb is irregular with particle size ranging from 50 to 100 nm.The size distribution obtained by DLS measurement (Fig.1(b))showed that the diameter of A-MS-Tb was 171 nm,which is larger than that observed from TEM,indicating the existing of aggregation.The PXRD of the synthesized A-MSTb is shown in Fig.1(c),and the broad weak peak ranging from 10°to 35°indicates that the assynthesized A-MS-Tb is amorphous.Fig.1(d)is the TG curve of A-MS-Tb.The first weight loss occurred between 30 and 230℃with a weight loss of 9.36%,corresponding to the loss of the moisture or water.The next weight loss of 44.29% is the combustion decomposition of MS.According calculation,the total weight loss was around 53.65%,and the Tb content was about 39.39%.The results of elemental analysis were C 41.23%,H 3.31%,N 0.37%.Given the composition of the isolated A-MS-Tb is Tb9C128H128O48,and the theoretically calculated elemental contents are C 39.76%,H 3.34%,Tb 37.04%,indicating that the isolated solid A-MS-Tb had similar composition as that of the reported C-MS-Tb[30].

    Fig.1 Transmission electron microscope image (a),histograms of intensity contribution versus diameter (b),PXRD pattern (c)and TG curve (d)of A-MS-Tb

    The luminescence spectra of A-MS-Tb and CMS-Tb were comparatively measured.As shown in Fig.2(a),they exhibited considerable luminescence intensity with a little stronger for A-MS-Tb.The fluorescence spectra of C-MS-Tb and A-MS-Tb dispersed in water over time are shown in Fig.2 (b)with the photos of their suspension under radiation of 365 nm.It is clear that the fluorescence intensity of C-MS-Tb declines very fast in the first 30 minutes because the crystals are poorly dispersed in water,while that of A-MS-Tb remainssubstantially unchanged due to its well dispersion in water.Furthermore,as shown in Fig.2(c),no obvious difference was observed for the luminescence properties of A-MS-Tb in water or EtOH,indicating that the synthesized A-MS-Tb shows high stability towards water,which is different from most of the reported complexes of Tb because the water molecule is a strong quencher for the luminescence of Tb due to the strong vibration of O-H bonds. Therefore, A-MS-Tb can be used as luminescent materials in aqueous medium,which is very important to expand its application scope.

    The UV-Vis spectra of A-MS-Tb and MS-Na were measured and comparatively shown in Fig.3(a).It was noticed that the MS-Na aqueous solution had a characteristic absorption peak at 306 nm (ε=2.5×103L·mol-1·cm-1)in the UV region owing to the transition of n electrons in O atom of MS to theπ*orbit.After coordinated by Tb ion,a new absorption peak occurred at around 340 nm accompanied with the peak of 306 nm shifting to 312 nm with a little intensity decreasing.Among them,the 340 nm peak is related to the coordination of phenolic hydroxyl oxygen with terbium ion,and the shift and intensity decrease of the 306 nm peak indicate that the ester carbonyl oxygen is also involved in the coordination with Tb.

    Fig.2 (a)Luminescence spectra of C-MS-Tb and A-MS-Tb;(b)Luminescence intensity dispersed in water with time of C-MS-Tb and A-MS-Tb;(c)Luminescence spectra of A-MS-Tb in H2O or EtOH

    Fig.3 (a)UV-Vis absorption spectra of MS-Na,A-MS-Tb aqueous solution;(b)FTIR spectra of solid MS-Na,A-MS-Tb and C-MS-Tb

    Fig.3(b)shows the FT-IR spectra of MS-Na,AMS-Tb and C-MS-Tb.The broad strong band at approximately 3 574 cm-1corresponds to O-H stretching vibrations,whereas the band at 1 641 cm-1is assigned to the H-O-H bending mode.The bands observed in the low-frequency region of the spectrum are interpreted as lattice vibration modes and may be attributed to M-O (850~600 cm-1)[42-43].Compared with the 1 680 cm-1peak on the carboxyl group of MS-Na,the strong absorption peak around 1 666 cm-1for AMS-Tb is attributed to the symmetrical stretching vibration of C=O,and the obvious red shift is due to the coordination with Tb which weaken the C=O bond.The asymmetric stretching vibration of C-O-C on the ester group appearing at about 1 160 and 1 100 cm-1were alsoobserved for the complex,meaning that no direct coordination is found for ester oxygen.The absorption peak of phenolic hydroxyl C-O shifted from 1299 to 1 327 cm-1,which indicates that phenolic hydroxyl oxygen of MS has a strong coordination with Tb3+,accompanied with the ionization of hydrogen ion.It is noticed that the adsorption of the nitrate anions at around 1 380 cm-1was not observed,which allows us to conclude that no nitrate anion exists in A-MS-Tb complex.The other main IR absorption bands correspond to the stretching vibration of C-C and the C-H bending vibration of aromatic rings.

    2.2 Lum inescence properties of A-MS-Tb

    As shown in Fig.4(a),MS-Na emits blue light(wide band from 400 to 500 nm)under excitation of 380 nm.However,the emission spectrum of A-MS-Tb were centered at 494,549,591,625 nm,which are attributed to the characteristic luminescence of Tb3+,belonging to the energy level transition of5D4→7FJ(J=6,5,4,3)[44].The varnish of blue phosphorescence attributing to MS-Na demonstrates the occurrence of energy transformation from MS to Tb3+.Therefore,AMS-Tb exhibited strong green luminescence.

    As showed in Fig.4(b),the decay profiles of the excited states5D4(Tb3+)in A-MS-Tb was determined.The corresponding luminescence lifetimes were obtained by fitting the decay profiles with a oneexponential form.The results show that the lifetime of A-MS-Tb is approximately 0.579 ms,reaching millisecond level,indicating that Tb3+is effectively sensitized by MS and the energy transfer process from MS to Tb3+occurs.

    It was reported that the difference between the excited triplet-state energy level (ETSEL)of ligand and the excited state energy level (ESEL)of lanthanide ions is the key factor on the transformation efficiency.According to Latva′s rules,an optimal ligand-to-metal energy transfer process for a lanthanide ion needs ΔE=(E3ππ*-E5D)of 2 500~4 500

    Fig.4 Emission spectra of MS-Na,A-MS-Tb aqueous solution (10 mmol·L-1)under excitation of 380 nm (a)and the decay curves of A-MS-Tb and it in the presence of Cr3+ (b)

    2.3 Lum inescence quench by Cr 3+

    The characteristic green luminescence of A-MSTb gives us the possibility to construct a luminescent probe or sensor.As shown in Fig.5(a),A-MS-Tb had superior response to Cr3+,the luminescence spectra showed obviously change before and after Cr3+was added.

    Fig.5 (a)Emission spectra of A-MS-Tb in the absence and presence of 3 μmol·L-1 Cr3+;(b)Absorbance spectra of A-MS-Tb responding to Cr3+with different concentrations

    To explain the luminescence change of A-MS-Tb caused by Cr3+,UV-Vis spectra of A-MS-Tb in the presenceof different Cr3+concentrationsweremeasured.As shown in Fig.5(b),the absorbance at 340 nm greatly decreased,while a weak increase was observed at 306 nm.We infer that this absorbance change is caused by the competitive coordination of Cr3+,which weaken the coordination of MSwith Tb3+and perturb the energy transfer process from Tb3+.Besides,the absorbance showed a regular change with the concentration of Cr3+increasing.

    The formation of the ground state complex in static quenching tends to cause a change in the absorption spectrum of the fluorescent substance.From Fig.5(b),we find that the absorption spectrum changed significantly after the addition of Cr3+,which imply that the quenching type is of static quenching.Besides,the presence of quenching agent during static quenching does not change the excited state lifetime of the fluorescent molecule.We determined the5D4excited state lifetime of Tb3+before and after the addition of Cr3+by A-MS-Tb (Fig.4 (b)).The5D4excited state lifetime of Tb3+was 0.579 ms.When Cr3+was added,the lifetime was 0.578 ms.The lifetime has not changed significantly.Based on the above two points,we judge that the quenching of A-MS-Tb caused by Cr3+is static quenching type.

    2.4 Optim ization of sensor condition

    In order to obtain the best sensitivity,the solution pH value and the response time for determination were optimized.As shown in Fig.6(a),with the pH value decreasing from 8.5 to 5.0,especially from 7.5 to 6.5,the luminescent intensity of A-MS-Tb decreased because of the weak acidity of MS which results in the dissociation of A-MS-Tb in acidic condition.Meanwhile,the addition of Cr3+resulted in an evident decrease of luminescence intensity.However,the quench degree of green luminescence by the addition of Cr3+showed an optimum value at pH 6.7(Fig.6(b)),indicating that the largest quenching does not appear at the conditions when the A-MS-Tb in its best stability or instability states,but at the transition state from stable to unstable.Therefore,the optimal pH value is selected at 6.7.

    Fig.6 Effect of pH value on PL intensity (a)and intensity variation with and without Cr3+addition (b);Dependence of intensity with the time after adding different amounts of Cr3+ (c)

    The results in Fig.6 (c)indicated that the response of A-MS-Tb to Cr3+is also affected by the reaction time.It is clear that after the addition of Cr3+,the luminescent intensity of A-MS-Tb in aqueous suspension solution rapidly decreased at first 2 minutes and reached a platform after 3 minutes.So,the optimal response time was set as over 3 minutes.

    2.5 Effect of potentially interfering ions

    Good selectivity and anti-interference ability are very important parameter for evaluating a detecting method.To evaluate the selectivity of this detection system,some metal ions (Cr3+,K+,Na+,Ca2+,Mn2+,Cd2+,Cu2+,Hg2+,Al3+,Fe3+,Zn2+,Mg2+,Co3+,Ni2+,Fe2+)and anions (Cl-,Br-,SO42-,CO32-,Cr2O72-)were selected to test their effect on the luminescence of A-MS-Tb and evaluate their interfering for the detection of Cr3+.As shown in Fig.7(a),we found that the relative emission intensity showed obviously decrease after Cr3+was added,while most of other metal ions and anions showed no significant changes,and only Cu2+,Mn2+,Al3+,Fe3+,SO42-had little influence.When Cr3+and potentially interfering ions coexist,A-MS-Tb still maintains a good response to Cr3+.The presence of following amounts of different substances compared with the concentration of Cr3+resulted in less than±5%error:10-folds Cu2+,Fe3+,Hg2+;50-folds Fe2+,Cr2O76-,100-folds Al3+,Ca2+,Cd2+,Ni2+,Co3+,Mn2+,SO42-,CO32-,500-folds Na+,K+,Zn2+,Mg2+,Cl-,Br-.The above results indicated that the proposed luminescence assay possessed excellent selectivity for the detection of Cr3+.We determined the UV absorption spectrum of A-MS-Tb after adding other metal ions,and found that the addition of other ions did not cause a significant change in the absorption spectrum.Only the addition of Cr3+weakened the absorption at 340 nm,which probably because chromium ions weaken the coordination between MS and Tb3+.This also explains why the luminescence of Tb3+was quenched.

    Fig.7 (a)Emission intensity of A-MS-Tb in the presence of different potentially interfering substances (3 μmol·L-1,orange column)and the mixture of Cr3+and potentially interfering substances (pink column);(b)Absorption spectra of various substances(Cr3+,K+,Na+,Ca2+,Mn2+,Cd2+,Cu2+,Hg2+,Al3+,Fe3+,Zn2+,Mg2+,Co3+,Ni2+,Fe2+,Cl-,Br-,SO42-,CO32-,Cr2O72-)mixed with A-MS-Tb

    2.6 Quantitative analysis of Cr 3+

    Under optimized assay conditions at room temperature,quantitatively analysis based on the emission intensity at 549 nm was carried out.As shown in Fig.8,the fluorescence intensity of A-MS-Tb decreased gradually with the increase of Cr3+concentration,and shows a good linear relationship in a range of 0.4~2.8 μmol·L-1.The correlation equation is y=-881.9lg x+489.6 (R2=0.998),where y is the value of intensity and x is the concentration of Cr3+.The detection limit (LOD)calculated by 3S0/K is 35 nmol·L-1,where S0is the standard deviation of blank measurements (n=10)and K is the slope of calibration line.

    Fig.8 (a)Emission spectra of A-MS-Tb in the presence of varying concentrations of Cr3+from 0 to 3.2 μmol·L-1;(b)Linear relationship between luminescence intensity and the logarithm values of Cr3+concentration

    3 Conclusions

    In summary,we have developed a new sensing platform for Cr3+by its quenching property for the luminescence of A-MS-Tb,which exhibited good luminescence performance in water and high sensitivity and selectivity towards Cr3+.When Cr3+was added to the water suspension solution of A-MS-Tb,the coordination between MS and Tb3+was weakened.And the luminescence of Tb3+was quenched and exhibited a good linear relationship between the fluorescence intensity and the logarithm value of Cr3+concentration.The quenching mechanism is owing to the complex dissociation promoted by Cr3+,which blocks the energy transformation from MS to Tb3+.In all,simple fabrication and good analytical performance make the probe promising for the detection of complex samples.

    Conflict of interest:There are no conflicts of interest to declare.

    Acknow ledgments:This work is financially supported by the National Natural Science Foundation of China (Grants No.21161014,51864033).

    一级黄片播放器| 高清视频免费观看一区二区| 秋霞在线观看毛片| 一区二区三区乱码不卡18| 欧美性感艳星| 午夜激情久久久久久久| 少妇被粗大猛烈的视频| 插逼视频在线观看| 特大巨黑吊av在线直播| 另类亚洲欧美激情| 久久久久久人妻| 黄色配什么色好看| 亚洲成人手机| 亚洲欧美日韩无卡精品| 春色校园在线视频观看| 久久久精品94久久精品| xxx大片免费视频| 少妇丰满av| 汤姆久久久久久久影院中文字幕| 婷婷色综合大香蕉| 中文天堂在线官网| 久久久午夜欧美精品| 国产真实伦视频高清在线观看| 亚洲成色77777| 99国产精品免费福利视频| 国产精品一区二区三区四区免费观看| 男人添女人高潮全过程视频| 成人二区视频| 亚洲精品中文字幕在线视频 | 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 亚洲精品一二三| 观看免费一级毛片| 亚洲精品乱码久久久v下载方式| 午夜激情福利司机影院| 男男h啪啪无遮挡| 欧美日韩视频高清一区二区三区二| 啦啦啦在线观看免费高清www| 亚洲精品久久久久久婷婷小说| 日韩欧美 国产精品| 欧美激情极品国产一区二区三区 | 免费黄网站久久成人精品| 男人和女人高潮做爰伦理| 久久久久人妻精品一区果冻| 久久人人爽人人爽人人片va| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲成人一二三区av| 妹子高潮喷水视频| a 毛片基地| 亚洲aⅴ乱码一区二区在线播放| av在线播放精品| 麻豆国产97在线/欧美| 久久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 国产伦在线观看视频一区| 亚洲丝袜综合中文字幕| 国产日韩欧美在线精品| 久久这里有精品视频免费| 国产黄色视频一区二区在线观看| 日本av手机在线免费观看| 爱豆传媒免费全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片黄色毛片免费观看视频| 色网站视频免费| 国产在线一区二区三区精| 尤物成人国产欧美一区二区三区| 中文在线观看免费www的网站| 乱码一卡2卡4卡精品| 国产精品麻豆人妻色哟哟久久| 免费人成在线观看视频色| av专区在线播放| 国产伦在线观看视频一区| 国产欧美日韩精品一区二区| 人妻 亚洲 视频| 蜜桃在线观看..| 久久鲁丝午夜福利片| 亚洲国产精品999| 亚洲中文av在线| 欧美日本视频| .国产精品久久| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区黑人 | 亚洲精品乱码久久久v下载方式| 九九爱精品视频在线观看| 久久人人爽人人片av| 18禁动态无遮挡网站| 极品教师在线视频| 亚洲美女搞黄在线观看| 精品亚洲乱码少妇综合久久| 久久久久久久亚洲中文字幕| 日韩成人伦理影院| 美女中出高潮动态图| 亚洲,欧美,日韩| 最近中文字幕2019免费版| 欧美xxⅹ黑人| 婷婷色麻豆天堂久久| 精华霜和精华液先用哪个| 少妇人妻 视频| 欧美精品国产亚洲| 久久久久久伊人网av| 日日摸夜夜添夜夜爱| 久久久色成人| 99久国产av精品国产电影| 久久久久性生活片| av在线老鸭窝| 91精品一卡2卡3卡4卡| 精品酒店卫生间| 国产免费一级a男人的天堂| 交换朋友夫妻互换小说| 午夜福利在线在线| 亚洲综合色惰| 日本猛色少妇xxxxx猛交久久| 日韩强制内射视频| 亚洲高清免费不卡视频| 国产淫片久久久久久久久| 国产91av在线免费观看| 国产av一区二区精品久久 | 国内揄拍国产精品人妻在线| 亚洲美女视频黄频| 午夜激情久久久久久久| 日本av手机在线免费观看| 毛片女人毛片| 欧美3d第一页| 黄色欧美视频在线观看| 国产伦在线观看视频一区| 国产精品一区二区性色av| 草草在线视频免费看| 亚洲av福利一区| 久久精品久久精品一区二区三区| 毛片女人毛片| 免费看av在线观看网站| 精品99又大又爽又粗少妇毛片| 国产色婷婷99| 网址你懂的国产日韩在线| 纵有疾风起免费观看全集完整版| av国产免费在线观看| 一级a做视频免费观看| 日日摸夜夜添夜夜爱| 亚洲精品成人av观看孕妇| 免费黄网站久久成人精品| 国产精品国产av在线观看| 亚洲性久久影院| 免费av不卡在线播放| 国产一区二区三区av在线| 97超视频在线观看视频| 免费观看性生交大片5| 一级毛片我不卡| 狂野欧美激情性bbbbbb| 国产久久久一区二区三区| 欧美人与善性xxx| 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| 大香蕉97超碰在线| 国产精品熟女久久久久浪| 国产欧美日韩一区二区三区在线 | 色婷婷久久久亚洲欧美| 最近的中文字幕免费完整| 乱码一卡2卡4卡精品| 国产精品.久久久| 亚洲欧美精品自产自拍| 婷婷色综合大香蕉| 有码 亚洲区| 一本久久精品| 欧美丝袜亚洲另类| a级毛色黄片| 免费人成在线观看视频色| 久久女婷五月综合色啪小说| 免费人妻精品一区二区三区视频| 美女主播在线视频| 丰满乱子伦码专区| 插阴视频在线观看视频| 久久99热6这里只有精品| 久久精品国产a三级三级三级| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 亚洲精品日韩av片在线观看| 国产精品一区二区在线不卡| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 国产伦精品一区二区三区四那| 国产男女超爽视频在线观看| 午夜福利在线在线| 亚洲一级一片aⅴ在线观看| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 乱系列少妇在线播放| 国产色爽女视频免费观看| 99re6热这里在线精品视频| av在线蜜桃| 日韩精品有码人妻一区| 国产男女内射视频| 美女内射精品一级片tv| a级毛色黄片| 国产av一区二区精品久久 | 精品一区二区免费观看| 日韩强制内射视频| 色婷婷久久久亚洲欧美| 亚洲国产精品国产精品| 久久精品国产亚洲av涩爱| 在线看a的网站| 日韩av不卡免费在线播放| 九九久久精品国产亚洲av麻豆| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 国产91av在线免费观看| 精品少妇黑人巨大在线播放| 午夜日本视频在线| 午夜激情久久久久久久| 国产精品熟女久久久久浪| av黄色大香蕉| 伦精品一区二区三区| 22中文网久久字幕| 成人国产麻豆网| 国精品久久久久久国模美| 狂野欧美白嫩少妇大欣赏| 亚洲第一av免费看| 欧美xxⅹ黑人| 亚洲综合色惰| 午夜福利视频精品| 男人狂女人下面高潮的视频| 国产精品麻豆人妻色哟哟久久| 色综合色国产| 欧美日韩视频精品一区| 欧美另类一区| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o| 一级爰片在线观看| 岛国毛片在线播放| 亚洲欧美精品专区久久| 2018国产大陆天天弄谢| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 亚洲成色77777| 3wmmmm亚洲av在线观看| 国产精品一区二区在线不卡| 黄色视频在线播放观看不卡| 少妇精品久久久久久久| 女性生殖器流出的白浆| 午夜日本视频在线| 舔av片在线| 国产中年淑女户外野战色| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 色吧在线观看| 欧美日韩国产mv在线观看视频 | 自拍偷自拍亚洲精品老妇| 五月玫瑰六月丁香| 在线观看免费高清a一片| 99热这里只有是精品在线观看| av视频免费观看在线观看| 天天躁夜夜躁狠狠久久av| 亚洲自偷自拍三级| 亚洲四区av| 国产亚洲av片在线观看秒播厂| 国产白丝娇喘喷水9色精品| 观看av在线不卡| 激情 狠狠 欧美| 国产精品99久久99久久久不卡 | 91狼人影院| 亚洲欧美精品自产自拍| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜 | 国产大屁股一区二区在线视频| 国产av一区二区精品久久 | 麻豆国产97在线/欧美| 男人爽女人下面视频在线观看| 国产色婷婷99| 久久人妻熟女aⅴ| av女优亚洲男人天堂| 中文在线观看免费www的网站| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 国产亚洲精品久久久com| 国产免费又黄又爽又色| 一级毛片黄色毛片免费观看视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av成人精品| av线在线观看网站| 女人久久www免费人成看片| 亚洲精品亚洲一区二区| 一边亲一边摸免费视频| 简卡轻食公司| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 三级国产精品欧美在线观看| 日韩中文字幕视频在线看片 | .国产精品久久| 美女国产视频在线观看| 国产精品久久久久成人av| 最近最新中文字幕大全电影3| 精品一区二区三卡| 亚洲欧美一区二区三区黑人 | 久久国产精品大桥未久av | 高清日韩中文字幕在线| 美女内射精品一级片tv| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 国产亚洲91精品色在线| 男人爽女人下面视频在线观看| 欧美变态另类bdsm刘玥| 精华霜和精华液先用哪个| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| 欧美日韩综合久久久久久| 久久久久久久久大av| 国产亚洲精品久久久com| 国产在线男女| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 直男gayav资源| 国产有黄有色有爽视频| 日韩三级伦理在线观看| 我要看黄色一级片免费的| 日本欧美视频一区| 这个男人来自地球电影免费观看 | 51国产日韩欧美| 国产午夜精品一二区理论片| 亚洲欧美日韩无卡精品| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 欧美三级亚洲精品| 舔av片在线| 国产精品麻豆人妻色哟哟久久| 永久免费av网站大全| 深爱激情五月婷婷| 99热这里只有精品一区| 亚洲成人av在线免费| 3wmmmm亚洲av在线观看| 高清欧美精品videossex| 亚洲av中文字字幕乱码综合| 街头女战士在线观看网站| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| 久久精品夜色国产| 国产伦理片在线播放av一区| 日本wwww免费看| 欧美成人一区二区免费高清观看| 日韩视频在线欧美| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 中文字幕免费在线视频6| 最近中文字幕2019免费版| 色哟哟·www| 久热久热在线精品观看| 亚洲成人av在线免费| 97在线视频观看| 亚洲精品国产av蜜桃| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| a级毛色黄片| 99精国产麻豆久久婷婷| 日本猛色少妇xxxxx猛交久久| 欧美成人精品欧美一级黄| 欧美区成人在线视频| 黑人猛操日本美女一级片| 亚洲精品国产av蜜桃| 成年美女黄网站色视频大全免费 | 99re6热这里在线精品视频| 99久久精品热视频| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| 熟女av电影| 亚洲欧美精品专区久久| 午夜福利影视在线免费观看| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 亚洲,一卡二卡三卡| 老师上课跳d突然被开到最大视频| 国产精品国产三级专区第一集| 亚洲色图综合在线观看| 中文在线观看免费www的网站| 男人舔奶头视频| 大香蕉97超碰在线| 国产在线视频一区二区| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 亚洲av中文av极速乱| 天堂8中文在线网| 成年av动漫网址| 国产精品国产三级专区第一集| 99久久精品国产国产毛片| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 晚上一个人看的免费电影| 日日啪夜夜撸| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 老司机影院毛片| 亚洲精品色激情综合| 免费在线观看成人毛片| 国产精品.久久久| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 国产一区二区三区av在线| 五月天丁香电影| 岛国毛片在线播放| 亚洲国产欧美人成| 久久久久久久国产电影| 22中文网久久字幕| 91精品国产国语对白视频| 亚洲无线观看免费| 免费久久久久久久精品成人欧美视频 | 97超碰精品成人国产| 日韩大片免费观看网站| 18禁动态无遮挡网站| 欧美精品人与动牲交sv欧美| 国产综合精华液| 中文字幕久久专区| 少妇人妻 视频| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 岛国毛片在线播放| 成人特级av手机在线观看| 久久久a久久爽久久v久久| 日本午夜av视频| av卡一久久| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 国产爱豆传媒在线观看| 一区二区三区免费毛片| 色5月婷婷丁香| 黑人猛操日本美女一级片| 日本欧美视频一区| 亚洲伊人久久精品综合| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 午夜免费男女啪啪视频观看| 亚洲怡红院男人天堂| 成人二区视频| 亚洲精品自拍成人| 大香蕉97超碰在线| 免费大片黄手机在线观看| 青春草亚洲视频在线观看| 中文字幕久久专区| 亚洲欧洲国产日韩| 美女高潮的动态| av网站免费在线观看视频| 国内精品宾馆在线| 美女国产视频在线观看| 久久久久国产精品人妻一区二区| 韩国av在线不卡| 两个人的视频大全免费| 大片免费播放器 马上看| 久久久久久久久久成人| 多毛熟女@视频| 老师上课跳d突然被开到最大视频| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 亚洲欧美精品自产自拍| 亚洲成人手机| 91狼人影院| 一级毛片电影观看| 欧美一级a爱片免费观看看| 久久久成人免费电影| 99热这里只有精品一区| 一区在线观看完整版| 久久人人爽人人片av| 制服丝袜香蕉在线| 欧美成人a在线观看| 黄色配什么色好看| 99九九线精品视频在线观看视频| 日韩一区二区视频免费看| 十分钟在线观看高清视频www | 中文字幕精品免费在线观看视频 | 一区在线观看完整版| 欧美3d第一页| 国产有黄有色有爽视频| 午夜福利视频精品| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 日韩欧美一区视频在线观看 | 九色成人免费人妻av| 联通29元200g的流量卡| 自拍欧美九色日韩亚洲蝌蚪91 | 日本欧美国产在线视频| 国产精品一二三区在线看| 观看免费一级毛片| h视频一区二区三区| 搡老乐熟女国产| 国产女主播在线喷水免费视频网站| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 久久久久国产网址| 欧美国产精品一级二级三级 | av在线老鸭窝| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 欧美日韩国产mv在线观看视频 | 大片电影免费在线观看免费| 亚洲国产精品国产精品| 久久99热这里只有精品18| 免费看av在线观看网站| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| freevideosex欧美| 国产美女午夜福利| 中文天堂在线官网| 亚洲欧美中文字幕日韩二区| 成年美女黄网站色视频大全免费 | 亚洲精品aⅴ在线观看| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 天堂中文最新版在线下载| 99久久综合免费| 伊人久久精品亚洲午夜| 丰满迷人的少妇在线观看| 黄色欧美视频在线观看| 久久久精品94久久精品| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 成人高潮视频无遮挡免费网站| 六月丁香七月| 国产av码专区亚洲av| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 成人漫画全彩无遮挡| 欧美+日韩+精品| 国产精品欧美亚洲77777| 联通29元200g的流量卡| 免费av中文字幕在线| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 久久久久性生活片| 中文欧美无线码| 建设人人有责人人尽责人人享有的 | 国产精品一区二区在线观看99| av一本久久久久| 国产伦理片在线播放av一区| 麻豆国产97在线/欧美| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 99久久精品一区二区三区| 一级a做视频免费观看| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 91狼人影院| av国产精品久久久久影院| 99国产精品免费福利视频| 综合色丁香网| 成人高潮视频无遮挡免费网站| 午夜福利视频精品| 亚洲成人av在线免费| 大香蕉97超碰在线| 成年美女黄网站色视频大全免费 | 一个人看的www免费观看视频| 欧美zozozo另类| 女性生殖器流出的白浆| videossex国产| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 日韩欧美 国产精品| 免费黄色在线免费观看| 日日啪夜夜撸| 免费看av在线观看网站| 精品久久久久久久久亚洲| 内地一区二区视频在线| 精品一区二区免费观看| 伊人久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| 97在线视频观看| 熟女av电影| 色视频在线一区二区三区| 色综合色国产| 插阴视频在线观看视频| 成人毛片60女人毛片免费| 狂野欧美白嫩少妇大欣赏| 在线观看免费日韩欧美大片 | 亚洲综合色惰| 夜夜爽夜夜爽视频| 欧美国产精品一级二级三级 | 亚洲无线观看免费| 亚洲色图综合在线观看| 久久久久久久久久人人人人人人| 一本一本综合久久| 91久久精品电影网| 久久精品久久久久久久性| 国产一区二区在线观看日韩| av在线app专区| 欧美精品国产亚洲| 国产精品人妻久久久久久| 观看美女的网站| 免费av不卡在线播放| 国产精品熟女久久久久浪|