• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      非線性系統(tǒng)的多擴展目標跟蹤算法

      2019-08-01 01:48:57韓玉蘭韓崇昭
      計算機應(yīng)用 2019年5期
      關(guān)鍵詞:粒子濾波

      韓玉蘭 韓崇昭

      摘 要:目前擴展目標跟蹤算法大都假設(shè)其系統(tǒng)為線性高斯系統(tǒng),針對非線性系統(tǒng)的多擴展目標跟蹤問題,提出了采用粒子濾波技術(shù)對目標狀態(tài)和關(guān)聯(lián)假設(shè)進行聯(lián)合估計的多擴展目標跟蹤算法。首先,提出了將多擴展目標狀態(tài)和關(guān)聯(lián)假設(shè)進行聯(lián)合估計的思想,解決了在估計目標狀態(tài)和數(shù)據(jù)關(guān)聯(lián)時相互牽制的問題;其次,根據(jù)擴展目標演化模型、量測模型建立多擴展目標狀態(tài)和關(guān)聯(lián)假設(shè)的聯(lián)合建議分布函數(shù),并利用粒子濾波技術(shù)實現(xiàn)聯(lián)合估計的Bayes框架;最后,為解決直接采用粒子濾波實現(xiàn)時存在的維數(shù)災(zāi)難問題,將目標聯(lián)合狀態(tài)粒子的產(chǎn)生和演化分解為各個目標狀態(tài)粒子的產(chǎn)生和演化,對每個目標的粒子集根據(jù)與其相關(guān)的權(quán)重單獨進行重抽樣,這樣在抑制目標狀態(tài)估計較差部分的同時使每個目標都保留了對其狀態(tài)估計較好的粒子。仿真實驗結(jié)果表明,與擴展目標概率假設(shè)密度濾波器的高斯混合實現(xiàn)方式和序貫蒙特卡洛實現(xiàn)方式相比,所提算法的狀態(tài)估計精度較高,形狀估計的Jaccard距離分別降低了30%、20%左右,更適合于非線性系統(tǒng)的多擴展目標跟蹤。

      關(guān)鍵詞:擴展目標跟蹤;非線性系統(tǒng);Bayes框架;聯(lián)合估計;粒子濾波;建議分布函數(shù)

      中圖分類號:TN273

      文獻標志碼:A

      Abstract: Most of current extended target tracking algorithms assume that its system is linear Gaussian system. To track multiple extended targets for nonlinear Gaussian system, an multiple extended target tracking algorithm using particle filter to jointly estimate target state and association hypothesis was proposed. Firstly, the idea of joint estimation of the multiple extended target state and association hypothesis was proposed, which avoided mutual constraints in estimating target state and data association. Then, based on extended target state evolution model and measurement model, a joint proposal distribution function for multiple extended target and association hypothesis was established, and the Bayesian framework for the joint estimation was implemented by particle filtering. Finally, to avoid the dimension disaster problem in the implementation of the particle filter, the generation and evolution of the multiple extended target combined state particles were decomposed into that of the individual target state particles, and the particle set of each target was resampled according to the weight association with it, so that each target retained the particles with better state estimation while suppressing the poor part of target state estimation. Simulation results show that, in comparison with the Gaussianmixture implementation of extended target probability hypothesis density filter and the sequential Monte Carlo implementation of that, the estimation accuracy of the target state is improved, and the Jaccard distance of shape estimation is reduced by approximately 30% and 20% respectively. The proposed algorithm is more suitable for multiple extended target tracking of the nonlinear system.

      英文關(guān)鍵詞Key words: extended target tracking; nonlinear system; Bayesian framework; joint estimation; particle filter; proposal distribution function

      0 引言

      擴展目標在每個時刻可產(chǎn)生多個量測,因此傳統(tǒng)多點目標跟蹤算法無法應(yīng)用于多擴展目標跟蹤。目前多擴展目標跟蹤算法大致有兩類: 一類是通過修改假設(shè)條件將點目標跟蹤算法的數(shù)據(jù)關(guān)聯(lián)方法如聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)(Joint Probabilistic Data Association, JPDA)、概率多假設(shè)方法(Probabilistic MultiHypothesis, PMHT)等,推廣到多擴展目標跟蹤[1-3];另一類是基于隨機有限集,將概率假設(shè)密度(Probability Hypothesis Density, PHD)濾波器、勢概率假設(shè)密度(Cardinalized PHD, CPHD)濾波器、高斯混合概率假設(shè)密度(Gaussian Mixture PHD, GMPHD)濾波器、序貫蒙特卡洛概率假設(shè)密度(Sequential Monte Carlo PHD, SMCPHD)濾波器等應(yīng)用到多擴展目標跟蹤算法[4-7],但這類算法理論上需要考慮每一時刻量測集的所有可能劃分,因此計算量較大,計算量會隨著擴展目標個數(shù)或量測個數(shù)急劇增加。文獻[6-8]為減少計算量只考慮了一部分劃分算法,但擴展目標跟蹤性能嚴重依賴于劃分算法,在目標相距較近時難以獲得理想的效果。

      目前已存在非線性系統(tǒng)的單擴展目標跟蹤算法,如文獻[9]中將RaoBlackwellised粒子濾波器應(yīng)用到擴展目標跟蹤,線性狀態(tài)部分采用卡爾曼濾波器,非線性部分采用粒子濾波器進行估計;文獻[10]中將非線性量測函數(shù)線性化,利用基于隨機矩陣的擴展目標跟蹤算法擴展到非線性系統(tǒng)?,F(xiàn)有的多擴展目標跟蹤算法一般是針對線性高斯系統(tǒng),為解決非線性問題通常將處理非線性系統(tǒng)的方法如無跡卡爾曼濾波器(Unscented Kalman Filter, UKF)、粒子濾波器(Particle Filter, PF)與線性系統(tǒng)的多擴展目標濾波器相結(jié)合,如文獻[11]中將UKF應(yīng)用于擴展目標GMPHD(Extended Target GMPHD, ETGMPHD)濾波器,采用非線性量測模型實現(xiàn)狀態(tài)估計的更新,但是這種處理非線性的方式的濾波性能會隨著非線性程度的增加急速下降。

      本文針對多擴展目標跟蹤的數(shù)據(jù)關(guān)聯(lián)和非線性問題,由擴展目標狀態(tài)演化模型、量測模型建立目標狀態(tài)和數(shù)據(jù)關(guān)聯(lián)的聯(lián)合建議分布函數(shù),采用粒子濾波對多個擴展目標狀態(tài)和數(shù)據(jù)關(guān)聯(lián)進行聯(lián)合估計,提出了非線性系統(tǒng)的多擴展目標跟蹤算法。在此基礎(chǔ)上,提出了順序采樣粒子濾波器來解決維數(shù)災(zāi)難的問題。

      5 結(jié)語

      針對非線性多擴展目標跟蹤,本文采用粒子濾波對多擴展目標狀態(tài)和數(shù)據(jù)關(guān)聯(lián)進行聯(lián)合跟蹤,提出了多擴展目標粒子濾波器, 解決了目標狀態(tài)估計和數(shù)據(jù)關(guān)聯(lián)相互牽制的問題,減小了非線性和關(guān)聯(lián)假設(shè)的不確定性帶來的估計誤差。仿真結(jié)果表明,在初始時刻、目標出現(xiàn)時刻以及目標相距較近時對位置跟蹤效果較好,目標狀態(tài)演化模型與目標實際狀態(tài)演化相差較大時位置估計精度明顯較高,而形狀估計的性能明顯優(yōu)越。本文并未對形狀的表示方式進行研究,下一步的研究方向是在建立復雜形狀的表示和量測源模型建立的基礎(chǔ)上,研究本文算法的適用性。

      參考文獻 (References)

      [1] ??? BAUM M, HANEBECK U D. Shape tracking of extended objects and group targets with starconvex RHMs [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 338-345.

      [2] ??? DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3):197-208.

      [3] ??? 韓玉蘭, 朱洪艷, 韓崇昭. 采用隨機矩陣的多擴展目標濾波器[J]. 西安交通大學學報, 2015, 49(7): 98-104. (HAN Y L, ZHU H Y, HAN C Z. A multitarget filter based on random matrix[J]. Journal of Xian Jiaotong University, 2015, 49(7): 98-104.)

      [4] ??? MAHLER R. PHD filters for nonstandard targets,I: extended targets[C]// Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2009: 915-921.

      [5] ??? ORGUNER U, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probability hypothesis density filter [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 1-8.

      [6] ??? GRANSTROM K,LUNDQUIST C,ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286.

      [7] ??? GRANSTROM K, ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671.

      [8] ??? HIRSCHER T, SCHEEL A, REUTER S, et al. Multiple extended object tracking using Gaussian processes [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 868-875.

      [9] ??? OZKAN E, WAHLSTROM N, GODSILL S J. RaoBlackwellised particle filter for starconvex extended target tracking models [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 1193-1199.

      [10] ?? LAN J, LI X R. Extended object or group target tracking using random matrix with nonlinear measurements [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 901-908.

      [11] ?? 韓玉蘭, 朱洪艷, 韓崇昭. 多擴展目標的高斯混合概率假設(shè)密度濾波器[J].西安交通大學學報, 2014, 48(4): 95-101. (HAN Y L, ZHU H Y, HAN C Z. Gaussianmixture probability hypothesis density filter for multiple extended target[J]. Journal of Xian Jiaotong University, 2014, 48(4): 95-101.)

      [12] ?? 王雪, 李鴻艷, 孔云波,等. 基于星凸RHM的擴展目標SMCPHD濾波[J]. 計算機應(yīng)用研究, 2017, 34(7):2144-2147.(WANG X, LI H Y, KONG Y B, et al. SMCPHD filter for extended target tracking based on starconvex random hypersurface models[J]. Application Research of Computers, 2017, 34(7):2144-2147.)

      [13] ?? VERMAAK J, GODSILL S J, PEREZ P. Monte Carlo filtering for multitarget tracking and data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-332.

      [14] LIU J S. Metropolized independent sampling with comparisons to rejection sampling and importance sampling[J]. Statistics and Computing, 1996, 6(2):113-119.

      [15] DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.

      [16] ?? GRANSTROM K, LUNDQUIST C, ORGUNER U. Tracking rectangular and elliptical extended targets using laser measurements [C]// Proceedings of the International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 592-599.

      猜你喜歡
      粒子濾波
      基于粒子濾波算法的視頻目標跟蹤研究
      數(shù)字濾波技術(shù)的現(xiàn)狀與發(fā)展
      可見光與紅外CPCT彩色圖像融合研究與實現(xiàn)
      OCV處于平臺期的汽車鋰電池SOC估算的研究
      粒子濾波法在移動物體定位中的應(yīng)用
      基于智能粒子濾波的多傳感器信息融合算法
      基于重采樣粒子濾波的目標跟蹤算法研究
      航空兵器(2016年5期)2016-12-10 17:12:24
      復雜場景中的視覺跟蹤研究
      一種針對海面弱小目標的檢測方案
      交互多模型的Rao—Blackwellized粒子濾波算法在多目標跟蹤中的應(yīng)用
      航空兵器(2014年4期)2015-01-15 02:31:43
      边坝县| 大姚县| 永德县| 永昌县| 清新县| 北流市| 华安县| 尼玛县| 华宁县| 缙云县| 卫辉市| 曲麻莱县| 慈溪市| 邛崃市| 姚安县| 曲周县| 安吉县| 巩留县| 克东县| 通海县| 灯塔市| 洪江市| 宝丰县| 龙游县| 汝城县| 集安市| 诸城市| 林甸县| 榆树市| 南澳县| 汶川县| 乐至县| 石泉县| 万盛区| 山东省| 富裕县| 乐都县| 亚东县| 钟祥市| 尚义县| 方城县|