李琦 顏斌 陳娜 楊紅梅
摘 要:對于可逆水印技術(shù)在三維醫(yī)學(xué)圖像中的應(yīng)用問題,提出一種基于單向預(yù)測誤差擴展的三維醫(yī)學(xué)圖像可逆水印算法。首先根據(jù)像素間的三維梯度變化預(yù)測像素從而得到預(yù)測誤差;然后結(jié)合磁共振成像生成的三維醫(yī)學(xué)圖像的特征,采用單向直方圖位移與預(yù)測誤差擴展相結(jié)合的方法將外部信息嵌入至三維醫(yī)學(xué)圖像;最后,重新預(yù)測像素,提取外部信息,恢復(fù)原始三維圖像。實驗結(jié)果表明,在MR-head和MR-chest測試數(shù)據(jù)體上,與二維梯度預(yù)測相比,所提算法預(yù)測誤差的平均絕對偏差分別降低1.09和1.40,每個像素的最大嵌入容量分別增加0.0456比特和0.1291比特,從而能夠更準確地預(yù)測像素值,嵌入更多的外部信息。該算法可應(yīng)用于對三維醫(yī)學(xué)圖像的篡改檢測以及患者隱私保護。
關(guān)鍵詞:可逆水印;三維醫(yī)學(xué)圖像;梯度;預(yù)測誤差擴展;直方圖位移
中圖分類號: TP309.2; TP301.6
文獻標志碼:A
Abstract: For the application of reversible watermarking technology in three-Dimensional (3D) medical images, a 3D medical image reversible watermarking algorithm based on unidirectional prediction error expansion was proposed. Firstly, the intermediate pixels were predicted according to the 3D gradient changes between them and their neighborhood pixels to obtain the prediction errors. Then, considering the features of the 3D medical image generated by magnetic resonance imaging, the external information was embedded into the 3D medical image by combining unidirectional histogram shifting with prediction error expansion. Finally, the pixels were re-predicted to extract the external information and restore the original 3D image. Experimental results on MR-head and MR-chest data show that compared with two-dimensional (2D) gradient-based prediction, the mean absolute deviation of prediction error produced by 3D gradient-based prediction are reduced by 1.09 and 1.40, respectively; and the maximal embedding capacity of each pixel is increased by 0.0456 and 0.1291 bits, respectively. The proposed algorithm can predict the pixels more accurately and embed more external information, so it is applicable to 3D medical image tempering detection and privacy protection for patients.
Key words: reversible watermarking; three-Dimensional (3D) medical image; gradient; prediction error expansion; histogram shifting
0 引言
可逆水印是一種將數(shù)據(jù)嵌入載體并能夠提取數(shù)據(jù)且無損恢復(fù)載體的技術(shù),目前已廣泛應(yīng)用于醫(yī)療、軍事、版權(quán)認證等領(lǐng)域。經(jīng)過近20年的研究,二維圖像上的可逆水印技術(shù)已經(jīng)非常成熟。目前存在的可逆水印技術(shù)主要包含無損壓縮[1-2]、差值擴展[3-4]、像素預(yù)測[5]、直方圖位移[6-7]等。
衡量可逆水印方法的兩個重要指標分別是數(shù)據(jù)嵌入率與原始圖像和嵌入數(shù)據(jù)后圖像間的峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)。為了達到提高嵌入率和PSNR的目的,國內(nèi)外研究者已經(jīng)提出了許多先進的可逆水印算法。其中,基于預(yù)測誤差擴展[8-9]的可逆水印方法是目前使用較多的一類嵌入方法。該方法首先預(yù)測像素得到預(yù)測誤差,然后通過擴展預(yù)測誤差來嵌入額外信息。另外,預(yù)測誤差擴展和直方圖位移的結(jié)合[10]有效提高了嵌入率和PSNR。與醫(yī)學(xué)圖像中大多可逆水印算法普遍追求較高的PSRN不同,文獻[11]考慮了醫(yī)學(xué)圖像的紋理特征,將醫(yī)學(xué)圖像的像素點區(qū)分開,在提高嵌入率的同時,改善了圖像高紋理處的視覺質(zhì)量。
雖然二維圖像上的可逆水印技術(shù)已經(jīng)非常成熟,但是可逆水印在三維數(shù)據(jù)體圖像上的應(yīng)用卻很少,而三維數(shù)據(jù)體圖像在醫(yī)學(xué)方面有著廣泛的應(yīng)用。醫(yī)學(xué)中,人們通過磁共振成像得到若干二維圖像切片堆積而成的三維數(shù)據(jù)體。為了在三維醫(yī)學(xué)圖像上嵌入額外信息(診斷信息、患者信息等)而不損壞原始醫(yī)學(xué)圖像的完整性,可逆水印技術(shù)在三維醫(yī)學(xué)圖像上的應(yīng)用也顯得尤為重要。隨著三維模型的廣泛應(yīng)用,研究員已經(jīng)將可逆水印技術(shù)擴展至三維點云模型[12]和三維網(wǎng)格模型[13-15]領(lǐng)域。但是目前還沒有針對三維數(shù)據(jù)體圖像的可逆水印技術(shù)被提出。
三維數(shù)據(jù)體與三維點云、三維網(wǎng)格模型不同,點云模型和網(wǎng)格模型用于描述三維空間的曲面,而數(shù)據(jù)體用于描述三維信號。為描述三維曲面,點云模型給出了該曲面上若干點的位置;三維網(wǎng)格模型則包括頂點信息和曲面剖分信息兩部分,不僅給出了三維空間頂點位置,同時也給出了各個剖分面所包括的頂點集合。但是,在這兩種模型中,頂點上都沒有定義信號。與此不同,三維數(shù)據(jù)體是三維信號,定義在規(guī)則的三維空間頂點上,正如數(shù)字圖像是定義在規(guī)則的二維空間頂點一樣;而且,在頂點上定義有此處像素或者體元的亮度。本文利用三維數(shù)據(jù)體頂點規(guī)則排列和具有亮度信息這兩個特點,設(shè)計了高效的像素預(yù)測算法和可逆信息隱藏算法。
本文針對三維數(shù)據(jù)體構(gòu)成的三維醫(yī)學(xué)圖像,在預(yù)測誤差直方圖擴展的基礎(chǔ)上,將二維圖像上的可逆水印技術(shù)擴展至三維醫(yī)學(xué)圖像。通常,三維醫(yī)學(xué)圖像中相鄰二維切片圖像也有一定的相關(guān)性,所以在進行像素預(yù)測時不僅要考慮二維平面的像素相關(guān)性,還要考慮每個相鄰二維切片圖像之間的相關(guān)性。不僅如此,由于醫(yī)學(xué)中的三維醫(yī)學(xué)圖像的特征限制,其像素亮度大多偏暗,普通的雙向預(yù)測誤差直方圖位移方法容易造成圖像像素的溢出。
針對以上問題,本文充分考慮醫(yī)學(xué)中三維醫(yī)學(xué)圖像的特征,利用單向預(yù)測誤差直方圖擴展的三維醫(yī)學(xué)圖像可逆水印方法以減少嵌入后的溢出像素,其中像素預(yù)測利用了鄰域像素的梯度變化。實驗結(jié)果表明,該方法在嵌入容量和信噪比方面都取得了比較好的結(jié)果。
5 結(jié)語
本文將現(xiàn)存的二維圖像中的可逆水印技術(shù)擴展至三維醫(yī)學(xué)數(shù)據(jù)體圖像,利用預(yù)測誤差直方圖擴展的方法將外部數(shù)據(jù)嵌入至三維醫(yī)學(xué)圖像。在像素預(yù)測方面,本文利用了中心像素與其三維鄰域像素的相關(guān)性,采用基于梯度變化的方法預(yù)測中心像素。實驗結(jié)果表明,采用基于三維梯度變化的預(yù)測方法可以得到更準確的預(yù)測結(jié)果。另外,考慮到三維醫(yī)學(xué)數(shù)據(jù)體圖像的像素值分布特征,本文采用單向預(yù)測誤差直方圖位移與預(yù)測誤差擴展相結(jié)合的方法來嵌入外部信息,不僅有效地控制了定位圖的大小,而且取得了較高的嵌入容量。
參考文獻:
[1] FRIDRICH J, GOLJAN M, DU R. Lossless data embedding — new paradigm in digital watermarking [J]. EURASIP Journal on advances Signal Processing, 2002, 2002: 986842.
[2] ELIK M U, SHARMA G, TEKALP A M, et al. Lossless generalized-LSB data embedding [J]. IEEE Transactions on Image Processing, 2005, 14(2): 253-266.
[3] TIAN J. Reversible data embedding using a difference expansion [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 890-896.
[4] DRAGOI I-C, COLTUC D. Local-prediction-based difference expansion reversible watermarking [J]. IEEE Transactions on Image Processing, 2014, 23(4): 1779-1790.
[5] LUO L, CHEN Z, CHEN M, et al. Reversible image watermarking using interpolation technique [J]. IEEE Transactions on Information Forensics and Security, 2010, 5(1): 187-193.
[6] NI Z, SHI Y-Q, ANSARI N, et al. Reversible data hiding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(3): 354-362.
[7] 王俊祥,倪江群,潘金偉.一種基于直方圖平移的高性能可逆水印算法[J].自動化學(xué)報,2012,38(1):88-96. (WANG J X, NI J Q, PAN J W. A high-performance reversible watermarking algorithm based on histogram shifting [J]. Acta Automatica Sinica, 2012, 38(1): 88-96.)
[8] THODI D M, RODRIGUEZ J J. Expansion embedding techniques for reversible watermarking [J]. IEEE Transactions on Image Processing, 2007, 16(3): 721-730.
[9] WANG C, LI X, YANG B. Efficient reversible image watermarking by using dynamical prediction-error expansion [C]// ICIP 2010: Proceedings of the 17th IEEE International Conference on Image Processing. Washington, DC: IEEE Computer Society, 2010: 3673-3676.
[10] HU X, ZHANG W, LI X, et al. Minimum rate prediction and optimized histograms modification for reversible data hiding [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(3): 653-664.
[11] 才雪,楊楊,肖星星.基于紋理度劃分的醫(yī)學(xué)圖像可逆信息隱藏方法[J].計算機應(yīng)用,2018,38(8):2293-2300. (CAI X, YANG Y, XIAO X X. A reversible data hiding based on multiple complexity measurement [J]. Journal of Computer Applications, 2018, 38(8): 2293-2300.)
[12] LUO H, LU Z-M, PAN J-S. A reversible data hiding scheme for 3D point cloud model [C]//ISSPIT 2007: Proceedings of the 6th IEEE International Symposium on Signal Processing and Information Technology. Washington, DC: IEEE Computer Society, 2007: 863-867.
[13] ZHU A, ZHANG C, YANG X, et al. Reversible watermarking of 3D mesh models using prediction-error expansion [C]//CISP 2010: Proceedings of the 3rd International Congress on Image and Signal Processing. Washington, DC: IEEE Computer Society, 2010: 1171-1175.
[14] JIAGN R, ZHOU H, ZHANG W, et al. Reversible data hiding in encrypted three-dimensional mesh models [J]. IEEE Transactions on Multimedia, 2018, 20(1): 55-67.
[15] JIANG R, ZHANG W, HOU D, et al. Reversible data hiding for 3D mesh models with three-dimensional prediction-error histogram modification [J]. Multimedia Tools and Applications, 2018, 77(5): 5263-5280.