• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONCENTRATION IN THE FLUX APPROXIMATION LIMIT OF RIEMANN SOLUTIONS TO THE EXTENDED CHAPLYGIN GAS EQUATIONS

    2019-07-31 06:56:26ZHANGQingling
    數(shù)學雜志 2019年4期

    ZHANG Qing-ling

    (School of Mathematics and Computer Sciences,Jianghan University,Wuhan 430056,China)

    Abstract:In this paper,two kinds of occurrence mechanism on the phenomenon of concentration and the formation of delta shock waves in the flux approximation limit of Riemann solutions to the extended Chaplygin gas equations are analyzed. By phase plane analysis and generalized characteristic analysis,we construct the Riemann solution to the extended Chaplygin gas equations completely and obtain two results:on one hand,as the pressure vanishes,any two-shock Riemann solution to the extended Chaplygin gas equations tends to a δ-shock solution to the transportation equation;on the other hand,as the pressure approaches the generalized Chaplygin pressure,any two-shock Riemann solution tends to a δ-shock solution to the generalized Chaplygin gas equations,which generalize to the extended Chaplygin gas.

    Keywords: extended Chaplygin gas;δ-shock wave;flux approximation limit;Riemann solutions;transportation equations;generalized Chaplygin gas

    1 Introduction

    The extended Chaplygin gas equations can be expressed as

    where ρ,u and P represent the density,the velocity and the scalar pressure,respectively,and

    with two parameters A,B>0.

    This model was proposed by Naji[1]to study the evolution of dark energy.For n=2,this model can also be seen as the magnetogasdynamics with generalized Chaplygin pressure[2]. When B=0 in(1.2),P=Aρnis the standard state equation for perfect fluid. Up to now,various kinds of theoretical models have been proposed to interpret the behavior of dark energy. Specially,when n=1 in(1.2),it reduces to the state equation for modified Chaplygin gas,which was originally proposed by Benaoum in 2002[3].As an exotic fluid,such a gas can explain the current accelerated expansion of the universe. Whereas when A=0 in(1.2),P =is called the pressure for the generalized Chaplygin gas[4].Furthermore,when α=1,P=is called the pressure for(pure)Chaplygin gas which was introduced by Chaplygin[5],Tsien[6]and von Karman[7]as a suitable mathematical approximation for calculating the lifting force on a wing of an airplane in aerodynamics.It has also been advertised as a possible model for dark energy[8].

    When two parameters A,B →0,the limit system of(1.1)with(1.2)formally becomes the following transportation equations

    which is also called the zero-pressure gas dynamics,and can be used to describe some important physical phenomena,such as the motion of free particles sticking together under collision and the formation of large scale structures in the universe[9–11].

    The transportation equation(1.3)were studied extensively since 1994.The existence of measure solutions of the Riemann problem was first proved by Bouchut[12]and the existence of the global weak solutions was obtained by Brenier and Grenier[13]and Rykov and Sinai[10].Sheng and Zhang[14]discovered that the δ-shock and vacuum states do occur in the Riemann solutions to the transportation equations(1.3)by the vanishing viscosity method.Huang and Wang[15]proved the uniqueness of the weak solution when the initial data is a Radon measure.Also see[14,16–19]for more related results.

    δ-shock is a kind of nonclassical nonlinear waves on which at least one of the state variables becomes a singular measure. Korchinski[20]first introduced the concept of the δ-function into the classical weak solution in his unpublished Ph.D.thesis.Tan,Zhang and Zheng[21]considered some 1-D reduced system and discovered that the form of δ-functions supported on shocks was used as parts in their Riemann solutions for certain initial data.LeFloch et al.[22]applied the approach of nonconservative product to consider nonlinear hyperbolic systems in the nonconservative form. Recently,the weak asymptotic method was widely used to study the δ-shock wave type solution by Danilov and Shelkovich et al.[23–25].

    As for delta shock waves,one research focus is to explore the phenomena of concentration and cavitation and the formation of delta shock waves and vacuum states in solutions.In[26],Chen and Liu considered the Euler equations for isentropic fluids,i.e.,in(1.1),they took the prototypical pressure function as follows:

    They analyzed and identified the phenomena of concentration and cavitation and the formation of δ-shocks and vacuum states as ε →0,which checked the numerical observation for the 2-D case by Chang,Chen and Yang[27,28].They also pointed out that the occurrence of δ-shocks and vacuum states in the process of vanishing pressure limit can be regarded as a phenomenon of resonance between the two characteristic fields. Moreover,they made a further step to generalize this result to the nonisentropic fluids in[29].Besides,the results were extended to the relativistic Euler equations for polytropic gases in[30],the perturbed Aw-Rascle model in[31],the magnetogasdynamics with generalized Chaplygin pressure in[2],the modified Chaplygin gas equations in[32,33],etc.

    In this paper,we focus on the extended Chaplygin gas equations(1.1)to discuss the phenomena of concentration and cavitation and the formation of delta shock waves and vacuum states in Riemann solutions as the double parameter pressure vanishes wholly or partly,which corresponds to a two parameter limit of Riemann solutions in contrast to the previous works in[2,26,29–31]. Equivalently,we study the limit behavior of Riemann solutions to the extended Chaplygin gas equations as the pressure vanishes,or tends to the generalized Chaplygin pressure.

    It is noticed that,When A,B →0,system(1.1)with(1.2)formally becomes the transportation equations(1.3).For fixed B,when A →0,system(1.1)with(1.2)formally becomes the generalized Chaplygin gas equations

    When α=1,it is just the Chaplygin gas equations.In 1998,Brenier[34]first studied the 1-D Riemann problem and obtained the solutions with concentration when initial data belongs to a certain domain in the phase plane.Recently,Guo,Sheng and Zhang[35]abandoned this constrain and constructively obtained the general solutions of the 1-D Riemann problem in which the δ-shock wave developed.Moreover,in that paper,they also systematically studied the 2-D Riemann problem for isentropic Chaplygin gas equations.In[36],Wang solved the Riemann problem of(1.5)by the weak asymptotic method.It has been shown that,in their results,δ-shocks do occur in the Riemann solutions,but vacuum states do not. For more results about Chaplygin gas,one can refer to[37–40].

    In this paper,we first solve the Riemann problem of system(1.1)with Riemann initial data

    where ρ±>0, u±are arbitrary constants. With the phase plane analysis method,we construct the Riemann solutions with four different structures:R1R2,R1S2,S1R2and S1S2.

    Then we analyze the formation of δ-shocks and vacuum states in the Riemann solutions to the extended Chaplygin gas equations as the pressure vanishes. It is shown that,as the pressure vanishes,any two-shock Riemann solution tends to a δ-shock solution to the transportation equations,and the intermediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock;by contrast,any two-rarefaction-wave Riemann solution tends to a two-contact-discontinuity solution to the transportation equations,and the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum state,even when the initial data stays away from the vacuum.As a result,the delta shocks for the transportation equations result from a phenomenon of concentration,while the vacuum states results from a phenomenon of cavitation in the vanishing pressure limit process.These results are completely consistent with that in[26],and also cover those obtained in[2,32,33].

    In addition,we also prove that as the pressure tends to the generalized Chaplygin pressure(A →0),any two-shock Riemann solution to the extended Chaplygin gas equations tends to a δ-shock solution to the generalized Chaplygin gas equations,and the intermediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock.Consequently,the delta shocks for the generalized Chaplygin gas equations result from a phenomenon of concentration in the partly vanishing pressure limit process.

    From the above analysis,we can find two kinds of occurrence mechanism on the phenomenon of concentration and the formation of delta shock wave.On one hand,since the strict hyperbolicity of the limiting system(1.3)fails,see Section 4,the delta shock wave forms in the limit process as the pressure vanishes. This is consistent with those results obtained in[2,26,29–32].On the other hand,the strict hyperbolicity of the limiting system(1.5)is preserved,see Section 5,the formation of delta shock waves still occur as the pressure partly vanishes.In this regard,it is different from those in[2,26,29–32].In any case,the phenomenon of concentration and the formation of delta shock wave can be regarded as a process of resonance between two characteristic fields.

    The paper is organized as follows. In Section 2,we restate the Riemann solutions to transportation equations(1.3)and the generalized Chaplygin gas equations(1.5).In Section 3,we investigate the Riemann problem of the extended Chaplygin gas equations(1.1)–(1.2)and examine the dependence of the Riemann solutions on the two parameters A,B>0.In Section 4,we analyze the limit of Riemann solutions to the extended Chaplygin gas equations(1.1)–(1.2)with(1.6)as the pressure vanishes.In Section 5,we discuss the limit of Riemann solutions to the extended Chaplygin gas equations(1.1)–(1.2)with(1.6)as the pressure approaches to the generalized Chaplygin pressure.Finally,conclusions are drawn and discussions are made in Section 6.

    2 Preliminaries

    2.1 Riemann Problem for the Transportation Equations

    In this section,we restate the Riemann solutions to the transportation equations(1.3)with initial data(1.6),see[14]for more details.

    The transportation equations(1.3)have a double eigenvalue λ=u and only one right eigenvectors=(1,0)T.Furthermore,we have,which means that λ is linearly degenerate.The Riemann problem(1.3)and(1.6)can be solved by contact discontinuities,vacuum or δ-shocks connecting two constant states(ρ±,u±).

    By taking the self-similar transformation,the Riemann problem is reduced to the boundary value problem of the ordinary differential equations:

    For the case u?

    For the case u?=u+,it is easy to see that the constant states(ρ±,u±)can be connected by a contact discontinuity.

    For the case u?>u+,a solution containing a weighted δ-measure supported on a curve will be constructed.Let x=x(t)be a discontinuity curve,we consider a piecewise smooth solution of(1.3)in the form

    To define the measure solutions,a two-dimensional weighted δ-measure p(s)δSsupported on a smooth curve S={(x(s),t(s)):a

    in which

    where

    and

    Here,H(x)is the Heaviside function given by H(x)=1 for x>0 and H(x)=0 for x<0.

    Substituting(2.3)into(2.5),one can derive the generalized Rankine-Hugoniot conditions

    where[ρ]=ρ+?ρ?,etc.

    Through solving(2.6)with x(0)=0,w(t)=0,we obtain

    Moreover,the δ-measure solution(2.3)with(2.7)satisfies the δ-entropy condition

    which means that all the characteristics on both sides of the δ-shock are incoming.

    2.2 Riemann Problem for the Generalized Chaplygin Gas Equations

    In this section,we solve the Riemann problem for the generalized Chaplygin gas equations(1.5)with(1.6),which one can also see in[35,36].

    It is easy to see that(1.5)has two eigenvalues

    with corresponding right eigenvectors

    So(1.5)is strictly hyperbolic for ρ>0.Moreover,when 0<α<1,we havei=1,2,which implies thatandare both genuinely nonlinear and the associated waves are rarefaction waves and shock waves.Wheni=1,2,which implies thatandare both linearly degenerate and the associated waves are both contact discontinuities,see[41].

    Since system(1.5)and the Riemann initial data(1.6)are invariant under stretching of coordinates(x,t)→(βx,βt)(β is constant),we seek the self-similar solution

    Then the Riemann problem(1.5)and(1.6)is reduced to the following boundary value problem of the ordinary differential equations

    Besides the constant solution,it provides the backward rarefaction wave

    and the forward rarefaction wave

    When α=1,the backward(forward)rarefaction wave becomes the backward(forward)contact discontinuity.

    For a bounded discontinuity at ξ=σ,the Rankine-Hugoniot conditions hold:

    where[ρ]=ρ ?ρ?,etc.Together with the Lax shock inequalities,(2.11)gives the backward shock wave

    and the forward shock wave

    When α=1,the backward(forward)shock wave becomes the backward(forward)contact discontinuity.

    with

    see[34].

    By the weak solution definition in Subsection 2.1,for system(1.5),we can get the following generalized Rankine-Hugoniot conditions

    Then by solving(2.15)with initial data x(0)=0, wB(0)=0,under the entropy condition

    we can obtain

    and

    when ρ+=ρ?.

    In the phase plane(ρ>0,u ∈R),given a constant state(ρ?,u?),we draw the elementary wave curves(2.9)–(2.10)and(2.12)–(2.13)passing through this point,which are denoted byandrespectively.The backward shock wavehas an asymptotic lineIn addition,we draw a Sδcurve,which is determined by

    Then,the phase plane can be divided into five parts I(ρ?,u?),II(ρ?,u?),III(ρ?,u?),IV(ρ?,u?)and V(ρ?,u?)(see Fig.1).

    By the analysis method in the phase plane,one can construct the Riemann solutions for any given(ρ+,u+)as follows:

    (1)(ρ+,u+)∈I(ρ?,u?):

    (2)(ρ+,u+)∈II(ρ?,u?):

    (3)(ρ+,u+)∈III(ρ?,u?):

    (4)(ρ+,u+)∈IV(ρ?,u?):

    (5)(ρ+,u+)∈V(ρ?,u?):δ-shock.

    Fig.1 The(ρ,u)phase plane for the genreralized Chaplygin gas equations(1.5).

    3 Riemann Problem for the Extended Chaplygin Gas Equations

    In this section,we first solve the elementary waves and construct solutions to the Riemann problem of(1.1)–(1.2)with(1.6),and then examine the dependence of the Riemann solutions on the two parameters A,B>0.

    The eigenvalues of the system(1.1)–(1.2)are

    with corresponding right eigenvectors

    Moreover,we have

    For(1.1)–(1.2)with(1.6)are invariant under uniform stretching of coordinates:(x,t)→(βx,βt)with constant β>0,we seek the self-similar solution

    Then the Riemann problem(1.1)–(1.2)with(1.6)is reduced to the boundary value problem of the following ordinary differential equations

    Any smooth solutions of(3.1)satisfies

    It provides either the constant state solutions(ρ,u)(ξ)=constant,or the rarefaction wave which is a continuous solutions of(3.2)in the form(ρ,u)(ξ).Then,according to[41],for a given left state(ρ?,u?),the rarefaction wave curves in the phase plane,which are the sets of states that can be connected on the right by a 1-rarefaction wave or 2-rarefaction wave,are as follows

    and

    From(3.3)and(3.4),we obtain that

    which implies that the velocity of 1-rarefaction(2-rarefaction)waveis monotonic decreasing(increasing)with respect to ρ.

    and

    For the 1-rarefaction wave,through differentiating u respect to ρ in the second equation in(3.7),we get

    Thus,it is easy to get uρρ>0 for 1 ≤n ≤3,i.e.,the 1-rarefaction wave is convex for 1 ≤n ≤3 in the upper half phase plane(ρ>0).

    In addition,from the second equation of(3.7),we have

    By a similar computation,we have that,for the 2-rarefaction wave,uρ>0,uρρ<0 for 1 ≤n ≤3 andThus,we can draw the conclusion that the 2-rarefaction wave is concave for 1 ≤n ≤3 in the upper half phase plane(ρ>0).

    Now we consider the discontinuous solution.For a bounded discontinuity at ξ=σ,the Rankine-Hugoniot condition holds

    where[ρ]=ρ+?ρ?,etc.

    Eliminating σ from(3.11),we obtain

    Using the Lax entropy condition,the 1-shock satisfies

    while the 1-shock satisfies

    From the first equation in(3.11),we have

    Thus,by a simple calculation,(3.13)is equivalent to

    and(3.14)is equivalent to

    (3.16)and(3.17)imply that ρ>ρ?,u

    Through the above analysis,for a given left state(ρ?,u?),the shock curves in the phase plane,which are the sets of states that can be connected on the right by a 1-shock or 2-shock,are as follows

    and

    For the 1-shock wave,through differentiating u respect to ρ in the second equation in(3.18),we get

    which means that uρ<0 for the 1-shock wave and that the 1-shock wave curve is starlike with respect to(ρ?,u?)in the region ρ>ρ?.Similarly,we can get uρ>0 for the 2-shock wave and that the 2-shock wave curve is starlike with respect to(ρ?,u?)in the region ρ<ρ?.In addition,it is easy to check thatu=?∞for the 1-shock wave andfor the 2-shock wave.

    Through the analysis above,for a given left state(ρ?,u?),the sets of states connected with(ρ?,u?)on the right in the phase plane consist of the 1-rarefaction wave curve R1(ρ?,u?),the 2-rarefaction wave curve R2(ρ?,u?),the 1-shock curve S1(ρ?,u?)and the 2-shock curve S2(ρ?,u?).These curves divide the upper half plane into four parts R1R2(ρ?,u?),R1S2(ρ?,u?),S1R2(ρ?,u?)and S1S2(ρ?,u?). Now,we put all of these curves together in the upper half plane(ρ>0,u ∈R)to obtain a picture as Fig.2.

    By the phase plane analysis method,it is easy to construct Riemann solutions for any given right state(ρ+,u+)as follows

    (1)(ρ+,u+)∈R1R2(ρ?,u?):R1+R2;

    (2)(ρ+,u+)∈R1S2(ρ?,u?):R1+S2;

    (3)(ρ+,u+)∈S1R2(ρ?,u?):S1+R2;

    (4)(ρ+,u+)∈S1S2(ρ?,u?):S1+S2.

    Fig.2 The(ρ,u)phase plane for the extended Chaplygin gas equations(1.1)–(1.2).

    4 Formation of δ-Shocks and Vacuum States as A,B →0

    In this section,we will study the vanishing pressure limit process,i.e.,A,B →0.Since the two regions S1R2(ρ?,u?)and R1S2(ρ?,u?)in the(ρ,u)plane have empty interior when A,B →0,it suffices to analyze the limit process for the two cases(ρ+,u+)∈S1S2(ρ?,u?)and(ρ+,u+)∈R1R2(ρ?,u?).

    First,we analyze the formation of δ-shocks in Riemann solutions to the extended Chaplygin gas equations(1.1)–(1.2)with(1.6)in the case(ρ+,u+)∈S1S2(ρ?,u?)as the pressure vanishes.

    4.1 δ-Shocks and Concentration

    When(ρ+,u+)∈S1S2(ρ?,u?),for fixed A,B>0,letbe the intermediate state in the sense that(ρ?,u?)andare connected by 1-shock S1with speedand(ρ+,u+)are connected by 2-shock S2with speed.Then it follows

    In the following,we give some lemmas to show the limit behavior of the Riemann solutions of system(1.1)–(1.2)with(1.6)as A,B →0.

    Lemma 4.1

    ProofEliminatingin the second equation of(4.1)and(4.2)gives

    By Lemma 4.1,from(4.3)we immediately have the following lemma.

    Lemma 4.2

    Lemma 4.3

    ProofFrom the first equation of(4.1)and(4.2)for S1and S2,by Lemma 4.1,we have

    From the second equation of(4.1),by Lemmas 4.1–4.2,we get

    The proof is completed.

    Lemma 4.4

    ProofHere we only prove the case for.The first equation of the Rankine-Hugoniot condition(3.11)for S1and S2read

    from which we have

    Similarly,from the second equations of the Rankine-Hugoniot condition(3.11)for S1and S2,

    we obtain

    Thus,from(4.8)and(4.10)we immediately get(4.5)and(4.6).For the case ρ+=ρ?,the conclusion is obviously true,so we omit it.The proof is finished.

    The above Lemmas 4.1–4.4 show that,as A,B →0,the curves of the shock wave S1and S2will coincide and the delta shock waves will form.Next we will arrange the values which give the exact position,propagation speed and strength of the delta shock wave according to Lemmas 4.3 and 4.4.

    From(4.5)and(4.6),we let

    then

    From(4.11)–(4.14),we can see that the quantities defined above are exactly consistent with those given by(2.7). Thus,it uniquely determines that the limits of the Riemann solutions to system(1.1)–(1.2)and(1.6)when A,B →0 in the case(ρ+,u+)∈IV and u?>u+is just the delta shock solution of(1.3)and(1.6).So we get the following results which characterizes the vanishing pressure limit in the case(ρ+,u+)∈IV and u?>u+.

    Theorem 4.1If u?>u+,for each fixed A,B,(ρ+,u+)∈IV,assuming that(ρAB,uAB)is a two-shock wave solution of(1.1)–(1.2)and(1.6)which is constructed in Section 3,it is obtained that when A,B →0,(ρAB,uAB)converges to a delta shock wave solution to the transportation equations(1.3)with the same initial data.

    4.2 Formation of Vacuum States

    In this subsection,we show the formation of vacuum states in the Riemann solutions to(1.1)–(1.2)with(1.6)in the case(ρ+,u+)∈R1R2(ρ?,u?)with u?0 as the pressure vanishes.

    At this moment,for fixed A,B>0,letbe the intermediate state in the sense that(ρ?,u?)andare connected by 1-rarefaction wave R1with speedand(ρ+,u+)are connected by 2-rarefaction wave R2with speed. Then it follows

    Now,from the second equations of(4.15)and(4.16),using the following integral identity

    it follows that the intermediate statesatisfies

    which implies the following result.

    Theorem 4.2Let u?0,assume that(ρAB,uAB)is the two-rarefaction wave Riemann solution of(1.1)–(1.2)with Riemann data(ρ±,u±)constructed in Section 3.Then as A,B →0,the limit of the Riemann solution(ρAB,uAB)is two contact discontinuities connecting the constant states(ρ±,u±)and the intermediate vacuum state as follows which is exactly the Riemann solution to the transport equations(1.3)with the same Riemann data(ρ±,u±).

    5 Formation of δ-Shocks as A →0

    Fig.3 The(ρ,u)phase plane for the generalized Chaplygin gas equations(1.5)and the extended Chaplygin gas equations(1.1)–(1.2).

    Lemma 5.1When(ρ+,u+)∈V(ρ?,u?),there exists a positive parameter A0such that(ρ+,u+)∈S1S2(ρ?,u?)when 0

    ProofFrom(ρ+,u+)∈V(ρ?,u?),we have

    then

    All the states(ρ,u)connected with(ρ?,u?)by a backward shock wave S1or a forward shock wave S2satisfy

    or

    When ρ+=ρ?,the conclusion is obviously true.Whenby taking

    we have

    which together with(5.2)gives the conclusion.The proof is completed.

    When 0

    and

    Lemma 5.2

    ProofEliminatingin the second equation of(5.7)and(5.8)gives

    which contradicts with(5.2).Therefore we must haveThe proof is completed.

    By Lemma 5.2,from(5.9)we immediately have the following lemma.

    Lemma 5.3

    Lemma 5.4Letthen

    ProofFrom the second equation of(5.7)for S1,by Lemmas 4.2 and 4.3,we have

    Similarly,from the second equation of(5.8)for S2,we have

    Furthermore,similar to the analysis in Lemma 4.3,we can obtainThe proof is completed.

    Lemma 5.5Formentioned in Lemma 5.4,

    as ρ+=ρ?.

    ProofLettingby Lemma 5.4,from(5.12)and(5.13)we have

    which leads to

    Eliminating L from(5.16)and(5.17),we have

    Similar to Lemma 4.4,we have the following lemma.

    Lemma 5.6

    ProofHere we only prove the case for.Similar to the proof of Lemma 4.4,taking account into(3.11)and(5.18),we have

    and

    So

    For the case ρ+=ρ?,the conclusion is obviously true,so we omit it.The proof is finished.

    The above Lemmas 5.1–5.6 show that,as A →0,the curves of the shock waveandwill coincide and the delta shock waves will form.Next,we will arrange the values which give the exact position,propagation speed and strength of the delta shock wave according to Lemmas 5.4 and 5.6.

    then

    which is equal to σB(t).Furthermore,by lettingwe have

    From(5.23)–(5.26),we can see that the quantities defined above are exactly consistent with those given by(2.17)–(2.20).When ρ+=ρ?,similar results can be obtained.Thus,it uniquely determines that the limits of Riemann solutions to system(1.1)–(1.2)and(1.6)when A →0 in the case(ρ+,u+)∈V and u?>u+is just the delta shock solution of(1.5)and(1.6).So we get the following results which characterizes the vanishing pressure limit in the case(ρ+,u+)∈V and u?>u+.

    Theorem 5.1If u?>u+,for each fixed A,B,(ρ+,u+)∈V,assuming that(ρA,uA)is a two-shock wave solution of(1.1)–(1.2)and(1.6)which is constructed in Section 3,it is obtained that when A →0,(ρA,uA)converges to a delta shock wave solution to the generalized Chaplygin gas equations(1.5)with the same initial data.

    6 Conclusions and Discussions

    In this paper,we have considered two kinds of flux approximation limits of Riemann solutions to the extended Chaplygin gas equations and studied the concentration and the formation of delta shocks during the limit process.Moreover,we have proved that the vanishing pressure limit of Riemann solutions to extended Chaplygin gas equations is just the corresponding ones to transportation equations,and when the extended Chaplygin pressure approaches the generalized Chaplygin pressure,the limit of Riemann solutions to the extended Chaplygin gas equations is just the corresponding ones to the generalized Chaplygin gas equations.

    On the other hand,recently,Shen and Sun have studied the Riemann problem for the nonhomogeneous transportation equations,and the nonhomogeneous(generalized)Chaplygin gas equations with coulomb-like friction,see[38,39,42]. Similarly,we will also consider the Riemann problem for the nonhomogeneous extended Chaplygin gas equations with coulomb-like friction.Furthermore,we will consider the formation of delta shock waves in its flux approximation limit and analyze the relations of Riemann solutions among the nonhomogeneous extended Chaplygin gas equations,the nonhomogeneous generalized Chaplygin gas equations and the nonhomogeneous transportation equations.These will be left for our future work.

    av在线观看视频网站免费| 亚洲精品国产av成人精品| 国产精品蜜桃在线观看| 一级毛片aaaaaa免费看小| 国产在线视频一区二区| 日日啪夜夜撸| 一级片'在线观看视频| 精品久久久精品久久久| 久久久久久久国产电影| 乱码一卡2卡4卡精品| 国产欧美日韩精品一区二区| 黄色配什么色好看| 日本与韩国留学比较| 国国产精品蜜臀av免费| 春色校园在线视频观看| 乱人伦中国视频| 久久亚洲国产成人精品v| 中文天堂在线官网| 亚洲自偷自拍三级| 性色avwww在线观看| 成年av动漫网址| 欧美日本中文国产一区发布| 久久99蜜桃精品久久| a级毛片免费高清观看在线播放| 国产精品久久久久成人av| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| 深夜a级毛片| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频 | xxx大片免费视频| 精品卡一卡二卡四卡免费| 国产91av在线免费观看| 日本黄色日本黄色录像| 午夜av观看不卡| 久久影院123| 国产成人aa在线观看| 黄色欧美视频在线观看| 国产熟女欧美一区二区| 观看av在线不卡| 久久久久人妻精品一区果冻| 简卡轻食公司| 青春草视频在线免费观看| 最近中文字幕2019免费版| 国产一区二区在线观看av| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡 | 久久久久久久久久久丰满| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 日日摸夜夜添夜夜爱| 丝袜在线中文字幕| 亚洲在久久综合| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 国产一级毛片在线| 国产在线视频一区二区| 少妇被粗大猛烈的视频| 久久6这里有精品| 国产精品蜜桃在线观看| 性高湖久久久久久久久免费观看| 久久精品国产自在天天线| 嫩草影院新地址| 中文字幕亚洲精品专区| 少妇高潮的动态图| 成人国产麻豆网| 久久精品久久精品一区二区三区| 丝袜在线中文字幕| 女人久久www免费人成看片| 3wmmmm亚洲av在线观看| 亚洲精品久久午夜乱码| 一本久久精品| 老熟女久久久| 另类亚洲欧美激情| 全区人妻精品视频| 亚洲av福利一区| 色婷婷久久久亚洲欧美| 美女中出高潮动态图| 在线看a的网站| 大片电影免费在线观看免费| 欧美日韩av久久| 国产欧美日韩精品一区二区| 亚洲精品视频女| 亚洲欧洲精品一区二区精品久久久 | 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 色网站视频免费| av免费在线看不卡| 我要看黄色一级片免费的| 免费少妇av软件| 91久久精品电影网| 男女国产视频网站| a级毛色黄片| 欧美日本中文国产一区发布| 精品久久久久久电影网| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 蜜臀久久99精品久久宅男| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 五月开心婷婷网| 精品久久久久久电影网| 热99国产精品久久久久久7| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久久久按摩| av天堂久久9| 热re99久久精品国产66热6| 十八禁网站网址无遮挡 | h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 又大又黄又爽视频免费| 最后的刺客免费高清国语| 国产一区有黄有色的免费视频| av网站免费在线观看视频| 久久午夜综合久久蜜桃| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 久久久欧美国产精品| 午夜av观看不卡| 六月丁香七月| 日韩视频在线欧美| 日日啪夜夜撸| 一二三四中文在线观看免费高清| 精品亚洲成a人片在线观看| 欧美xxⅹ黑人| 成人影院久久| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 免费看av在线观看网站| 女性生殖器流出的白浆| xxx大片免费视频| 亚洲精品成人av观看孕妇| 十八禁网站网址无遮挡 | 两个人免费观看高清视频 | 亚洲精品乱码久久久v下载方式| 肉色欧美久久久久久久蜜桃| 丰满乱子伦码专区| 国产欧美日韩一区二区三区在线 | 亚洲自偷自拍三级| 人妻系列 视频| 国产一区二区三区综合在线观看 | 99热国产这里只有精品6| 日韩欧美精品免费久久| av专区在线播放| 街头女战士在线观看网站| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频| 男女无遮挡免费网站观看| 午夜日本视频在线| 亚洲,一卡二卡三卡| av黄色大香蕉| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 又爽又黄a免费视频| 欧美区成人在线视频| 一边亲一边摸免费视频| 99热这里只有是精品在线观看| 国产精品.久久久| 各种免费的搞黄视频| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 久久久久视频综合| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 老司机影院成人| 人妻一区二区av| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 亚洲欧美日韩东京热| 最近最新中文字幕免费大全7| 国产淫片久久久久久久久| 伦精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 欧美精品国产亚洲| 成人二区视频| 免费观看在线日韩| 亚洲精品国产色婷婷电影| 亚洲av不卡在线观看| 中文字幕人妻丝袜制服| 9色porny在线观看| 久久久国产欧美日韩av| 国产极品天堂在线| 好男人视频免费观看在线| 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 免费大片黄手机在线观看| 日韩中文字幕视频在线看片| 在线观看www视频免费| 色网站视频免费| 在线观看国产h片| 99久久人妻综合| 日韩人妻高清精品专区| videossex国产| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 国产精品99久久99久久久不卡 | 亚洲av成人精品一二三区| 曰老女人黄片| 国产欧美亚洲国产| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃 | 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 国产日韩欧美亚洲二区| 91aial.com中文字幕在线观看| 我要看黄色一级片免费的| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 久热久热在线精品观看| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| 午夜视频国产福利| 少妇人妻久久综合中文| 日韩一区二区三区影片| 永久网站在线| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 欧美bdsm另类| 秋霞在线观看毛片| 天堂中文最新版在线下载| 观看美女的网站| 国产色婷婷99| 少妇丰满av| 欧美精品亚洲一区二区| 夫妻性生交免费视频一级片| 中国国产av一级| 精品亚洲成a人片在线观看| 亚洲欧美精品专区久久| 一本一本综合久久| 亚洲av二区三区四区| 91久久精品国产一区二区三区| 久久久久久久久久久丰满| 国产极品天堂在线| 五月天丁香电影| 国产精品.久久久| 噜噜噜噜噜久久久久久91| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 欧美日韩av久久| 国产高清不卡午夜福利| 欧美日韩视频高清一区二区三区二| 中文字幕人妻熟人妻熟丝袜美| 久久99精品国语久久久| 老司机亚洲免费影院| 女性生殖器流出的白浆| 9色porny在线观看| 秋霞伦理黄片| 亚洲av.av天堂| 成人二区视频| 亚洲精品视频女| av不卡在线播放| 看免费成人av毛片| 国产精品一区二区在线不卡| 午夜影院在线不卡| 亚洲怡红院男人天堂| 99热全是精品| 中文天堂在线官网| 久久国内精品自在自线图片| 大香蕉久久网| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 亚洲图色成人| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 久久精品国产亚洲av天美| 在线观看免费日韩欧美大片 | 久热这里只有精品99| 精品一区二区免费观看| 美女视频免费永久观看网站| 欧美最新免费一区二区三区| 夫妻午夜视频| 搡女人真爽免费视频火全软件| 亚洲国产精品一区三区| 乱码一卡2卡4卡精品| 成人黄色视频免费在线看| 国产片特级美女逼逼视频| 一级爰片在线观看| 国产精品偷伦视频观看了| 久久 成人 亚洲| 午夜免费观看性视频| 日本色播在线视频| 亚洲av免费高清在线观看| 蜜桃在线观看..| 精品国产一区二区久久| 成年人午夜在线观看视频| 亚洲中文av在线| 国产男女内射视频| 欧美成人午夜免费资源| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 亚洲国产欧美在线一区| 熟女人妻精品中文字幕| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 成年人午夜在线观看视频| 伊人久久国产一区二区| 天天操日日干夜夜撸| 欧美少妇被猛烈插入视频| 韩国高清视频一区二区三区| 成人免费观看视频高清| 精品午夜福利在线看| 人妻系列 视频| 色网站视频免费| av天堂久久9| 亚洲av在线观看美女高潮| 两个人的视频大全免费| 久久久久久久精品精品| 乱码一卡2卡4卡精品| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 成人美女网站在线观看视频| 亚洲精品自拍成人| 午夜福利视频精品| 久久久精品免费免费高清| 欧美日韩精品成人综合77777| 老司机亚洲免费影院| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 三级经典国产精品| 一二三四中文在线观看免费高清| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 超碰97精品在线观看| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看 | 亚洲成人手机| 久久久久久久久久久丰满| 亚洲av欧美aⅴ国产| 亚洲高清免费不卡视频| 国产精品国产av在线观看| 久久久午夜欧美精品| 六月丁香七月| 男人添女人高潮全过程视频| 午夜日本视频在线| 精品少妇内射三级| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 成人特级av手机在线观看| 精品亚洲乱码少妇综合久久| 蜜臀久久99精品久久宅男| 亚洲va在线va天堂va国产| 色5月婷婷丁香| 亚洲自偷自拍三级| 国产欧美日韩一区二区三区在线 | 只有这里有精品99| 一本大道久久a久久精品| 久久久久久久久久成人| 少妇的逼好多水| 九九爱精品视频在线观看| 一区二区三区精品91| 国产精品一二三区在线看| 自拍偷自拍亚洲精品老妇| 久久精品久久久久久久性| 一区二区三区精品91| 在线观看www视频免费| 欧美日韩在线观看h| 免费看日本二区| 少妇人妻一区二区三区视频| 丝袜在线中文字幕| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 成人综合一区亚洲| 成人特级av手机在线观看| 亚洲精品一二三| 在线观看国产h片| 伦精品一区二区三区| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 丰满少妇做爰视频| 男女免费视频国产| 国产 精品1| freevideosex欧美| 亚洲精品中文字幕在线视频 | 99热6这里只有精品| 免费人妻精品一区二区三区视频| 香蕉精品网在线| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 日本vs欧美在线观看视频 | 亚洲av电影在线观看一区二区三区| 欧美高清成人免费视频www| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 热re99久久国产66热| .国产精品久久| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 日本欧美国产在线视频| 22中文网久久字幕| 麻豆精品久久久久久蜜桃| 日本av免费视频播放| 亚洲av不卡在线观看| 精品久久久久久电影网| 国产免费又黄又爽又色| 男女边吃奶边做爰视频| 麻豆成人av视频| 高清不卡的av网站| 国产精品久久久久久久电影| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 男人狂女人下面高潮的视频| 视频区图区小说| 97在线人人人人妻| 在线观看三级黄色| 另类亚洲欧美激情| 国产高清有码在线观看视频| av天堂中文字幕网| 在现免费观看毛片| 欧美亚洲 丝袜 人妻 在线| 欧美丝袜亚洲另类| 又大又黄又爽视频免费| 亚洲av成人精品一区久久| 日本猛色少妇xxxxx猛交久久| 18+在线观看网站| 校园人妻丝袜中文字幕| 人体艺术视频欧美日本| 欧美精品亚洲一区二区| 国产 一区精品| 久久久久久人妻| 免费不卡的大黄色大毛片视频在线观看| 成年女人在线观看亚洲视频| 一级毛片久久久久久久久女| 波野结衣二区三区在线| 在现免费观看毛片| 国产精品偷伦视频观看了| 国产91av在线免费观看| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜添av毛片| 黄色毛片三级朝国网站 | 少妇人妻精品综合一区二区| 少妇人妻一区二区三区视频| 91成人精品电影| √禁漫天堂资源中文www| 国产精品99久久久久久久久| 美女内射精品一级片tv| 美女大奶头黄色视频| 超碰97精品在线观看| 国产一区二区在线观看av| 欧美97在线视频| 国产视频首页在线观看| 欧美激情极品国产一区二区三区 | 午夜福利视频精品| 久久99一区二区三区| 秋霞在线观看毛片| 搡女人真爽免费视频火全软件| 免费少妇av软件| 中国国产av一级| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品乱久久久久久| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 晚上一个人看的免费电影| 亚洲天堂av无毛| 亚洲国产欧美日韩在线播放 | 婷婷色综合www| 全区人妻精品视频| 一级毛片我不卡| 伦精品一区二区三区| 男女边吃奶边做爰视频| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 丁香六月天网| 色吧在线观看| 乱码一卡2卡4卡精品| 最近最新中文字幕免费大全7| 亚洲精品一区蜜桃| 精品久久久久久电影网| 十八禁高潮呻吟视频 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品999| 狂野欧美激情性xxxx在线观看| 午夜免费观看性视频| 欧美少妇被猛烈插入视频| h视频一区二区三区| 有码 亚洲区| 国产av一区二区精品久久| 免费不卡的大黄色大毛片视频在线观看| 免费黄频网站在线观看国产| 久久久久久久久大av| 久久精品国产a三级三级三级| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放 | 国产91av在线免费观看| 久久久久精品久久久久真实原创| 91精品国产九色| 少妇人妻 视频| 成年av动漫网址| 精品久久久久久电影网| 99热这里只有精品一区| 婷婷色综合大香蕉| 成人二区视频| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 日本vs欧美在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 免费大片黄手机在线观看| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 免费观看无遮挡的男女| h日本视频在线播放| 日韩欧美精品免费久久| 九九在线视频观看精品| 人妻人人澡人人爽人人| 中文字幕人妻丝袜制服| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 国产成人aa在线观看| 婷婷色麻豆天堂久久| 三级国产精品片| 日本色播在线视频| 丝瓜视频免费看黄片| 丰满人妻一区二区三区视频av| 国产色爽女视频免费观看| 又大又黄又爽视频免费| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 国产高清不卡午夜福利| 亚洲四区av| 精品人妻偷拍中文字幕| 99热这里只有是精品在线观看| 亚洲美女黄色视频免费看| 久久久久久久大尺度免费视频| 少妇人妻 视频| 久久精品国产鲁丝片午夜精品| 少妇人妻久久综合中文| 久久国产精品男人的天堂亚洲 | 亚洲精品aⅴ在线观看| 亚洲人与动物交配视频| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 成人国产麻豆网| 国产高清三级在线| 国产精品免费大片| 日韩成人伦理影院| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 嘟嘟电影网在线观看| 26uuu在线亚洲综合色| 精品亚洲成国产av| 亚洲欧洲日产国产| 亚洲性久久影院| 嫩草影院入口| 天堂中文最新版在线下载| 午夜激情福利司机影院| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 夫妻午夜视频| www.999成人在线观看| 99九九在线精品视频| 久久精品国产亚洲av高清一级| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| 日本wwww免费看| 日韩视频在线欧美| 欧美精品av麻豆av| 黄色视频不卡| 中文字幕精品免费在线观看视频| 国产精品 国内视频| 欧美日韩黄片免| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 午夜成年电影在线免费观看| 黄片小视频在线播放| 欧美另类一区| 国产欧美亚洲国产| 超碰成人久久| 欧美亚洲 丝袜 人妻 在线| 999久久久国产精品视频| 成年女人毛片免费观看观看9 | 国产亚洲欧美精品永久| 国产av一区二区精品久久| 一级毛片精品| 亚洲欧美一区二区三区黑人| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免| 啦啦啦在线免费观看视频4|