• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biomimetic nanochannel membrane for cascade response of borate and cis-hydroxyl compounds: An IMP logic gate device

    2019-07-27 01:31:54MeitoDengMengYngYqingXuYuqiongSunQingWngJinboLiuJinHungXiohiYngKeminWng
    Chinese Chemical Letters 2019年7期

    Meito Deng,Meng Yng,Yqing Xu,Yuqiong Sun,Qing Wng,Jinbo Liu,Jin Hung,Xiohi Yng,*,Kemin Wng,*

    a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China

    b College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China

    Keywords:Biomimetic nanochannel Cascade response Logic gate Borate cis-Hydroxyl compound

    A B S T R A C T Biomimetic nanodevice is an important branch to expand the potential applications of artificial nanochannels. Here, we constructed nanochannels for cascade response of borate and cis-hydroxyl compounds by modifying the nanochannels of track-etched polycarbonate (TEPC) membranes with polyvinyl alcohol (PVA). Firstly, borate bound to PVA and increased the negative charge density on the surface of the nanochannels, which obstructed the transport of 1,5-naphthalene disulfonate (NDS2).Subsequently, the addition of cis-hydroxyl compounds induced leaving of borate due to the stronger binding affinities between borate and cis-hydroxyl compounds, which reduced the negative charge density on nanochannels and then enhanced the transport of NDS2. The cascade response of the nanochannels also accord with the properties of IMP (implication) logic gate. In addition, such nanochannels showed good reproducibility and reversibility. Therefore, this cascade response model based on nanochannels has the potential to be used as switches in area of actuators and biosensors,and is also expected to be used to understand the interaction of substances in nanoscale and simulate the physiological functions of boron.

    Biomimetic nanochannels have gained remarkable attention because of their great stability, easy preparation and functionalization [1]. The biomimetic nanochannels provided convenient artificial platforms to study and simulate biological processes of living organisms [2]. By using chemical receptors,nanochannels have been engineered to respond to many stimuli[3,4], such as ions [5–13], thermal [14–16], light [17–19],pressure [20], pH [21–23], molecules [24–28]. Moreover, since life functions rely on synergistic effect of several molecules[29–31], it is necessary to develop multiple responsive biomimetic nanochannels with differential response to multiple molecules.In the area of chemosensors, several types of multi-functional sensing modes have been developed, such as dual-responsive receptors [32–34], ion-pair sensors [35,36], relay recognition systems[37–39]and cascade recognition[40–43].However,it is still a great demand to exploit multiple responsive biomimetic nanochannels, although there are some reports on sequential recognition nanochannels [44,45] and nanofluidic IMP (implication) logic device [46].

    For example,boron is an essential nutrient for most organisms[47]. Boron is not only important to animals [48,49], but also essential for normal growth of higher plants [50,51]. The affinity between borate and cis-hydroxyl compounds may account for the mechanism by which boron implements some of its biological functions [52,53]. Therefore, it is fascinating to construct nanodevices that can respond to both borate and cis-hydroxyl compounds.

    Here, we developed biomimetic nanochannels based on solid nanochannels for cascade response of borate and cis-hydroxy compounds,by using layer-by-layer self-assembly of poly(sodium 4-styrenesulfonate)(PSS),poly(diallyl-dimethyl ammonium chloride)(PDADMAC)and polyvinyl alcohol(PVA)in the nanochannels of track-etched polycarbonate(TEPC)membranes.PVA has binding sites for borate to form negatively charged PVA-borate complexes(Fig.1) [54]. If there are cis-hydroxyl compounds, the PVA-borate complexes will be destroyed and then borate will leave the surface of nanochannels along with cis-hydroxyl compounds, due to the stronger binding affinity between borate and cis-hydroxyl compounds([18]Figs.1B and C).During the cascade response of borate and cis-hydroxyl compounds, negative charge density on the modified nanochannels will be changed from low to high and then back to low.To monitor the recognition processes,the transport of 1,5-naphthalene disulfonate (NDS2) was utilized [55,56].

    Fig.1. Schematic of NDS2transport across the charged nanochannel membranes.(A)The transport of NDS2in water;(B)The transport of NDS2after the addition of borate;(C) The transport of NDS2after addition of cis-hydroxyl compounds in the presence of borate.

    Although the PVA modified nanochannels show low negative charge density since a small amount of borate bind to PVA during the assemble process (Fig. S1 in Supporting information), NDS2can diffuse through the nanochannels rapidly (Fig.1A). Then, the formation of negatively charged PVA-borate complexes increases the negative charge density of the nanochannels (Fig. 1B). The transport of NDS2is obstructed due to electrostatic repulsion,which implies that the nanochannels are responsive to borate.Subsequently, the addition of cis-hydroxyl compounds will carry off borate from the inner wall of nanochannels due to the stronger binding affinities between borate and cis-hydroxyl compounds,resulting in the decrease of negative charge density on nanochannels and then enhancing the transport of NDS2(Fig.1C). At this point, the nanochannels have performed cascade response to borate and cis-hydroxyl compounds,and the nanochannels return to initial state and ready for the next cycle of cascade response.

    We began the study with the modification of 30 nm TEPC membranes (Fig. S2 in Supporting information). The modified membranes showed smaller pore diameters(Fig.S3 in Supporting information). The TEM images of the liberated multilayer nanostructures clearly showed that the modified multilayers were assembled in the interior of the nanochannels (Fig. S4 in Supporting information). To confirm whether the charge density could be affected by Na2B4O7and cis-hydroxyl compounds, the zeta potentials of PVA solution,PVA/Na2B4O7mixed solution,PVA/Na2B4O7/mannitol mixed solution were characterized.As shown in Fig. S5 (Supporting information), PVA exhibited negative zeta potential; after incubating with Na2B4O7, the negative zeta potential was enhanced; and the negative zeta potential was decreased with the addition of mannitol.

    In addition, the transport of positively and negatively charged dyes (MV2+, NDS2) in nanochannels was investigated under different conditions(Fig.2).The experimental device was the same as reported previously[55,56].In brief,it is a U-tube setup and the two half-cells were separated by nanochannel membranes. The transport speed of MV2+was slightly faster than that of NDS2in water (condition a), implying that the nanochannels showed low negative charge density.In 0.5 mmol/L Na2B4O7solution(condition b), the transport of MV2+was significantly enhanced, while the transport of NDS2was obviously obstructed.This was because of a large amount of negatively charged borate bound to the PVA on the surface of nanochannels. Under condition c, i.e. 0.5 mmol/L Na2B4O7coexisted with 50 mmol/L mannitol, the transport behaviors of the two dyes were almost the same as that under condition a,i.e.the nanochannels return to initial state due to the leaving of borate induced by higher affinity between borate and mannitol. These results were consistent with Fig. 1. Since the concentration changes of NDS2in permeation half-cell was higher than that of MV2+,NDS2was used in the following investigations.

    Fig.2. Transports of MV2+and NDS2under different conditions.The vertical axis represents concentration of MV2+ (black) or NDS2(grey) in the permeation halfcell. The error bars indicate the standard deviations of three experiments.MV2+:methylviologen.

    The nanochannel membranes showed good selectivity to borate, only the addition of borate obstructed the transport of NDS2significantly (Fig. S6 in Supporting information). Although the solution of Na2B4O7was alkaline (pH 9.0), the nanochannel membranes did not response to pH 9 NaOH solution (Fig. S7 in Supporting information). The response of modified nanochannels to different concentration of borate was investigated (Fig. S8A in Supporting information). When the concentration of borate increased, the transport of NDS2was obstructed and reached the least value in 0.1 mmol/L Na2B4O7. However, with the further increase of the concentration of borate,the transport of NDS2was increased again because the high ionic strength induced the shrink of confined-diffusion region and the expansion of the freediffusion region [57]. In addition, the transport of NDS2was increased over time (Fig. S9 in Supporting information). Furthermore,the reversibility of PVA modified nanochannels was studied by altering the solution in U-tube setup (Fig. S8B in Supporting information). The concentration of NDS2in permeation cell increased and decreased in the presence and absence of borate,respectively.

    According to the model in Fig. 1, the borate-PVA modified nanochannels can response to cis-hydroxyl compounds.Therefore,the transport of NDS2across nanochannels was respectively investigated using four cis-hydroxyl compounds.In the presence of 0.1 mmol/L Na2B4O7, the addition of cis-hydroxyl compounds enhanced the transport of NDS2especially for mannitol and sorbitol (Fig. S10A in Supporting information), which can be explained as follows: the more hydroxyl groups, the greater the possibility of o-hydroxyl in the cis-conformation,so mannitol and sorbitol showed higher affinity to the borate.The concentration of NDS2in permeate half-cell was increased over time (Fig. S11 in Supporting information). As the control, the case without borate was also investigated,the transport of NDS2was quick and there was no distinction among the cis-hydroxyl compounds (Fig. S10B in Supporting information).

    The response of borate-PVA modified nanochannels to different concentrations of mannitol was investigated (Fig. S12A in Supporting information). With the increase of mannitol concentration, the transport of NDS2enhanced gradually, which was consistent with the hypotheses in Fig.1.When the concentration of mannitol was 50 mmol/L, the transport of NDS2was approximately equal to the situation of water in Fig. S10B. This result implied that the borates on the inner surface of nanochannels were almost carried off by mannitol,and the nanochannels were almost neutral. Meanwhile, the borate-PVA modified nanochannels also displayed good reversible response to mannitol (Fig. S12B in Supporting information).

    Fig. 3. Time-response of PVA modified nanochannel membranes to borate and mannitol. The vertical axis represents concentration of NDS2in the permeation half-cell. The error bars indicate the standard deviations of three experiments.

    To directly demonstrate the cascade response of PVA modified nanochannels to borate and mannitol,we monitored the transport of NDS2during the whole response process. As shown in Fig. 3,period a (0–120 min) represented NDS2transport under water;period b(120–240 min)represented NDS2transport after adding borate;period c(240–360 min)represented NDS2transport after the addition of 50 mmol/L mannitol.Comparing period a,b and c,the slope of the curve firstly decreased and then increased,i.e.the transport of NDS2was firstly obstructed and then enhanced,indicating the cascade response of PVA modified nanochannels to borate and mannitol.

    The PVA modified nanochannels with reversible cascade response can also be regarded as logic devices with IMP property(Fig.4).The borate and mannitol were defined as the input signal"IN1" and "IN2", respectively; and the concentration of NDS2in the permeation half-cell was defined as the output signal. The presence of borate or mannitol was defined as “1” for inputs;otherwise, the inputs defined as "0". For output, if the concentration of NDS2in the permeation half-cell was higher than 0.005 mmol/L, then the output was defined as "on" and "1";otherwise,the output was defined as"off"and"0".From the logic gate functions,the output“0”was observed only in the presence of borate (IN1=1) and in the absence of mannitol (IN2=0). In other input conditions, the system was in the "open" state. Therefore,this is an IMP logic gate.

    In summary, we have demonstrated a nanofluidic cascade response device based on the nanochannels of TEPC membranes functionalized with PVA.First,the borate bound with PVA to form negatively charged PVA-borate complexes that obstructed the transport of NDS2in the nanochannels, and the transport of NDS2reached the least value in the presence of 0.1 mmol/L Na2B4O7. Subsequently, the addition of cis-hydroxyl compounds induced leaving of borate due to the stronger binding affinities between borate and cis-hydroxyl compounds, which reduced the negative charge density on nanochannels and enhanced the transport of NDS2. In addition, the response of nanochannels to borate and mannitol can be repeated four times with the same nanochannel membrane.Moreover,such cascade response model also showed the properties of IMP logic gate.Therefore,our study may be helpful to investigate and simulate the physiological functions of boron in living organisms and has the potential of designing and constructing new biosensors.

    Fig. 4. (A) The concentration of NDS2in the permeate cell under different conditions.The error bars indicate the standard deviations of three experiments.(B)IMP logic gate was represented using a conventional gate notation.(C)Truth table for the IMP logic gate:borate and mannitol were inputs, and the concentration of NDS2was the output signal.

    Acknowledgments

    The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.21675047,21735002 and 21521063), the Key Point Research and Invention Program of Hunan Province (No. 2017DK2011).

    [19]Appendix A. Supplementary data

    Supplementary data associated with this article can be found,in the online version, at https://doi.org/10.1016/j.cclet.2019.04.003.

    国产精品一区www在线观看| 国产精品一区www在线观看| av国产久精品久网站免费入址| 一区二区三区免费毛片| 春色校园在线视频观看| 精品一区二区三区视频在线| 男插女下体视频免费在线播放| 久久久久网色| 狂野欧美白嫩少妇大欣赏| 亚洲一区高清亚洲精品| 麻豆av噜噜一区二区三区| 成年av动漫网址| 最近最新中文字幕大全电影3| 真实男女啪啪啪动态图| 精品久久久久久久人妻蜜臀av| 久久久久久久久久久免费av| 欧美日本亚洲视频在线播放| 国产视频首页在线观看| 麻豆av噜噜一区二区三区| 久久久久久久久中文| 国产亚洲精品av在线| 日本免费一区二区三区高清不卡| 最近最新中文字幕免费大全7| 深爱激情五月婷婷| 国产精品国产三级国产专区5o | 亚洲真实伦在线观看| 在线免费观看的www视频| 国产精品久久久久久av不卡| 99热这里只有精品一区| 看十八女毛片水多多多| 草草在线视频免费看| 观看美女的网站| 精品欧美国产一区二区三| 国产av一区在线观看免费| 国产成人精品一,二区| 特级一级黄色大片| www日本黄色视频网| 欧美性感艳星| 国产精品久久久久久精品电影小说 | 99热这里只有是精品50| 亚洲第一区二区三区不卡| a级毛片免费高清观看在线播放| 亚洲四区av| 中文在线观看免费www的网站| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 国国产精品蜜臀av免费| 国产视频内射| 少妇的逼水好多| 精品国产露脸久久av麻豆 | 精品午夜福利在线看| 亚洲精品国产av成人精品| 又爽又黄a免费视频| 成人亚洲欧美一区二区av| 2021天堂中文幕一二区在线观| av又黄又爽大尺度在线免费看 | 亚洲图色成人| 黄色日韩在线| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 69av精品久久久久久| 欧美成人免费av一区二区三区| 国产午夜精品论理片| 欧美三级亚洲精品| 国产精品一及| 成人漫画全彩无遮挡| 日本av手机在线免费观看| 一区二区三区乱码不卡18| 三级国产精品片| 联通29元200g的流量卡| 天天一区二区日本电影三级| 日本黄色视频三级网站网址| 精品久久久久久久久亚洲| 国产一区二区亚洲精品在线观看| 乱人视频在线观看| 2021少妇久久久久久久久久久| 日本一二三区视频观看| 色视频www国产| 嘟嘟电影网在线观看| 亚洲在线观看片| 99热精品在线国产| 97超碰精品成人国产| 91狼人影院| 色5月婷婷丁香| 中文亚洲av片在线观看爽| 中文天堂在线官网| 欧美日韩精品成人综合77777| 国产成人精品婷婷| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| 欧美成人午夜免费资源| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区免费观看| 精品人妻偷拍中文字幕| 2021天堂中文幕一二区在线观| 亚洲自偷自拍三级| 91久久精品国产一区二区成人| 国产老妇伦熟女老妇高清| 直男gayav资源| 免费看光身美女| 又粗又爽又猛毛片免费看| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 内射极品少妇av片p| 日韩中字成人| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| 成年女人看的毛片在线观看| 国产精品精品国产色婷婷| 桃色一区二区三区在线观看| 精品少妇黑人巨大在线播放 | 国产精品久久电影中文字幕| 人体艺术视频欧美日本| 有码 亚洲区| 成人无遮挡网站| 国产成人a区在线观看| 午夜福利网站1000一区二区三区| 在线观看美女被高潮喷水网站| 18禁动态无遮挡网站| 99久久九九国产精品国产免费| 国产精品久久久久久精品电影| 毛片女人毛片| 午夜视频国产福利| 亚洲欧美日韩无卡精品| 亚洲国产最新在线播放| 亚洲人成网站在线观看播放| 搡女人真爽免费视频火全软件| 一区二区三区四区激情视频| 十八禁国产超污无遮挡网站| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 国产成人a区在线观看| 日韩av不卡免费在线播放| 深爱激情五月婷婷| 久久人妻av系列| 两个人的视频大全免费| 免费观看性生交大片5| 久久精品国产亚洲av天美| 永久网站在线| 成人特级av手机在线观看| 三级国产精品片| 国产精品一区二区三区四区免费观看| 国产成人福利小说| 老司机福利观看| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 简卡轻食公司| 欧美日本视频| 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 欧美一级a爱片免费观看看| 国产三级中文精品| 最后的刺客免费高清国语| av在线老鸭窝| 国产精品福利在线免费观看| 国产精华一区二区三区| 波多野结衣巨乳人妻| 国产精品无大码| 99久久无色码亚洲精品果冻| 久久人妻av系列| 日韩精品青青久久久久久| 91在线精品国自产拍蜜月| 天堂影院成人在线观看| av在线观看视频网站免费| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 22中文网久久字幕| 日韩三级伦理在线观看| 性插视频无遮挡在线免费观看| 干丝袜人妻中文字幕| 国产精品1区2区在线观看.| 长腿黑丝高跟| 18禁动态无遮挡网站| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| 老司机福利观看| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 成人毛片a级毛片在线播放| 国产高清国产精品国产三级 | 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 在线观看66精品国产| 国产一区二区在线av高清观看| 欧美色视频一区免费| av在线亚洲专区| 婷婷六月久久综合丁香| 久久人人爽人人片av| 亚洲欧美日韩东京热| 久久这里只有精品中国| 在线免费十八禁| 日韩,欧美,国产一区二区三区 | 色视频www国产| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美一区二区国产精品久久精品| 国产av一区在线观看免费| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 国产成人午夜福利电影在线观看| 国产精品av视频在线免费观看| 美女cb高潮喷水在线观看| 尾随美女入室| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 国产一级毛片七仙女欲春2| 视频中文字幕在线观看| 直男gayav资源| 日韩av在线免费看完整版不卡| 国产国拍精品亚洲av在线观看| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 午夜精品一区二区三区免费看| 国产大屁股一区二区在线视频| 国产成人aa在线观看| 老女人水多毛片| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久 | 亚洲欧美成人精品一区二区| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 国产成人精品婷婷| 能在线免费观看的黄片| 久久久久久久久久成人| 高清日韩中文字幕在线| 免费观看的影片在线观看| av线在线观看网站| 欧美高清成人免费视频www| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| 久热久热在线精品观看| 美女被艹到高潮喷水动态| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 亚洲成人久久爱视频| 韩国av在线不卡| 国产伦理片在线播放av一区| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 国产淫语在线视频| 成人毛片a级毛片在线播放| 噜噜噜噜噜久久久久久91| 免费在线观看成人毛片| 特级一级黄色大片| 在线观看一区二区三区| 成人无遮挡网站| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 精品酒店卫生间| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 欧美潮喷喷水| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 汤姆久久久久久久影院中文字幕 | 日韩 亚洲 欧美在线| av福利片在线观看| 国产免费视频播放在线视频 | 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 久久久久久国产a免费观看| 精品久久久久久久久久久久久| 亚洲欧美精品专区久久| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 六月丁香七月| 黄色配什么色好看| 亚洲av一区综合| 国产色婷婷99| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 午夜爱爱视频在线播放| 国产av码专区亚洲av| 综合色av麻豆| 国产欧美日韩精品一区二区| 天堂√8在线中文| 日本三级黄在线观看| 村上凉子中文字幕在线| 水蜜桃什么品种好| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 国产亚洲av嫩草精品影院| 国产欧美日韩精品一区二区| 日本与韩国留学比较| 久久韩国三级中文字幕| 国产乱人偷精品视频| 九草在线视频观看| 男人舔女人下体高潮全视频| 丝袜美腿在线中文| 国产v大片淫在线免费观看| 最近中文字幕2019免费版| 精品久久久久久久久av| 麻豆乱淫一区二区| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄 | 如何舔出高潮| 欧美区成人在线视频| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o | 久久午夜福利片| 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 18禁裸乳无遮挡免费网站照片| 国产激情偷乱视频一区二区| 免费观看a级毛片全部| 亚洲高清免费不卡视频| av专区在线播放| www日本黄色视频网| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 自拍偷自拍亚洲精品老妇| 亚洲五月天丁香| 久久这里有精品视频免费| 日本午夜av视频| 美女内射精品一级片tv| 免费一级毛片在线播放高清视频| 黄片wwwwww| 国产亚洲一区二区精品| 久久久午夜欧美精品| 在线免费十八禁| 永久网站在线| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 亚洲高清免费不卡视频| 三级男女做爰猛烈吃奶摸视频| 狠狠狠狠99中文字幕| kizo精华| 麻豆国产97在线/欧美| 国产免费又黄又爽又色| 欧美精品国产亚洲| 直男gayav资源| 久久久久精品久久久久真实原创| 蜜桃久久精品国产亚洲av| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 午夜福利在线在线| 最近2019中文字幕mv第一页| 亚洲精品日韩在线中文字幕| 精品人妻熟女av久视频| 国产三级中文精品| 99热6这里只有精品| 国产在线男女| av又黄又爽大尺度在线免费看 | 国产免费一级a男人的天堂| 日本免费a在线| 免费av观看视频| 国产av不卡久久| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 中文字幕久久专区| 久久人人爽人人爽人人片va| 免费人成在线观看视频色| 国产高清视频在线观看网站| 成人一区二区视频在线观看| 国产成人福利小说| 午夜免费男女啪啪视频观看| 舔av片在线| 欧美高清成人免费视频www| 日韩强制内射视频| 日韩欧美在线乱码| 超碰av人人做人人爽久久| 尾随美女入室| 免费观看性生交大片5| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 特级一级黄色大片| 久久99热这里只频精品6学生 | 国内揄拍国产精品人妻在线| 直男gayav资源| 99热网站在线观看| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费看美女性在线毛片视频| 内射极品少妇av片p| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放 | 搞女人的毛片| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 日韩强制内射视频| 亚洲在久久综合| 69人妻影院| 国产伦在线观看视频一区| 欧美性感艳星| 国产毛片a区久久久久| 亚洲av福利一区| 欧美97在线视频| АⅤ资源中文在线天堂| 18+在线观看网站| 嫩草影院精品99| 国产午夜精品论理片| 一夜夜www| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 亚洲国产最新在线播放| 国产免费一级a男人的天堂| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 国产在视频线精品| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 日本五十路高清| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说 | 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 99久久无色码亚洲精品果冻| 黄色日韩在线| 禁无遮挡网站| 日韩欧美 国产精品| 国产精品一区www在线观看| 欧美又色又爽又黄视频| 成人二区视频| 九九久久精品国产亚洲av麻豆| 久久人妻av系列| 变态另类丝袜制服| 亚洲丝袜综合中文字幕| 国产中年淑女户外野战色| 日韩,欧美,国产一区二区三区 | 成人欧美大片| 国产精品av视频在线免费观看| 免费看av在线观看网站| 亚洲av日韩在线播放| 观看美女的网站| 啦啦啦观看免费观看视频高清| 婷婷色综合大香蕉| 热99re8久久精品国产| 欧美日韩综合久久久久久| 一个人免费在线观看电影| 看片在线看免费视频| 精品国产三级普通话版| 免费黄色在线免费观看| 身体一侧抽搐| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 免费电影在线观看免费观看| 免费黄色在线免费观看| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区三区四区免费观看| 久久综合国产亚洲精品| av黄色大香蕉| 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 国产精品1区2区在线观看.| 国产亚洲最大av| 成人午夜精彩视频在线观看| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 午夜a级毛片| 中文字幕制服av| av国产免费在线观看| av线在线观看网站| 高清av免费在线| 亚洲性久久影院| 国产高清有码在线观看视频| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o | 久久久a久久爽久久v久久| 国产亚洲午夜精品一区二区久久 | 国产av一区在线观看免费| 亚洲18禁久久av| 亚洲欧美成人精品一区二区| 免费观看人在逋| av天堂中文字幕网| 在线免费十八禁| 欧美日韩在线观看h| 亚洲不卡免费看| 亚洲精品色激情综合| 在线播放无遮挡| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 桃色一区二区三区在线观看| 久久久久精品久久久久真实原创| 免费观看精品视频网站| 日本av手机在线免费观看| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽| 人妻夜夜爽99麻豆av| 美女高潮的动态| 久久久久久伊人网av| 午夜视频国产福利| 久久6这里有精品| 国产成人精品久久久久久| 人妻系列 视频| 精品久久久久久久久亚洲| 99热这里只有是精品50| 欧美性猛交╳xxx乱大交人| .国产精品久久| av女优亚洲男人天堂| 91av网一区二区| 国产大屁股一区二区在线视频| 久久久久久国产a免费观看| 看免费成人av毛片| 99久国产av精品国产电影| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区 | 国产亚洲av片在线观看秒播厂 | 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99 | 又爽又黄无遮挡网站| 99久久精品热视频| 亚洲人成网站在线观看播放| 日韩av在线大香蕉| 国内少妇人妻偷人精品xxx网站| 欧美成人免费av一区二区三区| 最近最新中文字幕免费大全7| 亚洲欧美成人精品一区二区| 美女内射精品一级片tv| 国产三级中文精品| 亚洲国产精品国产精品| 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 春色校园在线视频观看| 国产精品无大码| 乱码一卡2卡4卡精品| 亚洲av电影在线观看一区二区三区 | 老司机福利观看| 亚洲自偷自拍三级| 麻豆成人av视频| 日本一二三区视频观看| 国产精品无大码| 亚洲精品一区蜜桃| 床上黄色一级片| 亚洲国产精品合色在线| 中文乱码字字幕精品一区二区三区 | 91av网一区二区| 国产精品麻豆人妻色哟哟久久 | 蜜桃亚洲精品一区二区三区| 在线免费观看的www视频| 亚洲国产日韩欧美精品在线观看| 亚洲va在线va天堂va国产| 神马国产精品三级电影在线观看| 精品人妻一区二区三区麻豆| 一级二级三级毛片免费看| 久久久久国产网址| 男插女下体视频免费在线播放| 大话2 男鬼变身卡| 欧美极品一区二区三区四区| 床上黄色一级片| 三级经典国产精品| 午夜激情福利司机影院| 国产成人免费观看mmmm| 欧美+日韩+精品| 亚洲欧美日韩高清专用| www日本黄色视频网| 青春草视频在线免费观看| 亚洲av熟女| 永久免费av网站大全| 国产91av在线免费观看| a级毛片免费高清观看在线播放| 精品酒店卫生间| 热99re8久久精品国产| 久久99热这里只有精品18| 国产亚洲精品av在线| 午夜免费激情av| 哪个播放器可以免费观看大片| 啦啦啦韩国在线观看视频| 69av精品久久久久久| 亚洲精品自拍成人| 精品久久久久久久久久久久久| 偷拍熟女少妇极品色| 亚洲电影在线观看av| 一级av片app| 国产一区二区在线av高清观看| 免费无遮挡裸体视频| 国产美女午夜福利| 成人国产麻豆网| 欧美变态另类bdsm刘玥| 午夜福利在线观看吧| 蜜臀久久99精品久久宅男| 国产成人a区在线观看| 最近中文字幕高清免费大全6| 22中文网久久字幕| 午夜久久久久精精品| 国产精品女同一区二区软件| 麻豆久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 激情 狠狠 欧美| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 变态另类丝袜制服| 亚洲经典国产精华液单| 美女高潮的动态| 又粗又硬又长又爽又黄的视频| 国产毛片a区久久久久| 久久精品国产亚洲网站| 国内揄拍国产精品人妻在线| 久久亚洲国产成人精品v| 99久久精品国产国产毛片| 久久精品久久久久久噜噜老黄 | videossex国产| 国产亚洲5aaaaa淫片| 中文字幕久久专区|