• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sonochemical synthesis of silver nanoparticles coated copper wire for low-temperature solid state bonding on silicon substrate

    2019-07-27 01:32:00QiangHuChenZhaoZhejuanZhangJunGuoChenluYuZhuoSunXianqingPiao
    Chinese Chemical Letters 2019年7期

    Qiang Hu,Chen Zhao,Zhejuan Zhang*,Jun Guo,Chenlu Yu,Zhuo Sun,Xianqing Piao

    School of Physics & Material Science, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China

    Keywords:Sonochemistry Ag-Cu copper wire Low-temperature sintering Solar cells Polyvinylpyrrolidone

    A B S T R A C T Silver nanoparticles(AgNPs)are directly grown on surface of 25m[39]m copper wire by ultrasound-assisted chemical reduction. Silver nitrate is used as precursors,when polyvinylpyrrolidone(PVP) is added as a controller of the dimension of AgNPs.Influence of growth parameters such as precursor’s concentration,ratio proportion of PVP and ultra-sonication on the growth of AgNPs coating are determined. The best morphology,size of the AgNPs are observed on copper wire.The results show that the copper wire coated with AgNPs of [24]100 nm diameter exhibits good antioxidation and ohmic contact after sinter on Si substrate at a temperature as low as 320C,is especially suitable as a substitute for[25]silver paste electrode used in silicon solar cells.

    In the traditional solar cell industry, the formation of front electrode is divided into two stages.First,silver paste is printed on the surface of Si wafer in parallel arrangement with 1–2 mm spacing.Second,sintering process is necessary to make electrode a good contact(ohmic contact)on Si substrates to decrease contact resistance of Si substrates and electrodes.It is reported that good ohmic contact could be obtained at high temperatures above 835C[1].However,high temperature treatment would have some negative effects on conversion efficiency of solar cells. As we all know that the conversion efficiency of solar cells is closely associated with fill factor, short-circuit current and open-circuit voltage, where these factors, in turn, are affected by series and parallel resistance.High parallel resistance or low series resistance lead to high conversion efficiency. After sintering at high temperature, the formation of large silver crystals would result in high series resistance, and some thermal breakdown of p-n junction is inevitable [2]. Therefore, silver particles of nanostructures in silver paste is introduced to decrease the treatment temperature of front electrode.

    Nanoparticles have been extensively studied in the last decade because of their unusual chemical,physics,electrical properties[3]and potential applications in magnetic recording [4,5] or electrodes[6].More importantly,nanoparticles can exhibit high surfaceto-volume ratio properties, which are not apparent in bulk materials [7]. It is important that melting temperature reduced by decreasing size of silver nanoparticles has been proven in previous work[8].In Keunju[26]et al.’s work,silver paste composed of nanoparticles,Pb-free frit and organic vehicle were screen printed on alumina substrates and sintered at temperatures ranging from 250C to 450C,and the densification of nanoparticles took place at the sintering temperature of 400C[9].Luo [27]et al.reported that the silver paste using silver nanoparticles (AgNPs) was proper for the manufacturing electrical components at a low sintering temperature as low as 300C [10]. However, the most commonly production routes of silver paste introduces the impurity elements,non-environmentally friendly reducing agent and even toxic substances [11–13]. All these works are based on screen printing technology. The limit of the width of printed silver lines is more than 50 mm, so that the efficiency of the solar cell is indirectly limited due to the transmittance of visible light affected by the area of the front electrode.

    In this work, a kind of silver-coated copper wire (Ag-Cu wire)with the dimeter of 25 [39]mm is provided. The AgNPs form a dense coating on the surface of Cu wire by using sonochemical reduction method,when ethylene glycol(EG)is used as solvent and reducer to deoxidize Ag+. The effect of silver ion concentration and ultrasonic cavitation on the growth of AgNPs is studied.Ag-Cu wire with small dimeter shows good antioxidant property, and can be sintered on the surface of silicon wafer (SW) at a lower temperature, which is conducive to the application of front electrodes in solar cells.

    The copper wire (Cu, 99.99%, [28]25mm) is purchased from Matfron Semiconductor Technology Company. Meanwhile, silver nitrate (AgNO3, AR, 99.9%), Ethanol, ethylene glycol (EG),polyvinylpyrrolidone (PVP-K30) and hydrochloric acid (HCl, 37%)are purchased from Sinopharm Chemical Reagent Company.AgNPs coating is fabricated by ultrasonic irradiation (40 kHz, 300 W,BL10-300 ltrasonic machine) on copper wires cut in length of 20 cm. The copper wire is washed with deionized water and ethanol, respectively, rinsed with 100 mL hydrochloric acid solution (6%) for 15 min under ultrasonic irradiation, and then are immersed into 50 mL EG. AgNO3solution is added in EG as a precursor, followed by PVP. After being sonicated for a period of time (15, 30, 45, and 60 min) at ambient condition, when the surrounding temperature was maintained at 24C, the wire is rinsed with ethanol and DI water for three times and left to dry in open air.The effect of silver ion and reducing agent on the growth of AgNPs is investigated by varying the concentration of the AgNO3(6 mmol/L,12 mmol/L,24 mmol/L,36 mmol/L,59 mmol/L)and the molar ratio vs.[29] PVP (1:6, 1:8, 1:10, 1:12) while keeping other variables constant.All the reagents are of analytical grade and used without further purification.For the potential application of Ag-Cu wire in Si solar cell as silver omitting busbars, the products synthesized above are sintered on the SW with 20 mm 20 mm in size in a muffle furnace (SX-3-10) for 1 h. The annealing temperature was increased from 200C to 500C.

    The morphology and structures of Ag-Cu wire before and after sintering on silicon are characterized by scanning electron microscope (SEM, S-4800) equipped with energy dispersive Xray spectroscopy (EDS). The crystal structure of Ag-coating is characterized by powder X-Ray Diffraction(PXRD,Ultima IV).The electrical conductivity of Ag-Cu wire is measured by digital Multimeter(8808 A),while the contact resistance between Ag-Cu wire and Si wafer is studied by DC regulated power (ZHAOXIN RXN-605D).

    The image in Fig. 1 shows the morphologies of Cu wire and AgNPs on the surface of Cu wire.It can be seen that the surface of raw Cu wire is smooth. After ultrasonic irradiation in AgNO3solution, roughness of the wire indicates that Cu wires are wrapped in nanoparticles. When the concentration of AgNO3is lower than 12 mmol/L,the Cu wires are partly naked,and the size of AgNPs is small in diameter of 100–200 nm,as shown in[30]Figs.1b and c.When AgNO3concentration increases to 24 mmol/L,Cu wire is completely wrapped by AgNPs of 200–400 nm in high density.At higher AgNO3concentration, the more silver ion in the solution,the silver atoms are reduced to form thicker wrap outside.Therefore, when the concentration of AgNO3reaches to above 36 mmol/L, the silver films formed by random stacking of silver particles is so thick to result in cracks and warpage,as shown in[31]the insets of Figs.1e and f. Meanwhile, the size of AgNPs increase to more than 500 nm.Fig.1g shows the EDS spectrum of Ag-Cu wire in above sample(d).The results indicate the presence of Cu and Ag,and the intensity of Ag peak is quite strong which means copper wire is well-coated by silver nanoparticles. PXRD spectrum(Fig. 1h) of Ag-Cu wire in sample (d) reveals that there are no shift on diffraction peaks of Ag and Cu,shows that there are no Ag,Cu oxide and Ag-Cu alloy in the product.Ag-Cu wire has excellent anti-oxidation property according to XRD spectrum.The coverage rate and size of silver particles on the surface increase obviously with the increasing of AgNO3concentration.Overall,the diameter and coverage of AgNPs are more uniformity at AgNO3concentration of 24[32]mmol/L.Therefore,this concentration can be assumed as the saturation concentration,which is most suitable and stable for growth of AgNPs.

    In the course of the experiment, it is found that without ultrasonic wave, the encapsulation layer of AgNPs could not be achieved under the same conditions mentioned above.Therefore,the effect of ultrasonic irradiation is studied at AgNO3concentration of 24 mmol/L. It is reported that the chemical effects of ultrasound do not come from a direct interaction of sound with molecular species, and acoustic cavitation is responsible for the sonochemical process[14,15].The main event in sonochemistry is the creation,growth,and collapse of a bubble that is formed in the liquid. The stage leading to the growth of the bubble occurs through the diffusion of solute vapor into the volume of the bubble.The last stage is the collapse of the bubble when the bubble size reaches its maximum value.High temperature(5000–25000 K)are obtained upon the collapse of the bubble.Since this collapse occurs in less than nanosecond,transient hot spot forms,and that hot spot is responsible for the chemistry.To check this hypothesis,we have carried out the reaction at 200C without ultrasonic waves.Indeed,the expected silver coating is failure to obtain. Then, we observe AgNPs on surface of Cu wire after ultrasonic irradiating for different time under 40 kHz and 0.45 W/cm2, as shown in Fig. 2.After ultrasonic irradiating, although the density of AgNPs has no obviously improvement, extension of time increases the size of AgNPs from 150 nm to 450 nm.The results are accordance with the reaction process by sonochemical method.The formation of AgNPs from solution to solid involves two stages, which are nucleation and growth.The density of nucleation site on Cu wire is dominated by ultrasonic power [16]. During nucleation, silver atoms joint together forming small particles. The growth of single crystal follows the Ostwald ripening process whereby the growth of larger crystals is more energetically favored with respect to smaller crystals that nucleate first.On this basis,it is realized that there is enough bubble collapse in ethylene glycol to result in high temperature.Then ethylene glycol decomposes,and radical ion are created, which is beneficial to the landing of silver ions on the surface of Cu wires as follow reaction equations [17,18].[3]

    Fig.1. SEM images of copper wires (a) and AgNPs grown on Cu wire at different AgNO3 concentrations of(b)6 mmol/L,(c)12 mmol/L,(d)24 mmol/L,(e)36 mmol/L and(f)59 mmol/L;EDS spectrum(g)and XRD spectrum(h)of Ag-Cu wire in above sample (d).

    The Ag-Cu wire is sintered on a SW at different temperature.As a result,when the temperature is below 400C,the Ag-Cu wire is failure to connect on the SW.Fig.3 shows the SEM images of Ag-Cu wire on SW at 400C and 500C. In Fig. 3a, AgNPs still show complete particle morphology, and the boundary between Ag-Cu wire and SW is clear,which means the AgNPs have not formed hot melt connection. The subsequent measurements prove that the adhesion between Ag-Cu wire and SW is not strong enough and fall off easily.When increasing sintering temperature to 500C,AgNPs melt and form a dense enclosing layer.In addition,the connection between the Ag-Cu wire and SW is relatively stronger. However,this annealing temperature is still too high.

    Our former work has reported that the size of AgNPs could be controlled by polyvinylpyrrolidone(PVP)[19].Therefore,PVP was introduced into sonochemical synthesis of AgNPs.Fig.4 shows the SEM images of AgNPs grown on Cu wire regulated by different molar ratio of PVP vs. AgNO3, keeping AgNO3concentration at 24 mmol/L. When the molar ratio is 6:1, the size and shape of AgNPs is irregular.Both small particles and large pieces are present in the products.As a kind of organic polymer compounds,PVP has large steric hindrance because of existence of five-membered ring,which could provide a stable and disperse environment. Further,the pyrrole ring of the PVP branch is a typical polar functional group,which can effectively combine with the metal crystal plane.It is suggested that when the concentration of PVP is low, silver nanoparticles are partly coated by PVP. The silver nanoparticles without PVP coated are easy to aggregate to form a big one. The higher the molar ratio is,the smaller the dimeter of AgNPs is.When molar ratio is 10:1, the diameter of AgNPs decreases to [35]100 nm and the uniformity is obviously increased.It is suggested that most silver crystal plane is coated by PVP so that the deposition rate of silver atoms on each plane is limited.In the situation nucleation is in domination, so that AgNPs in small size are formed on the surface of copper wire [20,21]. However, if the amount of PVP is overdose,due to the rest polymer chain of PVP as bridge[22],part of silver nanoparticles aggregates again,as shown in Fig.4d.High intensity of Ag peak as shown in the EDS spectrum in Fig.4e reveals that the percentage of silver nanoparticles on the surface of copper wire in sample(c)is still can reach to a high level,which means the AgNPs are denser. The degree of diffraction peaks in powder XRD spectrum of Ag-Cu wire in sample(c)as shown in Fig.4f is similar with XRD spectrum in Fig. 1h. This means the Ag-Cu wire synthesized through PVP does not contain copper oxide, silver oxide or Ag-Cu alloy either.Compared to XRD spectrum in Fig.1h,the intensity of(111)peak in Fig.4f is stronger and this is attributed to the selective adsorption of PVP.The functional group NC?O of PVP is easy to adsorb on (100) plane of Ag to decrease its growth rate and (111) crystal plane has relatively less PVP adsorption, So the crystal structure of Ag as shown in Fig. 4f forms.

    Fig. 3. SEM images of silver-coated copper wire sintered on silicon substrate at different temperature:[19] (a) 400C, (b) 500 C.

    Fig.4. SEM images of AgNPs grown on Cu wire regulated by different molar ratio of PVP vs.AgNO3:[20](a)6:1,(b)8:1,(c)10:1,(d)12:1.EDS spectrum(e)and XRD spectrum(f) of Ag-Cu wire in above sample (c).

    After annealing at 320C for 1 h, the Ag-Cu wire in Fig. 4c is sintered firmly on silicon substrate. Fig. 5 shows the surface and cross-sectional mapping images of Ag-Cu wire after sintering process.Cu wire is wrapped in silver layer of[36]2.5mm in thickness,while there is also a thicker silver layer between the Ag-Cu wires and the silicon substrate according to Fig.5a.These results indicate that the AgNPs melt and form the silver layer between Cu core and Si substrate. The existence of intermediate silver layer provides excellent bonding strength between Ag-Cu wire and silicon substrate.The distribution of Ag(Fig.5b)and Cu element(Fig.5c)show a core-shell structure of Ag-Cu wire.Surface morphology of sintered Ag-Cu wire in Fig. 5d shows that Cu wire is coated completely by silver,and the AgNPs on the surface melt completely and form a dense, well-crystallized silver film, which provided good properties of anti-oxidation to the products.The distribution of Ag element in Fig. 5e indicates that the Ag coating is welldistributed. From the above results, it can be seen that good sintering of Ag-Cu wire and silicon substrate was realized at low temperature.

    Fig. 5. Mapping images of Ag-Cu wire after heated at 320C for 1 h: (a) SEM image, distribution of (b) Ag element and (c) Cu element in cross section; (d) SEM image,distribution of (e) Ag element and (f) Cu element in surface.

    The resistance of raw Cu wire is 1.58 V/10 cm, while the resistance of Ag-Cu wire in Fig. 4c is only 1.48 V/10 cm. After exposure to air for more than 3 months,the resistance of Cu wire increases to 1.64 V, but the resistance of Ag-Cu wire does not change significantly. The results show good antioxidant performance of silver-coated copper wire. The series resistance is the main performance parameter of solar cell, and the contact resistance between the front electrode and the SW is a part of the series resistance[23].To illustrate the electrical behavior of the Ag-Cu wire, the contact resistance between Ag-Cu wire and Si substrate is tested as shown in Fig. 6a. The positive electrode of power is connected with the Ag-Cu wire, while the negative electrode is connected with the SW. The distance l between two electrodes is 1 cm.Good linearity characteristic of I-V curve shown in Fig.6b indicates that the contact between SW and silver-coated copper wire was ohmic contact.The electrical resistance of Ag-Cu wire is so close to that of silver line by printed (width of printed silver line is 100 mm)that it can be considered as a substitute for silver paste.Considering economic synthesis process,low sintering temperature and more transmission of visible light, Ag-Cu wire could be a potential alternative in front electrodes of solar cells.

    This paper describes the synthesis of AgNPs coating on copper wire using sonochemical method for application in silicon solar cell.The density and size of AgNPs in coated layer directly affected by the growth parameters such as variation of AgNO3concentration, ratio proportion of PVP and ultrasonic time. The AgNO3concentration,ratio proportion of PVP affect the size and thickness of AgNPs coating on the surface of copper wire while ultrasonic cavitation influenced the nucleation rate and density of AgNPs.The best condition suitable for growth of silver coating layer by Sonochemical-assisted method is established on Cu wire, which can be sintered on silicon substrate at a low temperature. The results on electrical conductivity and anti-oxidation indicates that Ag-Cu wire are suitable for the front electrode in silicon solar cells.

    Fig. 6. Test structure diagram (a) and I-V curve (b) for measurement of electrical properties of contact resistance between SW and silver electrodes.

    Acknowledgments

    This work is financially supported by [37][17]the National Nature Science Foundation of China(No.11204082)and Shanghai Natural Fund (No.16ZR1410700).

    一区二区三区免费毛片| 欧美另类一区| 午夜久久久在线观看| 国产综合精华液| 一级毛片我不卡| 观看美女的网站| 大香蕉97超碰在线| 久久精品夜色国产| 亚洲精品乱码久久久v下载方式| 亚洲丝袜综合中文字幕| 亚洲国产精品999| 大香蕉久久网| 男的添女的下面高潮视频| 黄片无遮挡物在线观看| 一本—道久久a久久精品蜜桃钙片| 有码 亚洲区| 亚洲欧洲精品一区二区精品久久久 | 夫妻午夜视频| 精品久久久精品久久久| 水蜜桃什么品种好| 色视频www国产| av线在线观看网站| 国产爽快片一区二区三区| 久久久久久人妻| 久久这里有精品视频免费| 欧美激情国产日韩精品一区| 亚洲成人av在线免费| 日产精品乱码卡一卡2卡三| 少妇人妻 视频| 激情五月婷婷亚洲| 亚洲欧美日韩卡通动漫| 日本欧美国产在线视频| 亚洲精品第二区| 国产乱人偷精品视频| 国产淫语在线视频| a级片在线免费高清观看视频| 国产午夜精品一二区理论片| 亚洲无线观看免费| av有码第一页| 黑丝袜美女国产一区| 99视频精品全部免费 在线| 亚洲国产av新网站| 2021少妇久久久久久久久久久| av黄色大香蕉| 久久99一区二区三区| 黑人高潮一二区| 插阴视频在线观看视频| 精品一区二区三卡| 永久网站在线| 欧美另类一区| 在线天堂最新版资源| 美女大奶头黄色视频| 高清av免费在线| 女性被躁到高潮视频| 亚洲国产毛片av蜜桃av| 久久热精品热| 亚洲精品国产色婷婷电影| 乱系列少妇在线播放| 久久精品熟女亚洲av麻豆精品| 日本-黄色视频高清免费观看| 色吧在线观看| 国产美女午夜福利| 欧美+日韩+精品| 中文欧美无线码| 人人妻人人添人人爽欧美一区卜| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 亚洲av.av天堂| 精品久久久精品久久久| 丁香六月天网| 三级国产精品欧美在线观看| 一级片'在线观看视频| 五月天丁香电影| 国产色婷婷99| 国产精品.久久久| 熟女电影av网| 成年美女黄网站色视频大全免费 | 美女脱内裤让男人舔精品视频| 在线观看av片永久免费下载| 国内揄拍国产精品人妻在线| 能在线免费看毛片的网站| 十八禁高潮呻吟视频 | 人妻少妇偷人精品九色| 精品一区二区三卡| 成人二区视频| 欧美日韩在线观看h| 男人舔奶头视频| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 男的添女的下面高潮视频| 黑人猛操日本美女一级片| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 日日撸夜夜添| 人妻少妇偷人精品九色| 在线精品无人区一区二区三| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 中文欧美无线码| 久久97久久精品| 亚洲人成网站在线播| 色94色欧美一区二区| 我的女老师完整版在线观看| av女优亚洲男人天堂| 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 我要看黄色一级片免费的| 中文字幕久久专区| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 日韩电影二区| 国产午夜精品久久久久久一区二区三区| 日日爽夜夜爽网站| videos熟女内射| 国产男女超爽视频在线观看| 亚洲内射少妇av| 国产乱来视频区| www.av在线官网国产| 日韩制服骚丝袜av| 国产美女午夜福利| 欧美日本中文国产一区发布| 日韩三级伦理在线观看| 免费在线观看成人毛片| 免费av不卡在线播放| 五月玫瑰六月丁香| 妹子高潮喷水视频| 九九在线视频观看精品| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| www.av在线官网国产| 桃花免费在线播放| 久久人人爽人人片av| 免费看光身美女| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 久久狼人影院| 精华霜和精华液先用哪个| 国产免费一区二区三区四区乱码| 国产伦精品一区二区三区四那| 只有这里有精品99| 美女福利国产在线| 日韩欧美一区视频在线观看 | 亚洲人与动物交配视频| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 另类精品久久| 久久人妻熟女aⅴ| 久久久精品94久久精品| 亚洲人成网站在线播| 精品熟女少妇av免费看| 狂野欧美激情性xxxx在线观看| 亚洲国产欧美日韩在线播放 | 99热全是精品| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级 | 日韩大片免费观看网站| 人妻系列 视频| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 性色av一级| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 成人特级av手机在线观看| 国产黄片视频在线免费观看| 国产精品久久久久久精品古装| 美女中出高潮动态图| 日韩电影二区| 亚洲国产精品一区二区三区在线| 欧美日韩视频精品一区| 啦啦啦视频在线资源免费观看| 国产精品伦人一区二区| 亚洲人成网站在线观看播放| 91久久精品电影网| 丰满乱子伦码专区| 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看| 桃花免费在线播放| av在线播放精品| 亚洲成人一二三区av| 日韩,欧美,国产一区二区三区| 女性生殖器流出的白浆| 国产精品国产三级专区第一集| 伦理电影免费视频| 欧美精品亚洲一区二区| 国产免费又黄又爽又色| 边亲边吃奶的免费视频| 亚洲精品国产色婷婷电影| 人妻人人澡人人爽人人| 九九爱精品视频在线观看| 麻豆成人av视频| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 如何舔出高潮| 性高湖久久久久久久久免费观看| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 简卡轻食公司| kizo精华| 成人黄色视频免费在线看| 免费观看性生交大片5| 久热久热在线精品观看| 性高湖久久久久久久久免费观看| 国产一区二区在线观看av| 亚洲婷婷狠狠爱综合网| 丁香六月天网| 国产成人精品福利久久| 亚洲真实伦在线观看| 观看美女的网站| 纯流量卡能插随身wifi吗| 亚洲成色77777| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产精品999| 又大又黄又爽视频免费| 我要看日韩黄色一级片| 99热6这里只有精品| 伦精品一区二区三区| 亚洲精品,欧美精品| 国产视频首页在线观看| 性色av一级| 黄色一级大片看看| 这个男人来自地球电影免费观看 | 久久热精品热| 99九九线精品视频在线观看视频| 欧美日韩av久久| 国产高清三级在线| 久久99一区二区三区| 一边亲一边摸免费视频| 亚洲国产色片| 18+在线观看网站| 日韩中字成人| 少妇猛男粗大的猛烈进出视频| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 26uuu在线亚洲综合色| 性色avwww在线观看| 日本91视频免费播放| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 久久婷婷青草| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区 | 热re99久久国产66热| 丝瓜视频免费看黄片| 久久人妻熟女aⅴ| 久久人人爽人人爽人人片va| 人妻人人澡人人爽人人| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 毛片一级片免费看久久久久| 成人美女网站在线观看视频| 日韩av不卡免费在线播放| 欧美日韩视频高清一区二区三区二| 国产精品熟女久久久久浪| 99热这里只有是精品50| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 高清黄色对白视频在线免费看 | 涩涩av久久男人的天堂| 亚洲成人av在线免费| 亚洲av男天堂| 在现免费观看毛片| 国产午夜精品一二区理论片| 国产精品福利在线免费观看| 国语对白做爰xxxⅹ性视频网站| 少妇的逼水好多| 欧美日韩精品成人综合77777| 亚洲四区av| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 男人添女人高潮全过程视频| 免费观看a级毛片全部| 日韩亚洲欧美综合| 国产精品国产av在线观看| 观看av在线不卡| 午夜福利影视在线免费观看| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 在线观看一区二区三区激情| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 日本黄色片子视频| 97超碰精品成人国产| 国产精品偷伦视频观看了| 好男人视频免费观看在线| 国产淫语在线视频| 婷婷色麻豆天堂久久| 9色porny在线观看| 自线自在国产av| 免费观看av网站的网址| 国产亚洲欧美精品永久| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的| 国产精品不卡视频一区二区| 最黄视频免费看| 亚洲精品国产av成人精品| 免费看不卡的av| 成人国产麻豆网| 麻豆成人午夜福利视频| 国产一区二区三区综合在线观看 | 欧美日韩一区二区视频在线观看视频在线| 少妇被粗大猛烈的视频| 亚洲国产最新在线播放| 在线观看人妻少妇| 日韩人妻高清精品专区| 国产av国产精品国产| 精品一区二区三卡| 午夜av观看不卡| 热99国产精品久久久久久7| 老女人水多毛片| 日韩av不卡免费在线播放| 黑人猛操日本美女一级片| 亚洲av免费高清在线观看| 国产成人午夜福利电影在线观看| 精品久久久久久久久亚洲| 一区二区三区免费毛片| 观看免费一级毛片| 一区在线观看完整版| 国产精品99久久99久久久不卡 | 色视频www国产| 成年人免费黄色播放视频 | 丰满乱子伦码专区| 超碰97精品在线观看| 看十八女毛片水多多多| 日本猛色少妇xxxxx猛交久久| 建设人人有责人人尽责人人享有的| 国产黄片美女视频| 亚洲精品色激情综合| 99久久综合免费| 午夜视频国产福利| 国产一区二区在线观看日韩| 人妻人人澡人人爽人人| 一个人看视频在线观看www免费| 亚洲精品乱久久久久久| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 国产熟女午夜一区二区三区 | 少妇 在线观看| h日本视频在线播放| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 国产毛片在线视频| 日韩中文字幕视频在线看片| 日韩一区二区三区影片| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 99久久综合免费| 内射极品少妇av片p| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放 | 少妇人妻精品综合一区二区| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 涩涩av久久男人的天堂| 中文欧美无线码| 简卡轻食公司| av福利片在线观看| 美女xxoo啪啪120秒动态图| 国产成人精品一,二区| 成人黄色视频免费在线看| 大香蕉97超碰在线| 女人久久www免费人成看片| 黑人猛操日本美女一级片| 涩涩av久久男人的天堂| 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 我要看日韩黄色一级片| 国产色婷婷99| 亚洲国产av新网站| 免费在线观看成人毛片| 熟女电影av网| 亚洲欧美日韩卡通动漫| 久久久精品免费免费高清| 最近最新中文字幕免费大全7| 国产精品伦人一区二区| av网站免费在线观看视频| 国产免费一区二区三区四区乱码| 99re6热这里在线精品视频| 高清av免费在线| 国产日韩欧美亚洲二区| 国产精品成人在线| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 桃花免费在线播放| 三级国产精品片| 日本-黄色视频高清免费观看| 国产成人免费无遮挡视频| a级一级毛片免费在线观看| 国产成人免费观看mmmm| 韩国av在线不卡| 纵有疾风起免费观看全集完整版| 久久午夜福利片| 麻豆成人av视频| 日韩av免费高清视频| 伊人久久国产一区二区| 69精品国产乱码久久久| 国产黄色视频一区二区在线观看| 日本免费在线观看一区| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 美女主播在线视频| 99热6这里只有精品| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 十八禁网站网址无遮挡 | 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 狠狠精品人妻久久久久久综合| 亚洲精品久久久久久婷婷小说| 欧美 亚洲 国产 日韩一| h日本视频在线播放| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 人妻少妇偷人精品九色| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 乱码一卡2卡4卡精品| av在线观看视频网站免费| 99久久精品国产国产毛片| 看免费成人av毛片| 国产高清国产精品国产三级| 在线观看人妻少妇| 又大又黄又爽视频免费| 性色av一级| 亚洲精品视频女| 国产老妇伦熟女老妇高清| 免费av不卡在线播放| av国产精品久久久久影院| 免费看不卡的av| 日本wwww免费看| 99热这里只有是精品在线观看| 亚洲成色77777| 国产高清有码在线观看视频| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 青春草国产在线视频| 国产免费一区二区三区四区乱码| 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 日韩亚洲欧美综合| 美女脱内裤让男人舔精品视频| 男女边吃奶边做爰视频| 午夜精品国产一区二区电影| 国产男女超爽视频在线观看| 国产高清国产精品国产三级| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 欧美日韩视频高清一区二区三区二| 久久这里有精品视频免费| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 久久久久久久久久久久大奶| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 精品久久久噜噜| 亚洲怡红院男人天堂| 91精品国产九色| 久久久午夜欧美精品| 在线 av 中文字幕| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 亚洲国产日韩一区二区| 夫妻午夜视频| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 少妇人妻久久综合中文| 丁香六月天网| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久久久丰满| 精品国产一区二区久久| 亚洲人成网站在线播| 日本wwww免费看| 丁香六月天网| 色婷婷av一区二区三区视频| 在线观看人妻少妇| www.色视频.com| 精品亚洲成a人片在线观看| 精品久久久久久电影网| 亚洲精品国产av蜜桃| 精品国产一区二区久久| 熟妇人妻不卡中文字幕| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 两个人的视频大全免费| 简卡轻食公司| 这个男人来自地球电影免费观看 | 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 色网站视频免费| 插阴视频在线观看视频| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 国产成人精品无人区| 国产美女午夜福利| 免费人妻精品一区二区三区视频| 国产69精品久久久久777片| av免费观看日本| 亚洲图色成人| 亚洲av男天堂| 免费黄频网站在线观看国产| 国产亚洲91精品色在线| 国产在线男女| 国产日韩一区二区三区精品不卡 | 成人午夜精彩视频在线观看| 狂野欧美激情性xxxx在线观看| 欧美+日韩+精品| 高清不卡的av网站| 免费av不卡在线播放| 午夜福利影视在线免费观看| 亚洲第一区二区三区不卡| 欧美日韩av久久| 只有这里有精品99| 香蕉精品网在线| 亚洲国产av新网站| 国产成人精品一,二区| 国产精品三级大全| 久久av网站| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频 | 欧美3d第一页| 久久精品久久久久久噜噜老黄| 亚洲精品乱码久久久v下载方式| 亚洲怡红院男人天堂| 久久久久久人妻| 亚洲综合色惰| 国产高清三级在线| 97超视频在线观看视频| 免费少妇av软件| 国产视频首页在线观看| 日本黄色日本黄色录像| 91精品国产国语对白视频| 在线精品无人区一区二区三| 国产日韩一区二区三区精品不卡 | 成人二区视频| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| 国内少妇人妻偷人精品xxx网站| av不卡在线播放| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 高清视频免费观看一区二区| av一本久久久久| 久久婷婷青草| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 如何舔出高潮| 蜜臀久久99精品久久宅男| 麻豆乱淫一区二区| 亚洲av中文av极速乱| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 美女福利国产在线| 伦理电影大哥的女人| 国产高清有码在线观看视频| 亚洲av二区三区四区| 国产精品久久久久成人av| 成人毛片60女人毛片免费| a 毛片基地| 国产永久视频网站| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区黑人 | 国产精品伦人一区二区| 国产欧美日韩综合在线一区二区 | 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| a级毛片在线看网站| 国产精品一二三区在线看| 日本午夜av视频| 一个人免费看片子| 欧美少妇被猛烈插入视频| 色5月婷婷丁香| 91久久精品国产一区二区成人| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| 黄片无遮挡物在线观看| 老熟女久久久| 啦啦啦在线观看免费高清www| 亚洲精品一二三| 国产成人a∨麻豆精品| 欧美xxⅹ黑人| 秋霞在线观看毛片| 日韩精品有码人妻一区| 日本欧美视频一区| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 亚洲欧美日韩卡通动漫| 国产黄色免费在线视频| 色视频www国产| 精品久久久久久电影网| 日韩三级伦理在线观看| 99久久人妻综合|