• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of annealing temperature on the electrical properties of ZnO thin-film transistors

    2019-07-17 02:14:18,,,,,,,,,,,ü
    關(guān)鍵詞:多晶性能參數(shù)能帶

    , , , , , , , , , , , ü

    Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China

    Abstract: In order to study the influence of annealing temperature (from room temperature to 500 ℃) on the electrical properties of ZnO thin film and thin-film transistors (TFTs), we carefully characterize the ZnO-TFT by using a wide range of techniques including X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). The results show that the ZnO-TFTs annealed at 400 ℃ have the best performance with mobility of 2.7 cm2/Vs, threshold voltage of 4.6 V, on/off current ratio of 5×105 and subthreshold swing of 0.98 V/Dec. The improvement of the electrical performance could be attributed to the decrease of carrier concentration, the enhancement of crystallization in ZnO films, and the improvement of interface between the oxide semiconductor layer and the insulation layer.

    Key words: film materials; ZnO; thin-film transistor; annealing temperature; mobility; interface

    Because of the low mobility, traditional amorphous silicon thin-film transistors (TFTs) are unable to drive organic light-emitting diode (OLEDs) displays[1-2]. While poly-silicon TFTs have high mobility, the poor uniformity and high production cost make them unsuitable for large size OLEDs[3]. Organic TFTs have the advantages of low temperature processing, however, they often show low carrier mobility and poor device stabilities[4-6].

    Recently, much attention has been paid to ZnO-based TFTs. ZnO is a non-toxic semiconductor with high electron mobility, excellent environmental stability and high optical transparency (bandgap: 3.3 eV at room temperature)[7-16]. ZnO films can be deposited by variety of deposition techniques, such as sol-gel process, spray pyrolysis, molecular beam epitaxy (MBE), chemical vapor deposition (CVD) and magnetron sputtering[7-16]. ZnO is an ideal semiconductor material for TFT applications, with higher field effect mobility than amorphous silicon and lower deposition temperature than poly-silicon[7-16]. With the increase of the interest in ZnO TFT,many researchers have studied the performance of ZnO TFT. MA et al[9]investigated ZnO TFT with Al drain contact, the leakage current was 1×10-7A, and the field effect mobility was 0.1 cm2/Vs. PARK[10]studied the influence of annealing on SiO2/ZnO TFT, when the annealing temperature was 300 ℃, the device exhibited best performance, the mobility,the threshold voltage andIon/Ioffratio were 0.8 cm2/Vs, 2.5 V, 1×106, respectively. CROSS et al[11]compared the stability and performance of ZnO TFT with SiO2and SiNxdielectric, respectively. The subthreshold slope,Ion/Ioffand the mobility were 1.06 V/Dec, 1×105, and 0.10 to 0.25 cm2/Vs respectively for TFT with SiO2insulators. AHN et al[12]fabricated ZnO-based TFT with Al2O3dielectric. The device was handled with various temperatures. The best performance was found at 250 ℃, the mobility was up to 30 cm2/Vs. VYAS et al[13]had reported optimization techniques of ZnO based thin film transistors, therein the mobility about ZnO TFT by RF sputtering[16]had a wide range of 0.1~2.5 cm2/Vs.

    ZnO thin films naturally exhibit n-type conductivity due to the native defects, such as oxygen vacancies (VO) or zinc interstitials (Zni). The high carrier concentration and poor control of defects result in a large negative threshold voltage and large off current[4-5], which is not good for device applications. It has been reported that the conductivity of ZnO thin films could be strongly affected by thermal annealing[4-5]. However, a detailed and systematic study of the influences of thermal annealing on the ZnO thin film and related TFTs is still lacking.

    In this study, the performance of ZnO-TFTs with different post-annealing temperatures was intensively investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL). The improvement of the devices after annealing is attributed to the decrease of carrier concentration, the enhancement of the crystallization of the ZnO, and the improvement semiconductor/dielectric interface. Above all, the ZnO-TFTs with 400 ℃ annealing temperature exhibited the best performance with a mobility of 2.7 cm2/Vs, a threshold voltage of 4.6 V, an on/off current ratio of 5×105, and a subthreshold swing of 0.98 V/Dec.

    1 Experimental section

    The ZnO-TFT device is a bottom-gate top-contact structure. The heavily doped p-type Si (111) (ρ<0.01 Ω·cm) with a 300 nm thick thermal SiO2were used as both the gate electrode and the dielectric layer. Before depositing the ZnO active layer, the substrates were sonicated with acetone, isopropanol, and deionized water, respectively. The ZnO layer was deposited as the active layer at room temperature by JGP560CШ radio-frequency (RF) magnetron sputtering. The deposition process was carried out under a sputtering pressure of 4 Pa and a RF power of 40 W. The resulting thickness of the ZnO film was about 40 nm, measured by VEECO Dektak 6M Step Profiler. The ZnO thin films were annealed at temperatures ranging from 200 to 500 ℃ for 1 h in air. Subsequently, the Al source and drain electrodes were deposited by thermal evaporation through a shadow mask to form a channel width (W) and length (L) of 800 and 200 μm, respectively. The electrical characteristics of the ZnO-TFTs were measured using a Keithley source meter 2612B in the dark at room temperature.

    The field-effect mobility (μ) in the saturation region and the threshold voltage (VTH) are calculated by fitting the straight line to the plot of the square root ofIDSversusVGS, according to the expression:

    (1)

    whereCox(11.5 nF/cm2),W(800 μm) andL(200 μm) are the capacitance of the gate insulator per unit area, channel width, and channel length, respectively.

    The subthreshold swing (S) and the interface trap density (NT) are calculated by the following formulas:

    (2)

    (3)

    whereS,kBandCoxare the subthreshold swing, Boltzmann’s constant and the capacitance of the gate insulator per unit area, respectively.

    2 Results and discussion

    The output and transfer curves of ZnO-TFTs under different temperatures are shown in the quick response (QR) code at the end of document, with electrical performance summarized in Table 1. As shown in Table 1, the as-deposited ZnO-TFT shows a mobility of 1.0 cm2/Vs, a low on/off current ratio of 8.6×103and a large subthreshold swing of 11.5 V/Dec. The poorIon/Ioffis due to the high carrier concentration of the as-deposited ZnO thin film originated from the native defects, such as oxygen vacancies (VO) or zinc interstitials (Zni). The off current and the devices performance are greatly improved after thermal annealing. The device with 400 ℃ annealing temperature exhibites the best performance with a mobility of 2.7 cm2/Vs, a threshold voltage of 4.6 V, an on/off current ratio of 5×105, and a subthreshold swing of 0.98 V/Dec. However, the device performance becomes poorer when the annealing temperature reaches 500 ℃.

    Table 1 The electrical parameters the ZnO-TFTs under different annealing temperatures表1 不同退火溫度ZnO-TFT電學(xué)性能參數(shù)表

    Fig.1 XRD spectrum of ZnO films with different annealing temperatures圖1 不同溫度退火ZnO薄膜XRD譜

    To understand the effect of thermal annealing on the ZnO thin film and related TFTs, systematical investigations including XRD, PL, and XPS characterization were carried out. Fig.1 shows the XRD patterns of ZnO thin films annealed at different temperatures. All of the films only show the diffraction peak of (002) crystal plane of wurtzite structure. Besides, the peak intensity increases with the rise of annealing temperature, indicating that thecaxis preferred orientation of ZnO thin films is improved. Fig.2 shows the FWHM of the (002) diffraction peak and the grain size of ZnO films with different annealing temperatures, and the grain size of films is calculated by the Scherrer’s formulaD=0.9λ/(βcosθ). With the increase of annealing temperature, the grain size of ZnO thin films increases from 26 nm to 40 nm, suggesting that the crystallization quality of the ZnO films is gradually improved.

    Fig.2 FWHM of the (002) diffraction peak and grain size of ZnO films with different annealing temperatures圖2 不同退火溫度ZnO薄膜(002)衍射峰對(duì)應(yīng)的半高寬與晶粒尺寸大小

    The surface properties of ZnO films on Si/SiO2substrates were investigated by SEM and AFM. Fig.3 and Fig.4 show the SEM and AFM images of ZnO films under different temperatures. The root mean square (RMS) values are 11.10, 11.10, 2.77, 1.42 and 1.48 nm for the as-deposited, 200, 300, 400 and 500 ℃ annealed films. Both SEM and AFM images reveal the polycrystalline nature of ZnO thin films, consistent with the XRD results. Besides, the ZnO films above 200 ℃ show smooth surface, which is good for carrier transport, as will be discussed in the following sections.

    Fig.3 SEM images of ZnO films with different annealing temperatures 圖3 不同退火溫度ZnO薄膜對(duì)應(yīng)SEM圖

    Fig.4 AFM images of ZnO films with different annealing temperatures圖4 不同退火溫度ZnO薄膜對(duì)應(yīng)AFM圖

    Fig.5 XPS spectrums for the Zn 2p3/2 core level of ZnO thin films圖5 不同退火溫度ZnO薄膜Zn 2p3/2 XPS譜

    The change of the defect states in ZnO films after annealing is studied in order to discuss the mechanism for the changes of the electrical properties of the films. Fig.5 shows the XPS spectrums for the Zn 2p3/2 core level of the ZnO thin films. The binding energies of 2p3/2 of all the ZnO thin films are 1 021.6±0.1 eV, higher than the binding energy of the metal zinc state (1 021.1 eV)[17]. So the zinc in the ZnO thin films exists in form of oxidation state, and annealing treatment does not change the chemical state of zinc in the films. This is consistent with the XRD result where no Zn metal phase could be observed. So the electrical performance of the ZnO films after annealing in air is not influenced by the chemical state of the zinc element. Fig.6 shows the core-level XPS spectra of O 1s for ZnO films annealed in different temperatures. Gaussian fitting shows that O 1s core level spectrum can be divided into three peaks: OIfor 530.15±0.15 eV, OIIfor 531.25±0.20 eV, OIIIfor 532.40±0.15 eV. The OIis related to the lattice oxygen of ZnO thin film[18-20]. The OIIis related to the oxygen vacancy (VO) of ZnO[18-20]. The OIIIis corresponding to the absorbed oxygen species (such as -CO3, -OH, H2O and O2) or the oxygen interstitials (Oi) in the films[18-20].

    As shown in Fig.7, with the rise of annealing temperature, the relative percentage of OIIdecreases from 21.05% to 12.95%, and the relative percentage of OIIIincreases from 8.77% to 15.83%. Thus, the content of oxygen vacancies in films decreases with the increase of annealing temperature, while the content of adsorption oxygen and oxygen interstitials in ZnO film increase.

    PL spectrums analysis is also an important method to study the defect states in oxide semiconductors. Visible luminescence of the deep level is closely related to the defect states in the sample. Fig.8 shows the result after normalization of the emission peaks near band edge. It can be seen all the samples show emission band near 600 nm. It was suggested that the emission band near 600 nm was related to the interstitial oxygen Oiin ZnO thin films[21-22].

    Fig.6 XPS spectrum for the O 1s core level of ZnO thin films and the Gaussian fitting results.圖6 ZnO薄膜O 1s芯能級(jí)XPS譜和高斯擬合結(jié)果

    Fig.7 Amount change of the three different chemical states of O圖7 三種不同化學(xué)態(tài)O的比例變化

    Fig.8 PL spectrums for the ZnO films with different annealing temperatures圖8 不同退火溫度ZnO薄膜PL譜圖

    With the increase of annealing temperature, the luminous intensity in orange and red regions gradually increases, indicating that the content of interstitial oxygen (Oi) in ZnO films increases with the annealing temperature. According to the XPS and PL characterization,when the annealing temperature is 500 ℃, the content of defects in the ZnO film,such as absorbed oxygen and interstitial oxygen, is too much, and the trapping and scattering of carriers in the conductive channel is too strong.

    For polycrystalline ZnO, carriers can get scattered at a grain boundary. If the mean free path (MFP) in the single crystal is much larger than the size of the grains in ZnO, then we could assume that the MFP is equal to the grain size,lG. The average momentum relaxation time can be estimated as[21]

    (4)

    So a grain size scattering limited mobility can then be written as

    (5)

    whereqis elementary charge.μGSSincreases with the increase of grain size.

    Besides, we have to account for mobility degradation because of an energy barrier introduced by a grain boundary. The boundary can be considered to be a back-to-back Schottky barrier and form an inter-grain transport perspective. Electron transport between grains will be inhibited by the energy barrier indicated asEB(Fig.9), which could be expressed as[21]

    whereqNGBis the negative charge trapped at the grain boundary, which will be balanced by positive charge associated with donor dopingqNDin the depletion region surrounding the grain boundary,εSis the low-frequency (static) dielectric constant,NDis the concentration of donor imputity.

    Electron transport in a polycrystalline material is also dominated by inter-grain transit involving thermionic emission over the energy barrierEBand could be expressed as

    whereμ0is the zero-barrier mobility.

    For low doping concentration,EBis large so thatμEBis small because electrons within a grain cannot surmount the inter-grain energy barrier. As the doping concentration increases, theEBdecreases so thatμEBwill increase.

    The overall bulk mobility in a polycrystalline materialμis obtained from summing in an inverse fashion grain size scattering mobilityμGSSand energy barrier degradation mobilityμEB. The mobility could be expressed as[22]

    μ-1=μGSS-1+μEB-1

    (6)

    So the bulk mobility of ZnO increases with grain size and doping concentration.

    Fig.9 Energy band diagram model for an n-type polycrystalline material, in which EB denotes an barrier height, ET denotes the energy of grain-boundary trap, which is assumed to be discrete and acceptor-like圖9 用于n型多晶材料的能帶圖模型,EB表示勢(shì)壘高度,ET表示晶界陷阱的能量

    The XPS and PL results showed that with the increase of annealing temperature, the percent content of oxygen vacancy (VO) in ZnO thin films decrease and the content of absorbed oxygen species or oxygen interstitials (Oi) increase. It was reported that the negatively charged oxygen species absorbed on the films’ surface will form depletion regions, that is, the barrier height near the grain boundary surfaces. The oxygen species at the surface act as acceptors and remove electrons from the bulk to deplete the grains and reduce electron concentrations[24, 26-28]. And the interstitial oxygen (Oi) is acceptor defects in ZnO films, their compensating effect can also induce the decrease in electron concentrations[16,18-20]. So the carrier concentration in ZnO active layer decreases after air annealing.

    From the mobility model described above, the bulk mobility of ZnO is the competition between grain sizes and carrier concentration. The mobility of ZnO increases with grain size and doping concentration. From the XRD results, it is suggested that the grain sizes of ZnO thin films get larger with the rise of annealing temperature. On the other hand, from XPS and PL results, the carrier concentration decreases with annealing temperature. Besides, the surface and interface roughness will also cause mobility degradation. From the AFM results, the ZnO films annealed at 300—400 ℃ exhibit smooth roughness, which is good for carrier transport. So the ZnO devices annealed at 300—400 ℃ show the largest mobility because of large grain size, relatively high carrier concentration and smooth surface/interface.

    As shown in Table 1, the as-deposited, 200 ℃, 300 ℃, 400 ℃ and 500 ℃ annealed TFTs show interface trap density of 1.1×1013, 5.9×1012, 4.0×1012, 9.5×1011, and 1.2×1013cm-2·eV-1, respectively (calculated from the subthreshold swing, see experimental section). Therefore, the ZnO-TFTs after annealing treatment (200 to 400 ℃ ) not only effectively reduce the carrier concentration and improve the crystalline quality of the ZnO thin films, but also reduce the interface trap density between the active layer and the insulating layer. However, as the annealing temperature further increases to 500 ℃, the device performance gets worse, which is related to the increase of dielectric/semiconductor interface trap density. The best performance of the ZnO-TFTs annealed at 400 ℃ is attributed to the decrease of carrier concentration, the enhancement of the crystallization of the ZnO films and the improvement of interface between the active layer and the insulation layer.

    Further improvement of the device performance could be achieved by optimization of the channel thickness, the microstructure of ZnO, and the introduction of passivation layer[4-5]. Besides, the performance improvement could also be realized by some novel post-processing treatments, such as high pressure annealing, microwave annealing, plasma treatment, O3annealing and deep-ultraviolet photochemical activation[6-7].

    3 Conclusions

    In summary, the properties of ZnO thin films and related TFTs under different post-annealing temperatures (from room temperature to 500 ℃) were intensively investigate by various characterization techniques including XRD, XPS, PL and electrical measurements. The ZnO-TFTs annealed at 400 ℃ exhibite the best performance with a mobility of 2.7 cm2/Vs, a threshold voltage of 4.6 V, an on/off current ratio of 5×105and a subthreshold swing of 0.98 V/Dec. The improvement of the devices is attributed to the decreasing carrier concentration, the enhancement of the crystallization of the ZnO films, and the improvement of interface between the active layer and the insulation layer.

    猜你喜歡
    多晶性能參數(shù)能帶
    紡織品吸濕速干性能參數(shù)研究
    吃東西時(shí)注意多
    汽車(chē)轉(zhuǎn)向管柱吸能帶變形研究和仿真優(yōu)化
    Life OR Death Decision
    時(shí)間數(shù)字轉(zhuǎn)換器性能參數(shù)及誤差分析
    天線(xiàn)電性能參數(shù)的測(cè)量
    鈣鈦礦型多晶薄膜太陽(yáng)電池(4)
    鈣鈦礦型多晶薄膜太陽(yáng)電池(2)
    多晶沸石膜的研究進(jìn)展
    具有類(lèi)白鎢礦結(jié)構(gòu)的KGd(MoO4)2的晶體結(jié)構(gòu)和能帶結(jié)構(gòu)
    国产一区二区在线观看日韩| av专区在线播放| 亚洲一级一片aⅴ在线观看| 日韩中字成人| 3wmmmm亚洲av在线观看| 91aial.com中文字幕在线观看| 91久久精品电影网| 免费大片黄手机在线观看| 精品久久久噜噜| 久久精品国产a三级三级三级| 国产高清三级在线| 久热久热在线精品观看| 国产精品蜜桃在线观看| av线在线观看网站| 久久久久久久亚洲中文字幕| 联通29元200g的流量卡| 精品久久久噜噜| 美女被艹到高潮喷水动态| 大又大粗又爽又黄少妇毛片口| 男女那种视频在线观看| 国产日韩欧美亚洲二区| 天堂网av新在线| 国产黄色视频一区二区在线观看| 黄色视频在线播放观看不卡| 欧美成人a在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久精品人妻少妇| 美女主播在线视频| 久久久久久九九精品二区国产| 91久久精品电影网| 国产成人精品久久久久久| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱| 97超碰精品成人国产| 波多野结衣巨乳人妻| 老师上课跳d突然被开到最大视频| 国产91av在线免费观看| 18禁裸乳无遮挡免费网站照片| 18禁裸乳无遮挡免费网站照片| 欧美zozozo另类| 国产精品熟女久久久久浪| 亚洲国产色片| 国产视频内射| 男人爽女人下面视频在线观看| 欧美zozozo另类| 欧美日韩国产mv在线观看视频 | 亚洲精品,欧美精品| 搞女人的毛片| 国产成人精品一,二区| 国产淫语在线视频| 欧美3d第一页| 简卡轻食公司| 热re99久久精品国产66热6| 性色avwww在线观看| av国产久精品久网站免费入址| 神马国产精品三级电影在线观看| 中文欧美无线码| 亚洲色图av天堂| 日韩人妻高清精品专区| 人体艺术视频欧美日本| 亚洲电影在线观看av| 欧美激情国产日韩精品一区| 国产精品国产av在线观看| 久久精品熟女亚洲av麻豆精品| 免费看不卡的av| 一级爰片在线观看| 欧美极品一区二区三区四区| 日日啪夜夜爽| 久热这里只有精品99| 人妻少妇偷人精品九色| 禁无遮挡网站| 国产高清有码在线观看视频| 亚洲欧洲国产日韩| 亚洲综合色惰| 2022亚洲国产成人精品| 永久免费av网站大全| .国产精品久久| 成人毛片60女人毛片免费| av专区在线播放| 欧美日韩亚洲高清精品| 一区二区av电影网| 九九在线视频观看精品| 全区人妻精品视频| 亚洲人成网站高清观看| 国产精品麻豆人妻色哟哟久久| 久久久久久久大尺度免费视频| 中文字幕人妻熟人妻熟丝袜美| 99热6这里只有精品| 中文字幕制服av| 午夜精品国产一区二区电影 | 免费av观看视频| 欧美高清成人免费视频www| 99视频精品全部免费 在线| 在线看a的网站| 天堂中文最新版在线下载 | 欧美日韩精品成人综合77777| 人妻夜夜爽99麻豆av| 亚洲激情五月婷婷啪啪| 内射极品少妇av片p| 看黄色毛片网站| 黄色日韩在线| 欧美日本视频| 亚洲国产高清在线一区二区三| 黄色一级大片看看| 国产精品一区二区在线观看99| 午夜免费男女啪啪视频观看| 欧美激情国产日韩精品一区| 精品少妇黑人巨大在线播放| 欧美三级亚洲精品| 寂寞人妻少妇视频99o| 看非洲黑人一级黄片| 亚洲精品乱码久久久久久按摩| 午夜福利在线观看免费完整高清在| 日产精品乱码卡一卡2卡三| 欧美精品人与动牲交sv欧美| 久久国产乱子免费精品| 最近最新中文字幕免费大全7| xxx大片免费视频| 亚洲av.av天堂| 舔av片在线| 国产免费一区二区三区四区乱码| 成人无遮挡网站| 日韩亚洲欧美综合| 国产视频内射| 国产精品人妻久久久久久| 亚洲成色77777| 久久精品人妻少妇| 夫妻午夜视频| 亚洲最大成人手机在线| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 中文字幕av成人在线电影| 国产精品一及| 91久久精品国产一区二区成人| 午夜爱爱视频在线播放| 狂野欧美激情性bbbbbb| 丰满少妇做爰视频| 免费观看无遮挡的男女| 一级毛片我不卡| 亚洲成人久久爱视频| 乱码一卡2卡4卡精品| 精品视频人人做人人爽| 亚洲,欧美,日韩| 高清午夜精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产欧美日韩精品一区二区| 亚洲成人av在线免费| 中文字幕av成人在线电影| 最新中文字幕久久久久| 一边亲一边摸免费视频| 综合色丁香网| 日韩亚洲欧美综合| 久久久久网色| 亚洲精品第二区| av在线老鸭窝| 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 一区二区三区免费毛片| 在线观看人妻少妇| 久久女婷五月综合色啪小说 | 精品人妻偷拍中文字幕| 一区二区三区精品91| 国产成人精品久久久久久| 美女主播在线视频| 国产男人的电影天堂91| 精品少妇久久久久久888优播| 99热6这里只有精品| 夜夜爽夜夜爽视频| 内射极品少妇av片p| 久久久久久久久久人人人人人人| 亚洲精品,欧美精品| 国产一区二区亚洲精品在线观看| 亚洲av电影在线观看一区二区三区 | 大陆偷拍与自拍| 欧美+日韩+精品| 老司机影院毛片| 中文天堂在线官网| 精品人妻偷拍中文字幕| 久久精品久久久久久噜噜老黄| 一级片'在线观看视频| 免费观看无遮挡的男女| 制服丝袜香蕉在线| 又爽又黄a免费视频| 啦啦啦啦在线视频资源| 欧美成人精品欧美一级黄| 99热这里只有精品一区| 午夜免费男女啪啪视频观看| 成年版毛片免费区| 天天躁夜夜躁狠狠久久av| 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 午夜日本视频在线| 久久99蜜桃精品久久| 91午夜精品亚洲一区二区三区| av在线观看视频网站免费| eeuss影院久久| 日日撸夜夜添| 亚洲aⅴ乱码一区二区在线播放| 亚洲va在线va天堂va国产| 亚洲精品日本国产第一区| 久久精品夜色国产| 别揉我奶头 嗯啊视频| 久久这里有精品视频免费| 大香蕉久久网| 亚洲成人精品中文字幕电影| 亚洲国产精品专区欧美| 一级a做视频免费观看| 欧美成人一区二区免费高清观看| 亚洲精品成人av观看孕妇| 国产日韩欧美在线精品| 国产毛片a区久久久久| 欧美三级亚洲精品| 精品人妻视频免费看| 黄片wwwwww| 日本wwww免费看| 中文精品一卡2卡3卡4更新| 一区二区三区四区激情视频| 亚洲欧美日韩另类电影网站 | 黄色怎么调成土黄色| 在线 av 中文字幕| 久久精品国产鲁丝片午夜精品| 人人妻人人爽人人添夜夜欢视频 | 国产成人精品婷婷| 一区二区三区四区激情视频| 日韩免费高清中文字幕av| 亚洲国产成人一精品久久久| 国产一区有黄有色的免费视频| 黄色欧美视频在线观看| 国产成人一区二区在线| 在线a可以看的网站| 成人一区二区视频在线观看| 久久亚洲国产成人精品v| 男人舔奶头视频| 3wmmmm亚洲av在线观看| 亚洲欧洲国产日韩| 欧美性猛交╳xxx乱大交人| 嫩草影院精品99| 男插女下体视频免费在线播放| 人妻系列 视频| 国产日韩欧美亚洲二区| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 少妇被粗大猛烈的视频| 一级二级三级毛片免费看| 丝袜脚勾引网站| 国产久久久一区二区三区| 天天一区二区日本电影三级| 街头女战士在线观看网站| 午夜激情久久久久久久| 国产成人免费无遮挡视频| 亚洲国产成人一精品久久久| 黄色配什么色好看| 国产 一区精品| 18禁在线播放成人免费| 丝袜脚勾引网站| 久久久a久久爽久久v久久| 成人欧美大片| 交换朋友夫妻互换小说| 国产午夜精品久久久久久一区二区三区| 久久综合国产亚洲精品| 久久久久性生活片| 少妇的逼水好多| 亚洲成人精品中文字幕电影| 日韩三级伦理在线观看| 欧美成人a在线观看| 亚洲精品国产av蜜桃| 亚洲在久久综合| 少妇被粗大猛烈的视频| 国产精品女同一区二区软件| 久久久久国产精品人妻一区二区| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 看非洲黑人一级黄片| 国产av国产精品国产| 午夜精品国产一区二区电影 | freevideosex欧美| 久久久精品94久久精品| 久久人人爽人人片av| 日韩欧美一区视频在线观看 | 亚洲精品国产av成人精品| videos熟女内射| 亚洲色图av天堂| 国产成人免费观看mmmm| 禁无遮挡网站| 国产一区有黄有色的免费视频| 日本-黄色视频高清免费观看| 国产精品偷伦视频观看了| 97在线视频观看| .国产精品久久| av播播在线观看一区| 欧美激情在线99| 高清在线视频一区二区三区| av在线蜜桃| 国产精品女同一区二区软件| 婷婷色av中文字幕| 成年版毛片免费区| 亚洲一级一片aⅴ在线观看| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 在线观看av片永久免费下载| 国国产精品蜜臀av免费| 成人鲁丝片一二三区免费| 精品酒店卫生间| 久久久成人免费电影| 卡戴珊不雅视频在线播放| 国产日韩欧美亚洲二区| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 下体分泌物呈黄色| 午夜视频国产福利| 亚洲精品久久久久久婷婷小说| 舔av片在线| 欧美极品一区二区三区四区| 白带黄色成豆腐渣| 成人国产av品久久久| 日韩一区二区三区影片| 夜夜爽夜夜爽视频| freevideosex欧美| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 日本熟妇午夜| 黄片wwwwww| 2021少妇久久久久久久久久久| 极品教师在线视频| 肉色欧美久久久久久久蜜桃 | 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 美女主播在线视频| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 国产高清不卡午夜福利| 久久久久久国产a免费观看| 国产精品一二三区在线看| 天天一区二区日本电影三级| 日韩伦理黄色片| 一本一本综合久久| 亚洲欧美成人精品一区二区| 国产极品天堂在线| av国产精品久久久久影院| 真实男女啪啪啪动态图| 1000部很黄的大片| 国产亚洲最大av| 久久精品久久久久久久性| 黄色配什么色好看| 久久久久久国产a免费观看| 如何舔出高潮| 国产熟女欧美一区二区| 久久久精品欧美日韩精品| 青春草国产在线视频| 岛国毛片在线播放| 激情 狠狠 欧美| 午夜精品国产一区二区电影 | 免费不卡的大黄色大毛片视频在线观看| 人妻少妇偷人精品九色| 91狼人影院| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 联通29元200g的流量卡| 99热网站在线观看| 日本黄色片子视频| 1000部很黄的大片| 日韩免费高清中文字幕av| 免费大片黄手机在线观看| 免费不卡的大黄色大毛片视频在线观看| 午夜精品国产一区二区电影 | 日本av手机在线免费观看| 涩涩av久久男人的天堂| 午夜福利在线观看免费完整高清在| 色播亚洲综合网| 人妻一区二区av| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 2021天堂中文幕一二区在线观| 2021少妇久久久久久久久久久| 亚洲最大成人中文| 激情五月婷婷亚洲| 国产色爽女视频免费观看| 成人国产麻豆网| 一级黄片播放器| 国内精品美女久久久久久| 色播亚洲综合网| 中文资源天堂在线| 99热国产这里只有精品6| 午夜激情福利司机影院| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 观看免费一级毛片| 欧美bdsm另类| 一级av片app| 久久久久久九九精品二区国产| 禁无遮挡网站| 岛国毛片在线播放| 国产男女内射视频| 亚洲av在线观看美女高潮| 亚洲精品亚洲一区二区| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 日韩大片免费观看网站| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 欧美另类一区| 亚洲,欧美,日韩| 午夜免费鲁丝| 看十八女毛片水多多多| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| 日韩欧美精品v在线| 91精品国产九色| 欧美bdsm另类| av在线老鸭窝| 男女国产视频网站| 久久久久国产网址| 亚洲精品国产av成人精品| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 直男gayav资源| 18禁裸乳无遮挡动漫免费视频 | 一级毛片 在线播放| 最近最新中文字幕大全电影3| 精品午夜福利在线看| 精品一区二区三卡| 中国国产av一级| 亚洲在久久综合| 国产精品久久久久久av不卡| 九九在线视频观看精品| 久久久久精品性色| av播播在线观看一区| 亚洲av不卡在线观看| 久久99热这里只有精品18| 国产在线一区二区三区精| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 午夜福利在线在线| 亚洲av免费高清在线观看| 在线天堂最新版资源| 六月丁香七月| 五月开心婷婷网| 偷拍熟女少妇极品色| 免费看不卡的av| 日韩av免费高清视频| 国产色爽女视频免费观看| 中国三级夫妇交换| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 国产中年淑女户外野战色| 身体一侧抽搐| 午夜老司机福利剧场| 亚洲av二区三区四区| 美女内射精品一级片tv| 亚洲经典国产精华液单| 嫩草影院新地址| 伦精品一区二区三区| 久久久精品94久久精品| 观看免费一级毛片| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美 | 18+在线观看网站| 色视频在线一区二区三区| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 18禁动态无遮挡网站| 国产精品国产三级国产av玫瑰| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 日本免费在线观看一区| 免费在线观看成人毛片| 日本wwww免费看| 日韩电影二区| 69人妻影院| 欧美区成人在线视频| 简卡轻食公司| 3wmmmm亚洲av在线观看| 夜夜爽夜夜爽视频| 综合色丁香网| av.在线天堂| 少妇 在线观看| av国产免费在线观看| 涩涩av久久男人的天堂| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 国产在视频线精品| 国产极品天堂在线| 久久久久久久久久久丰满| 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 亚洲av免费高清在线观看| 日本与韩国留学比较| 高清在线视频一区二区三区| 激情五月婷婷亚洲| 亚洲成色77777| 久久久久精品性色| 3wmmmm亚洲av在线观看| 亚洲三级黄色毛片| 日本爱情动作片www.在线观看| 你懂的网址亚洲精品在线观看| 久久精品夜色国产| 亚洲美女视频黄频| 精品视频人人做人人爽| 国精品久久久久久国模美| 成年女人看的毛片在线观看| 超碰97精品在线观看| 亚洲综合色惰| 中文资源天堂在线| 插阴视频在线观看视频| 亚洲真实伦在线观看| av在线app专区| 丰满乱子伦码专区| 成年版毛片免费区| 欧美xxxx性猛交bbbb| 看非洲黑人一级黄片| 日韩电影二区| 国产免费视频播放在线视频| av网站免费在线观看视频| 国产精品久久久久久久久免| 又粗又硬又长又爽又黄的视频| 不卡视频在线观看欧美| 在线 av 中文字幕| 精品国产乱码久久久久久小说| 国产成人a区在线观看| 一级二级三级毛片免费看| 熟女电影av网| 免费看av在线观看网站| 一级毛片 在线播放| 亚洲无线观看免费| 亚洲综合精品二区| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美 | 日本黄色片子视频| 3wmmmm亚洲av在线观看| 午夜精品一区二区三区免费看| 免费大片18禁| 国产免费福利视频在线观看| 国产精品蜜桃在线观看| 色哟哟·www| 成人亚洲精品一区在线观看 | 亚洲久久久久久中文字幕| 男女边吃奶边做爰视频| av福利片在线观看| 国产视频内射| 国产欧美另类精品又又久久亚洲欧美| 亚洲在久久综合| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 日韩电影二区| 六月丁香七月| 免费看a级黄色片| 中文在线观看免费www的网站| 国产高清国产精品国产三级 | 精品午夜福利在线看| 日韩,欧美,国产一区二区三区| 久久久久精品性色| 亚洲怡红院男人天堂| 欧美日本视频| 男插女下体视频免费在线播放| 少妇人妻一区二区三区视频| 日韩电影二区| 天天躁日日操中文字幕| 亚洲精品视频女| 伊人久久国产一区二区| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区黑人 | 干丝袜人妻中文字幕| 777米奇影视久久| 亚洲国产日韩一区二区| 最近2019中文字幕mv第一页| 亚洲怡红院男人天堂| 日韩成人伦理影院| 久久久色成人| 亚洲av成人精品一二三区| 欧美变态另类bdsm刘玥| 97热精品久久久久久| 欧美日韩在线观看h| 免费人成在线观看视频色| 王馨瑶露胸无遮挡在线观看| av播播在线观看一区| 国产探花在线观看一区二区| 亚洲精品影视一区二区三区av| av在线观看视频网站免费| 天堂网av新在线| 69av精品久久久久久| 亚洲激情五月婷婷啪啪| 丝袜喷水一区| av在线播放精品| 亚洲精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 国精品久久久久久国模美| 亚洲av中文av极速乱| 99热这里只有是精品50| 国产成人免费无遮挡视频| 日产精品乱码卡一卡2卡三| 午夜精品一区二区三区免费看| 国产成人a∨麻豆精品| 国产极品天堂在线| 国产色婷婷99| 欧美成人一区二区免费高清观看| 日本与韩国留学比较| 精品视频人人做人人爽| 丰满少妇做爰视频| 日本午夜av视频| 80岁老熟妇乱子伦牲交| 禁无遮挡网站| 搡女人真爽免费视频火全软件| 熟女av电影| 精品一区二区三区视频在线|