• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanothermite colloids: A new prospective for enhanced performance

    2019-07-16 11:58:38GerZkyAhmedAdllRkeshShuIshwrPuri
    Defence Technology 2019年3期

    M. Ger Zky , Ahmed M. Adll , Rkesh P. Shu , Ishwr K. Puri ,,

    Mostafa Radwan d, Sherif Elbasuney a,*

    a School of Chemical Engineering, Military Technical College, Kobry Elkoba, Cairo, Egypt

    b Department of Engineering Physics and Department of Mechanical Engineering,McMaster University,1280 Main Street West,Hamilton,Ontario,L8S 4L7,Canada

    c Department of Mechanical Engineering, McMaster University,1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada

    d British University in Egypt, Elshorouk City, Cairo, Egypt

    Keywords:Hydrothermal synthesis Nanoparticles Carbon nanotubes Nanothermites Energetic materials

    A B S T R A C T Nanothermites (metal oxide/metal) can offer tremendously exothermic self sustained reactions. CuO is one of the most effective oxidizers for naonothermite applications. This study reports on two prospectives for the manufacture of CuO nanoparticles. Colloidal CuO particles of 15 nm particle size were developed using hydrothermal synthesis technique. Multiwalled carbon nanotubes (MWCNTs) with surface are 700 m2/g was employed as a substrate for synthesis of CuO-coated MWCNTs using electroless plating. On the other hand, aluminium particles with combustion heat of 32000 J/g is of interest as high energy density material. The impact of stoichiometric nanothermite particles (CuO/Al & Cuo-coated MWCNTs/Al) on shock wave strength of Al/TNT nanocomposite was evaluated using ballistic mortar test.While CuO-coated MWCNTs decreased the shock wave strength by 15%;colloidal CuO enhanced the shock wave strength by 30%.The superior performance of colloidal CuO particles was correlated to their steric stabilization with employed organic solvent. This is the first time ever to report on fabrication,isolation, and integration of stablilized colloidal nanothermite particles into energetic matrix where intimate mixing between oxidizer and metal fuel could be achieved.

    1. Introduction

    Thermite particles have attracted increasing attention as they can offer massive heat output and act as high energey density material[1-5].They can offer tremendous volumetric heat output compared with common energetic materials (Fig.1) [6,7].

    Fig. 1 demontrated that CuO/Al is one of the most effective thermite mixtures in terms of combustion temperature, heat output, and gasous products [9,10]. CuO/Al can offer an adiabatic flame temperature of 5718 K with heat of reaction of about 4100 J/g,and aresonable amount of gaseous products (0.345 g gas/g thermite). Furthermore the formed Cu metal (resulted from thermite reaction) can be transformed into gas due to its low boiling point(1000°C) [11].

    The application of thermites in an explosive composition was demonstrated in US Patent 3, 297, 503. It has been reported that when certain thermites (Al/Fe2O3, Zr/B2O3, Li/MoO3, Li/WO3, Al/Mn3O4, Al/V2O5) were incorporated in an explosive formulations based on TNT; they offered good positive afterburning and extended fireballing [12].

    The reaction rate of conventional thermite particles is limited by particle diffusion and is comparatively low [13]. Nanothermite particles can offer high interfacial surface area and reactivity [14].Consequently they can offer particles and interparticle distance in the nanoscale [15,16]. These features can offer enhanced reaction rate[17,18].Till now,there have been no publications about the use of nano-thermites in high explosive formulations for enhancedblast. This could be due to difficulties associated with the manufacture and processing of the nano-thermites in cast explosive formulations [12].

    The sustainable fabrication of thermite particles at the nanoscale with consistent product quality is a major concern for advanced highly energetic systems i. e incediary devices, blasting caps, environmentally friendly ammunition primers, electric igniters, and metalized explosive formations [10].

    Fig.1. Gravimetric and volumetric energy density of example thermites compared to common explosives [8].

    Several techniques can be employed to develop nanothermite particles; for instance, mechanical mixing [19], arrested reactive milling [20], and sol-gel technology [21]. However mechanical mixing requires nanoscale starting materials[15];arrested reactive milling could cause complete oxidation of metal fuel [20]; sol-gel technique includes drying and sintering process that could induce extensive aggregation with significant decrease in surface area and reactivity[21,22].

    1.1. Hydrothermal synthesis

    There is a great advantages for any approach that can offer sustainable fabrication of mono-dispersed particles that can be effectively isolated, and employed in subsequent nanocomposite manufacture [23]. Continuous hydrothermal processing is a promising technology that has been employed for the production of potentially valuable metal oxide nanoparticles [24-26]. The common employed fluid for hydrothermal processing is supercritical water (ScW). ScW requires extreme conditions; above the critical point the phase boundary disappear and homogenous supercritical phase exists (Fig. 2).

    Hydrothermal processing comprises instant mixing of ScW with metal salt; nanoparticles are formed at the interface of two fluids inside the reactor in a continous manner [23,26]. The controlled hydrothermal synthesis conditions including temperature, pressure, and flow rates can allow the fabrication of highly crystalline mono-dispersed oxides with high crystallinity and controlled morphology for nanothermite applications.

    1.2. Electroless plating

    Electroless plating is an attractive technology as it can offer the deposition of matal particles on the surface of different nanocarbon materials. Multi-walled carbon nanotubes (MWCNTs) can offer large surface area up to 700 m2/g,as well as high catalyzing ability[28-30].MWCNTs could be the ideal substrate to deposit different reactive metal particles;the deposited reactive matal particles can be subsequently annealed to the corresponding matal oxide for nanothermite applications. Electroless plating approach offers efficient low cost facile technology compared with other techniques [28]. Electroless plating allows the deposition of various elements such as copper [31], nickel [32], silver, gold [33], and cobalt on the surface of different of carbon nanomaterials [34].

    Electroless plating process includes three main stages as follow:(1) Sensitization

    This process includes the attack of MWCNTs structure defects using stannous chloride and strong acid to generate a surface catalyst.

    (2) Activation

    The adsorbed tin ions on MWCNTs walls are used to reduce palladium ions to palladium which acts as an active site to reduce metal ions [35].

    (3) Deposition

    The bonded palladium atoms are ideal catalyst for metal salt reduction, consequently metal deposition can be achieved on MWCNTs. The controlled active site density as well as electroless deposition rate plays an important role for enhancing MWCNTs substrate coating [36,37].

    In this study CuO particles with an average particle size of 15 nm was developed using hydrothermal processing. CuO-coated MWCNTs were developed by electroless plating. A stociometric binary mixture of CuO/Al and CuO-coated MWCNTs/Al were dispersed into isopropyl alcohol (IPA) using ultraonic probe homogenizer. The impact of developed nanothemite palrticels on shock wave strength of Al/TNT nanocomposite was evaluated using ballsitic mortatr test. While CuO-coated MWCNTs decreased the shock wave strength by 15%; colloidal CuO enhanced the shock wave strength by 30%.

    Fig. 2. Phase change of fluid with pressure and temperature [27].

    The enhanced performance of CuO particles was ascribed to their stabilization into the employed organic solvent. This novel finding offered nano-thermite particles where particle size and interparticle distance in the nanometer range. This novel finding can extended the applications of nano-thermite particles into different energetic systems.

    2. Experimental

    2.1. Materials and reagents

    Copper acetate(Aldrich)was employed as a metal salt precursor for hydrothermal synthesis of CuO particles in a continous manner.MWCNTs (surface area 700 m2/g) produced by CVD (95% purity)were purchased from US Research Nanomaterials, Incorporation;MWCNTs were employed as a substrate for copper deposition.Copper (II) sulfate penta-hydrate (CuSO4?5H2O, Sigma-Aldrich)were employed as metal salt precursor. Sodium citrate(C6H5Na3O7?2H2O, Bio shop) was employed as non-complexing agent. Sodium hydroxide (NaOH, CALEDON Laboratory Chemicals), formaldehyde (HCHO, Caledon Laboratory Chemicals), Hydrochloric acid(HCl,CALEDON),Iso propyl alcohol(Sigma-Aldrich),stannous chloride dihydrate(SnCl2?2H2O,98%,Caledon),palladium(II)chloride(PdCl2,100%,Artcraft Chemicals Inc.).All reagents were used as received without further purification.

    2.2. Hydrothermal synthesis of CuO nanoparticles

    Hydrothermal processing can offer the sustainable fabrication of CuO particles for thermite application in a continuous manner. A schematic for continuous hydrothermal synthesis is demonstrated in Fig. 3.

    Flow(A)was ScW at 400°C and 240 bar(20 ml/min).The metal salt precursor(B)was an aqueous solution of 0.05 M cupper acetate(10 ml/min) at 25°C and 240 bar [22]. The synthesized colloidal CuO particles demonstrated dark colour and the particles flocculated within 30 min.

    2.3. Electroless plating of MWCNTs with CuO

    2.3.1. Catalyzation of MWCNTs

    Metallization of MWCNTs with a continual Cu layer requires, a surface pre-treatment includes sensitization using stannous chloride/strong acid. Activation with palladium is essential for increasing the catalytic sites on MWCNTs to improve bonding between nanotube and the deposited metal (Fig. 3) [38-40]. The process to obtain the MWCNTs covered with a continual Cu layer acquires a pre-treatment procedure comprised of acid pre-clean,sensitization, and activation to purify MWCNTs and to secure the catalytic sites on MWCNTs for subsequent metallization, which is followed by complete annealing at(250οC)to develop CuO-coated MWCNTs. Complete Cu-metallization of MWCNTs and subsequent annealing is demonstrated in Fig. 4 [38-40].

    Fig.3. Flow diagram of the continuous hydrothermal processing system employed for sustainable fabrication of colloidal CuO particles. Key:P1, P2,and P3 are HPLC pumps,PH-preheater, R-continuous reactor, E capping point, WC-water cooling, BPR-back pressure regulator [22].

    2.3.2. Metallization of MWCNTs with Cu

    Electroless plating of activated MWCNTs was conducted by depositing Cu nanocrystals under stoichiometric conditions. The chemical reduction process was designed to obtain γ=16 (w/w)(Cu: MWCNTs). Annealing was conducted to guarantee complete oxidation of Cu to corresponding oxide (CuO) (Fig. 4) [38,41,42].

    2.4. Characterization of CuO nanoparticles and CuO-coated MWCNTs

    The size and shape of synthesized CuO nanoparticles and CuOcoated MWCNTs were investigated by using TEM (JEM-2010F by Joel Corporation). The crystalline phase was performed with X-ray diffraction (XRD) analysis of powder samples using a Bruker D8 Discover instrument comprising a Davinci diffractometer operating at 35 kV and 45 mA using Co-Kα radiation (λavg=1.79026 ?). The dry powder size and shape was investigated with SEM,ZEISS SEM EVO 10 MA,with three types of detectors secondary electrons(SE),back scattered electron (BSE), and energy dispersive X-ray spectrometer (EDX) Bruker Quantax 200.

    2.5. Integration of nanothermite particles into energetic matrix

    It has been reported that the integration of colloidal particles into energetic matrix can offer enhanced dispersion to the molecular level[22].A stoichometric binary mixture of CuO/Al and CuOcoated MWCNTs/Al were effectively dispersed in isopropyl alcohol(IPA)using ultrasonic probe homogenizer in an attempt to achieve uniform distribution and to break down any aggregates. These colloidal nanothermite particles were integrated into the energetic matrix (TNT) and the resulting shock wave upon initiation was evaluated using a ballistic mortar test to that of TNT and Al/TNT nanocomposite.

    The days we can t spend together physically1, we can still take time to remember them fondly… making phone calls, sending cards or letters helps both us and our loved ones.

    2.6. Workability evaluation using ballistic mortar

    Ballistic mortar is the main test to evaluate the shock wave strength resulted upon initiation of different energetic materials.Ballistic mortar composed of massive steel mortar suspended from the pendulum axis by a long pendulum arm (Fig. 5).

    Fig. 4. Schematic of the electroless plating of MWCNTs with copper. (a) MWCNTs are sensitized using SnCl2 and subsequently activated with PdCl2. (b) The plating solution contains a copper salt and a reducing agent, allowing for the deposition of Cu on the activated MWCNTs.(c)Annealing of the Cu-coated MWCNTs at 250°C oxidizes the Cu coating to CuO.

    Fig. 5. Schematic diagram of ballistic mortar.

    Here, 10 g of the tested energetic matrix formulation are detonated within the mortar cavity, the maximum angular displacement of the mortar was recorded and employed to retrieve the maximum over pressure (using calibration charts). This overpressure value can act as a criteria for the shock wave strength of energetic material [43]. The impact of developed nanothermite particles on shock wave strength was evaluated to that of TNT and Al/TNT nanocomposite.

    2.7. Thermal behaviour of nanocomposite energetic matrix

    The impact of developed nanotermite particles including CuO and Cuo-coated MWCNTs on thermal behaviour of TNT and Al/TNT nanocomposite was evaluated using DSC in an attempt to evaluate the initiation temperature and total heat released upon detonation.DSC Q-2000 (by TA instruments, USA) was employed for thermal behaviour investigation. The tested sample was heated from 50°C to 350°C at 5.0°C/min heating rate under N2flow rate of 50 ml/min.

    3. Results and discussions

    3.1. Characterization of CuO/CHS &CuO/MWCNTs

    The morphology (size and shape) of synthesized CuO nanoparticles (developed by hydrothermal processing) was visualized using TEM (Fig. 6). Consistent CuO particles with an average particle size of 15 nm was developed; this was ascribed to the fact that nucleation and subsequent particle growth were the same during nanoparticle fabrication [22].

    Fig. 6. TEM micrographs of CuO nanoparticles synthesized by hydrothermal processing.

    Fig. 7. Dark field STEM micrographs of synthesized CuO-MWNTs hybrid material. The bright spots on the surfaces of the MWNTs are CuO nanoparticles, suggesting uniform metallization and subsequent annealing of Cu nanoparticles to CuO.

    Fig. 8. XRD diffractogram of synthesized CuO.

    Electroless plating offered effective coating of MWCNTs with CuO particles, CuO-coated MWCNTs demonstrated effective formation of CuO particles bonded to a substrate of high surface area(Fig. 7).

    XRD diffractogram of synthesized CuO nanoparticles and CuOcoated/MWCNTs demonstrated highly crystalline Copper (II) oxide material with 8 characteristic sharp peaks all of them agreed with the Joint Committee on Powder Diffraction Standards(JCPDS)from the International Centre for Diffraction Data(ICDD),indicating the high crystalline and high purity CuO particles (Fig. 8).

    The carbon counts in the XRD patterns are low, which is attributed to the high weight ratio of CuO to MWCNTs,i.e.,16:1.The morphology of dry powder for synthesized CuO nanoparticles and CuO-coated MWCNTs was investigated with SEM. SEM micrographs demonstrated a great tendency for dry particles to aggregate and agglomerate with extensive decrease in surface area and reactivity under drying process (Fig. 9).

    It is widely accepted that integration of colloidal particles into energetic matrix can offer enhanced dispersion characteristics with intimate mixing between oxidizer and metal fuel [44-46]. Consequently the developed particles were effectively dispersed into IPA with Al nanoparticles for subsequent integration into molten TNT.CuO nanoparticles demonstrated stable colloid as CuO particles could be sterically stabilized with the organic solvent molecules(Fig.10).

    It is established that colloidal oxides have a hydrous surface[47,48]. Consequently the hydroxyl group on the surface of CuO particles could undergo strong hydrogen bonding with polar organic solvents such as IPA[49,50].The solvent aliphatic segment could offer a steric barrier keeping the colloidal particles outside the range of van der Waals attractive force. This novel finding can offer intimate mixing between oxide and metal particles.

    3.2. Workability evaluation

    The impact of developed nanothermite particles on shock wave strength of Al/TNT nanocomposite was evaluated using Ballistic mortar test. The partial replacement of Al particles with CuO or CuO-coated MWNTs was conducted at the same total solid loading level (12 wt %). CuO particles developed by hydrothermal processing demonstrated superior shock wave strength compared with CuO-coated MWCNTs (Fig.11).

    Fig. 9. SEM micrographs of synthesized CuO nanoparticles using hydrothermal processing (a), CuO-coated MWCNTs using electroless plating (b).

    Fig.10. Stabilized CuO particles (a), Stabilization mechanism of CuO with IPA solvent (b).

    The superior performance of colloidal CuO particles was ascribed to the fact that ultrafine particles were effectively developed isolated and effectively integrated into the energetic matrix[17]. This approach could fulfil the main requirements of nanothermite particles and secure particle and inter-particle distance in the nanoscale[44,45,51].On the other hand,the synthesis of CuOcoated MWCNTS includes sintering process which could induce extensive aggregation.

    Fig. 11. The impact of developed nanothermite particles on shock wave strength of TNT.

    Fig.12. DSC thermograms of TNT and Al/TNT and (CuO/Al)/TNT nanocomposite.

    3.3. Thermal behaviour of energetic matrix based on nanothermite

    DSC measurements can provide quantitative information about any physical/chemical process that is accompanied with absorption/release of heat.Nanothermite particles could alter the thermal behaviour,and total heat release of TNT as well as Al/TNT.(CuO/Al)/TNT nanocomposite demonstrated thermal behaviour similar to Al/TNT but with further increase in total heat release by 31%. CuO/Al demonstrated a decrease in temperature at maximum heat fow of Al/TNT by 13°C (Fig. 12). This can be ascribed to the enhanced thermal conductivity of(CuO/Al)/TNT nanocomposite as well as the enhanced dispersion characteristics of CuO/Al nanothermite particles.

    Table 1The impact of colloidal nano-thermite particles(CuO/Al)on thermal characteristics of TNT.

    A summary of the main thermal characteristics of(CuO/Al)/TNT nanocomposite to Al/TNT was provided in Table 1.

    4. Conclusion

    Colloidal CuO particles for nanothermite applications were effectively developed using hydrothermal processing technique.The developed CuO particles were stabilized in organic solvent(IPA) via steric stabilization. The effective integration of colloidal CuO/Al binary nano-thermite mixture offered enhanced shock wave strength by 30% relative to Al/TNT nanocomposite. CuO/Al also offered an increase in total heat release of Al/TNT by 31%using DSC.This superior performance of colloidal CuO particles compared with CuO-coated MWCNTs was ascribed to the fact that one of the most effective thermite reactions was developed in colloidal state and effectively integrated into TNT where particle size and interparticle distance in the nanoscale.This could open the route for the manufacture of different nano-thermite particles for the effective developed of advanced nanocomposite cast metalized formulations.

    亚洲国产日韩一区二区| 国产一区二区 视频在线| 色婷婷av一区二区三区视频| 亚洲一区二区三区欧美精品| 午夜福利乱码中文字幕| 一级毛片电影观看| 一级片'在线观看视频| 18禁裸乳无遮挡动漫免费视频| 波多野结衣一区麻豆| 日韩人妻精品一区2区三区| 国产免费福利视频在线观看| 国产熟女欧美一区二区| 成人免费观看视频高清| 国产探花极品一区二区| 亚洲av在线观看美女高潮| 少妇熟女欧美另类| 少妇 在线观看| 日本欧美国产在线视频| 免费日韩欧美在线观看| 天美传媒精品一区二区| 搡老乐熟女国产| 少妇的丰满在线观看| 1024视频免费在线观看| 午夜福利网站1000一区二区三区| 欧美精品国产亚洲| 91国产中文字幕| 国产色婷婷99| 美女视频免费永久观看网站| 春色校园在线视频观看| 色视频在线一区二区三区| 欧美精品一区二区免费开放| tube8黄色片| 王馨瑶露胸无遮挡在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产成人精品福利久久| 国产一区有黄有色的免费视频| 欧美成人精品欧美一级黄| 男女国产视频网站| 日韩伦理黄色片| 中文天堂在线官网| kizo精华| av线在线观看网站| 免费黄色在线免费观看| 国精品久久久久久国模美| 国产男女内射视频| 日产精品乱码卡一卡2卡三| 寂寞人妻少妇视频99o| 成人毛片a级毛片在线播放| 国产极品天堂在线| 精品一区二区免费观看| 欧美中文综合在线视频| 久久久久视频综合| 中国三级夫妇交换| 最近最新中文字幕大全免费视频 | 黑人巨大精品欧美一区二区蜜桃| 国产片特级美女逼逼视频| 久久精品国产综合久久久| 久久久久久久精品精品| 国产精品亚洲av一区麻豆 | a级毛片黄视频| 久久久久精品性色| 亚洲av中文av极速乱| 日韩,欧美,国产一区二区三区| 热99久久久久精品小说推荐| 久久毛片免费看一区二区三区| 国产成人精品一,二区| 婷婷色av中文字幕| a 毛片基地| 2021少妇久久久久久久久久久| 精品亚洲乱码少妇综合久久| 国产成人欧美| 好男人视频免费观看在线| 大片免费播放器 马上看| 午夜免费鲁丝| 亚洲精品国产色婷婷电影| 最新中文字幕久久久久| 欧美xxⅹ黑人| 熟女av电影| 欧美老熟妇乱子伦牲交| 国产不卡av网站在线观看| 国产精品不卡视频一区二区| 亚洲男人天堂网一区| 欧美激情 高清一区二区三区| 午夜免费男女啪啪视频观看| 亚洲欧美色中文字幕在线| 麻豆精品久久久久久蜜桃| 综合色丁香网| 久久午夜综合久久蜜桃| 国产精品三级大全| 免费久久久久久久精品成人欧美视频| 美女国产视频在线观看| 久久精品国产自在天天线| 麻豆av在线久日| 久久av网站| 秋霞伦理黄片| 亚洲精品日本国产第一区| 2018国产大陆天天弄谢| 2022亚洲国产成人精品| 成人免费观看视频高清| 赤兔流量卡办理| 美女中出高潮动态图| 国产色婷婷99| 另类精品久久| 国产免费视频播放在线视频| 97在线视频观看| 街头女战士在线观看网站| 男女啪啪激烈高潮av片| 欧美老熟妇乱子伦牲交| 三级国产精品片| 久久久久久人人人人人| 久久97久久精品| 可以免费在线观看a视频的电影网站 | 精品视频人人做人人爽| 久久久欧美国产精品| 80岁老熟妇乱子伦牲交| 久久精品夜色国产| 午夜日韩欧美国产| 多毛熟女@视频| 久久久久久伊人网av| 男女边摸边吃奶| 99国产综合亚洲精品| 老汉色av国产亚洲站长工具| 黄色 视频免费看| 久久久久久伊人网av| 交换朋友夫妻互换小说| 极品少妇高潮喷水抽搐| 丝瓜视频免费看黄片| 亚洲av在线观看美女高潮| 建设人人有责人人尽责人人享有的| 在线观看免费高清a一片| 伦理电影免费视频| 少妇的丰满在线观看| 亚洲精品久久久久久婷婷小说| 1024视频免费在线观看| 亚洲国产日韩一区二区| 亚洲精品一二三| 午夜福利视频在线观看免费| 老汉色∧v一级毛片| 亚洲四区av| 亚洲情色 制服丝袜| 视频区图区小说| 看免费成人av毛片| 国产乱来视频区| 午夜激情av网站| 日韩欧美精品免费久久| 大片免费播放器 马上看| xxxhd国产人妻xxx| 校园人妻丝袜中文字幕| 国精品久久久久久国模美| 国产精品久久久久成人av| 91精品国产国语对白视频| 欧美精品av麻豆av| 久久人人爽av亚洲精品天堂| 久久97久久精品| 99久国产av精品国产电影| 亚洲色图综合在线观看| 丝袜美足系列| 咕卡用的链子| 国产成人aa在线观看| 三级国产精品片| 亚洲欧美日韩另类电影网站| 亚洲一区中文字幕在线| 国产片内射在线| 国产成人免费观看mmmm| 性少妇av在线| 最新中文字幕久久久久| 久久久精品国产亚洲av高清涩受| 成人国产麻豆网| 精品久久久久久电影网| 纵有疾风起免费观看全集完整版| 国产在线免费精品| 最近中文字幕2019免费版| 国产成人精品无人区| 欧美精品一区二区免费开放| xxx大片免费视频| 欧美日韩成人在线一区二区| 中文字幕人妻熟女乱码| 五月开心婷婷网| 一区二区日韩欧美中文字幕| 美女中出高潮动态图| 丝袜在线中文字幕| 国产精品久久久久久av不卡| 国产视频首页在线观看| 成人国产麻豆网| 亚洲色图 男人天堂 中文字幕| 少妇的逼水好多| 久久亚洲国产成人精品v| 免费大片黄手机在线观看| 成年人免费黄色播放视频| 精品国产露脸久久av麻豆| 熟女电影av网| 人人妻人人澡人人爽人人夜夜| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一级一片aⅴ在线观看| www.精华液| 亚洲国产欧美在线一区| 日产精品乱码卡一卡2卡三| 亚洲一码二码三码区别大吗| 亚洲精品,欧美精品| 黑人欧美特级aaaaaa片| 777米奇影视久久| 黄频高清免费视频| 国产av一区二区精品久久| 国产亚洲av片在线观看秒播厂| 亚洲av综合色区一区| 飞空精品影院首页| 精品少妇一区二区三区视频日本电影 | 精品福利永久在线观看| 你懂的网址亚洲精品在线观看| 美女高潮到喷水免费观看| 欧美激情极品国产一区二区三区| 性高湖久久久久久久久免费观看| 两个人免费观看高清视频| 国产又色又爽无遮挡免| 青春草视频在线免费观看| 伊人久久大香线蕉亚洲五| 欧美日韩精品网址| av又黄又爽大尺度在线免费看| 高清av免费在线| 亚洲av日韩在线播放| 九草在线视频观看| 蜜桃在线观看..| 久久精品国产a三级三级三级| 精品国产超薄肉色丝袜足j| 麻豆乱淫一区二区| 精品少妇内射三级| 国产精品免费大片| 日韩大片免费观看网站| 亚洲av男天堂| 极品人妻少妇av视频| 最新的欧美精品一区二区| 久久精品熟女亚洲av麻豆精品| 国产无遮挡羞羞视频在线观看| av女优亚洲男人天堂| 男人爽女人下面视频在线观看| 毛片一级片免费看久久久久| 毛片一级片免费看久久久久| 中文字幕最新亚洲高清| 一级毛片电影观看| 美女主播在线视频| 老鸭窝网址在线观看| 久久久久久久久久久免费av| 曰老女人黄片| 男人爽女人下面视频在线观看| 狂野欧美激情性bbbbbb| av卡一久久| 中文字幕av电影在线播放| 久久综合国产亚洲精品| 国产一区二区 视频在线| 咕卡用的链子| 啦啦啦啦在线视频资源| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 伦理电影免费视频| 看免费av毛片| 久久精品久久精品一区二区三区| 啦啦啦在线免费观看视频4| 99久国产av精品国产电影| 美女国产高潮福利片在线看| 婷婷色av中文字幕| 日日啪夜夜爽| 免费黄频网站在线观看国产| 精品人妻熟女毛片av久久网站| 少妇被粗大猛烈的视频| 天天躁日日躁夜夜躁夜夜| 国产免费又黄又爽又色| freevideosex欧美| 91在线精品国自产拍蜜月| 中文字幕制服av| 在线天堂中文资源库| 午夜影院在线不卡| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 水蜜桃什么品种好| 久久久久精品人妻al黑| 亚洲国产av新网站| 五月天丁香电影| 成人午夜精彩视频在线观看| 欧美人与性动交α欧美精品济南到 | 国产不卡av网站在线观看| 肉色欧美久久久久久久蜜桃| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 最新中文字幕久久久久| 国产精品久久久久久精品电影小说| 熟女av电影| 视频区图区小说| 亚洲四区av| 亚洲视频免费观看视频| 国产麻豆69| 美女高潮到喷水免费观看| 国产一区亚洲一区在线观看| 亚洲五月色婷婷综合| 在线观看一区二区三区激情| 久久久国产精品麻豆| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 伦精品一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 制服丝袜香蕉在线| 天美传媒精品一区二区| 97在线人人人人妻| 91午夜精品亚洲一区二区三区| 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| av线在线观看网站| 男女边摸边吃奶| 国精品久久久久久国模美| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 久久精品国产综合久久久| 在线观看免费视频网站a站| 波多野结衣一区麻豆| 亚洲欧美清纯卡通| 熟女av电影| 精品一区二区免费观看| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜| 日韩av免费高清视频| 老汉色∧v一级毛片| 久久人妻熟女aⅴ| 美女xxoo啪啪120秒动态图| 极品少妇高潮喷水抽搐| 国产又色又爽无遮挡免| 永久网站在线| 黑人欧美特级aaaaaa片| 精品亚洲成a人片在线观看| 永久免费av网站大全| 亚洲欧洲精品一区二区精品久久久 | 午夜免费男女啪啪视频观看| 男人操女人黄网站| 精品久久久精品久久久| 亚洲,欧美,日韩| 国产97色在线日韩免费| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看| 精品午夜福利在线看| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 久久人人爽av亚洲精品天堂| 日本91视频免费播放| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 色哟哟·www| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 如日韩欧美国产精品一区二区三区| 色播在线永久视频| 欧美老熟妇乱子伦牲交| 各种免费的搞黄视频| 激情视频va一区二区三区| 久久久久久久久久久免费av| 亚洲欧洲精品一区二区精品久久久 | 中国国产av一级| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 男女啪啪激烈高潮av片| 成人国语在线视频| av免费观看日本| 中文欧美无线码| 久久久精品94久久精品| 免费看av在线观看网站| 水蜜桃什么品种好| 妹子高潮喷水视频| 久久精品国产鲁丝片午夜精品| 久久久欧美国产精品| 久久精品国产亚洲av高清一级| 99热网站在线观看| av又黄又爽大尺度在线免费看| 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 黄片小视频在线播放| 婷婷色综合大香蕉| 午夜福利视频精品| 国产成人精品无人区| 成人国产av品久久久| av免费观看日本| 观看美女的网站| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av天美| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 亚洲情色 制服丝袜| 青春草国产在线视频| 国产探花极品一区二区| 婷婷色综合大香蕉| 亚洲精品av麻豆狂野| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 边亲边吃奶的免费视频| 久久久久视频综合| 亚洲国产精品成人久久小说| 久久精品熟女亚洲av麻豆精品| 永久网站在线| 香蕉国产在线看| 亚洲精品av麻豆狂野| 赤兔流量卡办理| 免费在线观看黄色视频的| 国产精品三级大全| 人妻少妇偷人精品九色| 精品人妻在线不人妻| 麻豆av在线久日| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 亚洲成人av在线免费| 久久久久久久久免费视频了| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 97人妻天天添夜夜摸| 老司机影院毛片| 天堂8中文在线网| 久久狼人影院| 欧美国产精品一级二级三级| 91成人精品电影| 街头女战士在线观看网站| 亚洲国产最新在线播放| 中文字幕人妻丝袜一区二区 | 在线天堂中文资源库| 国产精品免费大片| 伊人久久国产一区二区| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 自线自在国产av| 在线观看免费日韩欧美大片| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 亚洲精品国产一区二区精华液| 老熟女久久久| 天堂中文最新版在线下载| 中文字幕av电影在线播放| 老熟女久久久| 国产成人欧美| 91精品三级在线观看| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 久久99精品国语久久久| 国产精品 欧美亚洲| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 国产日韩欧美在线精品| 国产有黄有色有爽视频| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| 欧美激情极品国产一区二区三区| 国产片内射在线| 精品亚洲成a人片在线观看| 亚洲欧美成人综合另类久久久| 看非洲黑人一级黄片| 久久久久精品性色| 成人手机av| 国产欧美日韩一区二区三区在线| av免费在线看不卡| 久热这里只有精品99| 亚洲国产精品一区三区| 国产精品一区二区在线观看99| 不卡av一区二区三区| 日韩一本色道免费dvd| 欧美亚洲日本最大视频资源| 菩萨蛮人人尽说江南好唐韦庄| 国产成人精品一,二区| 成人影院久久| 五月开心婷婷网| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 亚洲精品国产av蜜桃| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 色视频在线一区二区三区| 色网站视频免费| 午夜激情av网站| 国产精品一国产av| 丁香六月天网| av天堂久久9| 国产白丝娇喘喷水9色精品| www日本在线高清视频| 免费高清在线观看视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 大片电影免费在线观看免费| 99国产精品免费福利视频| 亚洲国产最新在线播放| 熟女电影av网| 国产乱来视频区| 久久这里只有精品19| 亚洲三级黄色毛片| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 少妇熟女欧美另类| 久久精品国产自在天天线| 91成人精品电影| 欧美国产精品一级二级三级| 亚洲中文av在线| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 国产无遮挡羞羞视频在线观看| 精品一区二区三区四区五区乱码 | 欧美日韩一级在线毛片| 国产又爽黄色视频| 人人澡人人妻人| 波野结衣二区三区在线| 水蜜桃什么品种好| 国产国语露脸激情在线看| 国产日韩欧美在线精品| 观看美女的网站| 日本免费在线观看一区| 激情视频va一区二区三区| 七月丁香在线播放| a级片在线免费高清观看视频| 美女福利国产在线| av网站免费在线观看视频| 18禁动态无遮挡网站| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 性色avwww在线观看| 2022亚洲国产成人精品| 国产深夜福利视频在线观看| 国产精品 欧美亚洲| 女性生殖器流出的白浆| 亚洲欧美精品综合一区二区三区 | 黄网站色视频无遮挡免费观看| 亚洲伊人久久精品综合| 国产不卡av网站在线观看| 9191精品国产免费久久| 91午夜精品亚洲一区二区三区| 免费黄网站久久成人精品| 国产精品三级大全| 国产又色又爽无遮挡免| 在线观看美女被高潮喷水网站| 美女中出高潮动态图| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 久久毛片免费看一区二区三区| 欧美中文综合在线视频| 九九爱精品视频在线观看| 午夜av观看不卡| 日韩一区二区三区影片| 老鸭窝网址在线观看| 免费日韩欧美在线观看| 一级毛片黄色毛片免费观看视频| 中文字幕av电影在线播放| 91精品三级在线观看| 一区二区三区四区激情视频| 午夜免费观看性视频| 最近最新中文字幕免费大全7| 亚洲av在线观看美女高潮| 99香蕉大伊视频| 亚洲三区欧美一区| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 久久97久久精品| 精品国产露脸久久av麻豆| 下体分泌物呈黄色| 超色免费av| 欧美成人精品欧美一级黄| 国产成人91sexporn| 国产xxxxx性猛交| 欧美精品av麻豆av| 九草在线视频观看| 人妻人人澡人人爽人人| 伊人亚洲综合成人网| 久久久久精品性色| 成人毛片60女人毛片免费| 五月天丁香电影| freevideosex欧美| 晚上一个人看的免费电影| 日韩一卡2卡3卡4卡2021年| 亚洲av在线观看美女高潮| 亚洲一级一片aⅴ在线观看| 欧美av亚洲av综合av国产av | 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| 日本av免费视频播放| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 欧美精品一区二区免费开放| 九九爱精品视频在线观看| 欧美精品国产亚洲| 午夜福利乱码中文字幕| 国产精品 欧美亚洲| 精品少妇黑人巨大在线播放| 国产成人a∨麻豆精品| 狠狠婷婷综合久久久久久88av| 亚洲精品日本国产第一区| 亚洲精品,欧美精品| 日韩制服丝袜自拍偷拍| 精品久久蜜臀av无| 久久久欧美国产精品|