• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of resistance spot brazing process parameters in AHSS and AISI 304 stainless steel joint using filler metal

    2019-07-16 11:59:48NiwatMookam
    Defence Technology 2019年3期

    Niwat Mookam

    Department of Industrial Engineering Technology, Rajamangala University of Technology Rattanakosin

    Wang Klai Kangwon Campus, Huahin,Prachuapkhirikhan, 77110, Thailand

    Keywords:Resistance spot brazing Filler metal AHSS Stainless steel Intermetallic phases

    A B S T R A C T The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study consist of the brazing current, electrode pressure and brazing time. The Taguchi method was applied to the design of experiments. Signal-to-Noise ratio was introduced in the study to identify optimal levels from the process where input parameters yield increased shear strength.Brazing was thus implemented with 5,000A brazing current, 0.70 MPa electrode pressure, and 1.50s brazing time. The maximum shear strength obtained was 54.31 N?mm-2 in accordance with input parameter settings. In addition, Cu-rich phase and Ag0.4Fe0.6 intermetallic phases were found at the interface zone.

    1. Introduction

    In the automotive industry,resistance spot welding(RSW)is an important process in joining sheet metal, due to the worthwhile procedure-high capacity in productivity and low cost.The method consolidates the joints stably [1-4]. According to the sheet metal for the automobile is highly significant,the technologies of weight reduction in automobiles using sheet metal are effective to save energy and reduce pollution from decreasing fuel combustion.However, new materials have been introduced that have replaced traditional steel to reduce overall construction weight. Thus,advanced high strength steel (AHSS) is now used for automotive parts to improve the fuel efficiency of automobiles by reducing their weight, while ensuring safety and strength. The two most frequently used AHSS in the automotive industry are dual phase(DP) steel and transformation induced plasticity (TRIP) steel [5,6].Both steels are excellent combinations of strength and formability.In addition, DP steel has a fused microstructure of soft ferrite and hard martensite leads to enhance ductility and work hardening[7,8]. As with stainless steel (SS), it is widely used in many industries as well as in car components. It has a strong resistance to corrosion and high strength. However, the process of welding SS can reduce the corrosion resistance and therefore the strength of joints [9].

    Generally, RSW failure occurs in interfacial failure (IF) and pullout failure(PF)mode[10].The RSW of austenitic stainless steel(ASS)results in a greater hardness value of the fusion zone(FZ)than that of the base material(BM),similarly with the AHSS spot welds[11].This is due to the FZ microstructure predominately consisting of martensite phase,and can be the formed with voids and crack at the interface zone[12,13].However,dissimilar RSW of AHSS and SS by RSW has been studied by some research. In a dissimilar joint consisting of DP steel and ASS the weld nugget is composed of austenitic-martensitic structure, and presented the PF type of fracture which started from the softer BM(i.e.ASS)due to the weld nuggets martensitic structure providing a relatively high strength and hardness[14,15].Furthermore,the dissimilar joint of AHSS and ASS by conventional RSW have several problems such as different electrical conductivity,the Zn layer on DP steel had to be removed during RSW, and SS is more sensitive to contact pressure, which causes a too deep indentation in respect to DP steel,decreasing the aesthetic appearance of the weld[15].

    The brand-new techniques in improving material joining in the welding industry become principal in the automobile productions[16].The brazing method is a technique known for its ability to join dissimilar metals, especially materials with different melting points.Therefore,the development of resistance spot brazing, as a technique used to solve the problem of joining dissimilar sheet metals,will ensure the quality and reliability of joints in automotive parts.The technique used filler metal and can improve the strength of the brazing joint [17,18]. However, the strength of the brazing joint is subject to a variety of variables, e.g. current, pressure, and time, and have a significant effect on the microstructure and mechanical properties of the brazed joints[4,19].A review of literature also revealed various influence of the variables when joined via RSW. The strength of the bonding at interface was subject to the joining variables.Manladan et at[20].found that current variable in RSW process effects the nugget size, peak load and energy absorption. With increased current, both the peak load and energy absorption decrease because of increased nugget size. This high nugget size was attributed to the occurrence of the failure mode transformed in to substrate [20,21]. Thus, the increased current variable has a negative effect on strength [14,20,21]. On the contrary, with the welding time and electrodes force, the strength of joint increased when the variable value increased[14].Despite the numerous research studies on variables and optimization in dissimilar metal joint process,there is no indication of the use of metal fillers,especially with the AHSS and ASS in spot brazing processes.

    This paper aimed to study the optimal resistance for spot brazing conditions of dissimilar materials, AHSS and ASS, using a filler metal at the overlapped area of the joints. The brazing variables examined were brazing current, electrode pressure, and brazing time. The Taguchi approach was used in the statistical design of the experiment technique to optimize the selected brazing parameters, in terms of the maximized shear strength.

    2. Experiments

    2.1. Materials and methods

    AHSS(DP 590 grade)and ASS(AISI 304 grade)are the materials employed in this research, as 100 mm×30 mm×1.2 mm threedimensional rectangular plates. The filler metal (Sil CD 1050-5 M grade)is 30 mm×30 mm in dimension with a thickness of 1.0 mm to be applied for spot brazing in the interface zone of the joint.The chemical composition of substrate steels and filler metal are displayed in Table 1.In the brazing processes,the FAN model PROTON E+ spot welding machine was employed to experiment brazing,with electrodes composed of copper alloys. Fig. 1 illustrates the schematic resistance spot brazing with filler metal application.

    The Zwick model Z020 universal testing machine was employed to evaluate shear strength of each brazed specimen, with the test speed of shear strength at 0.50 mm·min-1. After identifying optimal brazing conditions, the failure and specimen microstructure was further analyzed. To examine the joint of spot brazed surface and failure, optical images at low magnification were acquired on a JENCO model V203410 optical microscope.

    Specimens were mounted and polished to determine microstructure.The specimens were polished using SiC paper of 400,600,800, 1,000 and 1,200 respectively, and Al2O3with size of 0.3 and 0.1 μm,respectively.The ion beam milling(HITACHI model IM 4000 PLUS)technique was then employed to replace traditional chemical etching process.After ion milling, the microstructure and intermetallic phases were examined by scanning electron microscopy(SEM)from 300x SEM images using backscattering electron composition(BEC)modes.The SEM used in this experiment was HITACHI model TM3030 Plus coupled with energy dispersive X-ray spectroscopy(EDS) to determine chemical composition of microstructure and intermetallic phases presented in the specimens.The EDS employed was OXFORD model AztecOne.In addition,the elements distribution within the interface zone were analyzed using the EDS line scanning and mapping techniques. The phase of brazing specimens was confirmed using X-Ray Diffraction (XRD) to characterize the lattice structure of phase and intermetallic compounds at the interface of the specimen. The XRD used in experiment was Bruker model D8-Discover. The measurement conditions were; voltage 40 kV, current 40 mA,scanning speed 0.5°/s,scanning angle(2θ)25-80°.

    2.2. Experimental designs

    The experimental design in this study applies the Taguchi approach L27 orthogonal array.Three key investigated parameters being the brazing current, electrode pressure and brazing time,with three levels in each parameter. Levels in the brazing parameters are available on the machine controller as displayed in Table 2.Brazing condition selection is based on typical spot welding machine operating ranges recommended and previous research studies for steels [14,22]. With an objective of attaining optimized shear strength,the relative quality of a particular parameter design is evaluated utilizing a signal-to-noise(S/N)ratio.S/N ratio thus was identified as the Better approach, whether Smaller is better approach, or Larger is better approach is determined by Equations(1)-(3),respectively.Larger is the better was used in analysis of the experiment.

    Table 2Resistance spot brazing parameter and levels in experimental.

    Table 1Chemical compositions of the steel and filler metal.

    Better approach

    Smaller is better approach Larger is better approach

    where S/N is the signal-to-noise ratio,yiis output characteristic and n is number of trials.

    3. Results and discussion

    3.1. Selection of optimization parameter

    To ascertain optimum brazing performance,the first step was to calculate S/N ratio for the shear strength. Table 3 illustrates shear strength levels obtained and the corresponding S/N ratio applied that led to the outcome. The S/N ratio and mean procedure were performed by using the Minitab software.The total mean S/N ratio of twenty seven experiments was calculated as 31.74 dB. Shear strength was obtained by means of brazing current, electrode pressure, and brazing time settings specified in Fig. 2. It was clear that the most effective S/N ratio with regards to obtaining optimum shear strength from spot brazing was carried out with the following settings: 5,000A brazing current (Level 3), 0.70 MPa electrode pressure(Level 3),and 1.50s brazing time(Level 2).However,from plot of main effects, when brazing current and electrode pressure are increased,strength of brazed joint is increased.This because the heat input to the sheet becomes more intense with increasing brazing current and electrode pressure leading to larger diameter of the weld nugget, consistent with the results obtained by Anijdan et al. [14]. On the contrary, with the longer brazing time, the strength of specimen was decreased when brazing time increased,because the heat input becomes more intense with increasing brazing time and attributed to longer diffusion time during increased post weld time. The increase of total thickness of the intermetallic layer, which resulted in drastically reducing the joint strength[18].Table 4 illustrates levels ranking in each of the three variables,i.e.,brazing current,electrode pressure and brazing time,that significantly influence shear strength. The Delta and Rank value to identify the factors that have the largest effect on response characteristic. The brazing current has more significant effect on shear strength because of the high value of the Delta as compared to electrode pressure and brazing time.

    As demonstrated in Table 5,an analysis of variance(ANOVA)was applied to determine the effect of each key attribute in accordance with applied S/N ratio.The ANOVA table containing the degrees of freedom (DF), sequential sums of squares (ss), adjusted sums of squares (SS), adjusted mean squares (MS) and probability of significance (P-value). The sequential sums of squares and adjusted sums of squares is measure of the deviation of the experimental data. Adjusted mean squares also called variance measures the distribution of the data. MS and F-value can be calculated by according to Equations (4) and (5), respectively.

    The larger the F variant,the larger the effect of factor.The ANOVA procedure revealed the largest F value was in the brazing current.That means,the brazing current bears more effect on the accuracy of measurement and outcome than that of the two other key variables.Thus,optimization was calculated using the Minitab with predicted shear strength in optimal cutting condition of 60.40 N?mm-2.a moderate ductile fracture.No PF mode was observed in this study.Fig. 4 presents a stress-strain plot of a confirmed specimen.Confirmation experiments of the responses compared with the Taguchi method resulted in shear strength difference of 10.55%. In addition, shear strength of brazed joints increased by 23.07%compared with non-filler metal brazed joints.The stress-strain plot of confirmed specimen brazed without a filler metal is displayed in Fig. 5. This indicates that shear strength of the spot brazed joints sample is determined by the same brazing parameters of brazing current, electrode pressure and brazing time of the optimized values. Identical experimental conditions were used for the nonfiller brazed joints, which may not be optimal conditions.

    Table 3Results for shear strength with S/N ratio.

    Fig. 2. Main effects plot for S/N ratio.

    Table 4Significant factor ranking.

    Table 5Analysis of variance for the shear strength.

    3.2. Verification experiment

    After setting parameters to optimized values,the next step was verifying that controlled conditions are optimum for experimental purposes. As such, confirmed specimens are brazed in 54.31 N?mm-2experimental conditions. The joint characteristic of a spot brazed surface and failure of a confirmed specimen is shown in Fig.3.Good surface and uniformly expands the nugget as seen in Fig. 3 (a). The failure mode of the spot brazed surface is shown in Fig.3(b)where the joint fractured by IF mode,the fracture showed

    Fig. 4. Plot of the stress and strain of confirmation specimen.

    Fig. 3. Joint characteristic of confirmation specimen.

    Fig. 6 and Fig. 7 presents the interface microstructure and element line scanning of the brazed joint. The interface of the optimal brazed joint specimen consisted of Ag and Cu content from the filler in the joints. In the case of not adding filler metal, the presence of Cr and Fe elements at the interface zone suggesting some diffusion of the atoms from the base metals.Thus,the existing elements and the formation of the intermetallic phase in the brazed joint promote high strength compared with non-filler joint. These differences in interface microstructure clearly explain why the joints produced with adding filler metal are significantly stronger than those produced without adding filler metal. The filler results in an Ag and Cu rich solid solution layer which attributes to the strength.

    Fig. 5. Plot of the stress and strain of specimen with no adding filler metal.

    The EDS joint composition maps obtained via SEM presented in Fig. 8 clearly demonstrates element distribution in brazed joint.From SEM and EDS examinations, three layers (A, B, and C layers)are identified at the brazed interface. The phase composition of region A was Ag0.4Fe0.6phase. Due to Fe atoms diffusion into the filler metal from the steel side, consistent with, resulting in a combination between Ag and Fe to form a thin Ag0.4Fe0.6phase.In addition,no Zn element was found,because of zinc diffusion away from the filler metal during brazing [18].

    Region B is a Cu-rich phase, the phase region was produced by complete isothermal solidification of the alloy filler [19]. Zhang et al. [23] document that the Cu interlayer was introduced in the brazing procedure, the joint strength increased and hinder the formation of intermetallic compound. Region C, could be seen in the layer that the matrix of Cu-rich phase is surrounded by fine grain boundaries of Ag0.4Fe0.6.However,the coarser grains and the formation of intermetallic compounds led to the reduction of strength of the brazed joints [24]. Additionally, the ascertained thickness mean of each layer was 3.82,42.41 and 67.89 μm,for layer A,B,and C,respectively.Fig.9 illustrates XRD patterns in the brazed joint.From XRD analysis,Ag0.4Fe0.6and Cu-rich phase identified in this study was a FCC lattice structure.The finding indicates that the quality of brazed joint of optimization result is great enough and acceptable. In other words, filler metal enhance the joint strength and could be applied to improving the ability of brazed joints.

    Fig. 6. Microstructure and element line scanning results of the optimal brazed joint specimen.

    Fig. 7. Microstructure and element line scanning results with no addition of filler metal.

    Fig. 8. SEM images and EDS elemental mappings of the joint.

    Fig. 9. XRD pattern of brazed joint.

    4. Conclusions

    The study has ascertained resistance parameter optimization for AHSS-AISI 304 stainless steel joints spot brazed accordingly to the established main aim. In applying filler metal to the interface area of brazed joints, the effect of each variable was identified using an ANOVA. The rank of variables in descending order are brazing current greater than electrode pressure and brazing time. The optimal brazing conditions were acquired from Taguchi method,it is concluded that for maximum shear strength, factors of brazing current and electrode pressure has to be at a high level, while brazing time has to be kept at a medium level.In the resistance spot brazed joint phase formation,failure occurs through fusion zone at the interface.In addition,the Ag0.4Fe0.6intermetallic phase,Cu-rich phase and matrix phase are identifiable. The matrix phase with mixed microstructure from the Cu-rich phase will be surrounded by Ag0.4Fe0.6grain boundaries. All phase and intermetallic compounds found in this study have FCC structure.

    Acknowledgments

    The authors would like to express deep gratitude and sincere appreciation to the National Research Council of Thailand (NRCT)under contract number A104/2017 for the financial support of this research. The indebtedness is also extended to the Rajamangala University of Technology Rattanakosin for the financial contributions.

    欧美日韩中文字幕国产精品一区二区三区| 波多野结衣av一区二区av| 午夜视频精品福利| 村上凉子中文字幕在线| 精品久久久久久久毛片微露脸| 视频在线观看一区二区三区| 亚洲第一电影网av| 国产精品国产高清国产av| 欧美一区二区精品小视频在线| 久久中文看片网| 亚洲av熟女| 三级毛片av免费| www.熟女人妻精品国产| 国产视频一区二区在线看| 在线观看一区二区三区| 久久精品国产亚洲av高清一级| 亚洲欧美激情综合另类| 国产1区2区3区精品| 欧美成人午夜精品| 国产免费av片在线观看野外av| 欧美成人性av电影在线观看| 日韩欧美在线二视频| 又黄又粗又硬又大视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 欧美成狂野欧美在线观看| 97超级碰碰碰精品色视频在线观看| 97超级碰碰碰精品色视频在线观看| 真人一进一出gif抽搐免费| 免费在线观看亚洲国产| 久久午夜综合久久蜜桃| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 91成人精品电影| 美女高潮喷水抽搐中文字幕| 女生性感内裤真人,穿戴方法视频| 丰满的人妻完整版| www.自偷自拍.com| 一进一出抽搐gif免费好疼| 精品福利观看| 欧美不卡视频在线免费观看 | 很黄的视频免费| 国产区一区二久久| 久久精品国产99精品国产亚洲性色| 成人三级做爰电影| svipshipincom国产片| 亚洲国产精品久久男人天堂| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 韩国av一区二区三区四区| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 国产99久久九九免费精品| 亚洲精品在线美女| 成人免费观看视频高清| 亚洲成a人片在线一区二区| 亚洲国产欧美网| 嫩草影视91久久| 亚洲中文av在线| 中文字幕人妻熟女乱码| 国产亚洲精品综合一区在线观看 | 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 97人妻精品一区二区三区麻豆 | 久久 成人 亚洲| 午夜视频精品福利| 99国产综合亚洲精品| 国产日本99.免费观看| 好看av亚洲va欧美ⅴa在| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 亚洲免费av在线视频| 香蕉久久夜色| av欧美777| 成人午夜高清在线视频 | 亚洲精品色激情综合| 成年人黄色毛片网站| 亚洲在线自拍视频| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| aaaaa片日本免费| 欧美日本视频| avwww免费| 亚洲精华国产精华精| 久久伊人香网站| 国产视频一区二区在线看| 99热只有精品国产| 国产国语露脸激情在线看| 麻豆一二三区av精品| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 女性被躁到高潮视频| avwww免费| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 国产三级在线视频| 日本 欧美在线| 国产人伦9x9x在线观看| 久久久久久九九精品二区国产 | 99久久精品国产亚洲精品| 亚洲国产日韩欧美精品在线观看 | 欧美久久黑人一区二区| 精品人妻1区二区| 少妇裸体淫交视频免费看高清 | 夜夜躁狠狠躁天天躁| 悠悠久久av| 美女高潮到喷水免费观看| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 一级片免费观看大全| 精品久久久久久成人av| 日本成人三级电影网站| 亚洲国产欧洲综合997久久, | 无遮挡黄片免费观看| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| 成年人黄色毛片网站| 真人做人爱边吃奶动态| 亚洲国产精品999在线| 国产成人精品久久二区二区91| 午夜福利成人在线免费观看| 在线观看www视频免费| 变态另类丝袜制服| 亚洲第一欧美日韩一区二区三区| 777久久人妻少妇嫩草av网站| 欧美午夜高清在线| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 国产精品98久久久久久宅男小说| 亚洲中文av在线| 女人被狂操c到高潮| 婷婷亚洲欧美| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 在线观看66精品国产| 99精品欧美一区二区三区四区| 在线观看日韩欧美| 曰老女人黄片| 亚洲男人天堂网一区| 无人区码免费观看不卡| 欧美 亚洲 国产 日韩一| 草草在线视频免费看| 久久性视频一级片| 欧美乱色亚洲激情| 亚洲av美国av| 免费看日本二区| 日本成人三级电影网站| 丝袜美腿诱惑在线| 九色国产91popny在线| 日韩免费av在线播放| 性色av乱码一区二区三区2| 日本三级黄在线观看| 不卡一级毛片| 91成年电影在线观看| 国产麻豆成人av免费视频| 久久午夜综合久久蜜桃| 少妇熟女aⅴ在线视频| 91字幕亚洲| 国产精品久久久人人做人人爽| 亚洲国产看品久久| svipshipincom国产片| 日韩大尺度精品在线看网址| 亚洲五月色婷婷综合| 久久人人精品亚洲av| 制服丝袜大香蕉在线| 可以免费在线观看a视频的电影网站| 久久精品亚洲精品国产色婷小说| 国产免费男女视频| 精品少妇一区二区三区视频日本电影| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区| 欧美在线一区亚洲| 国产真实乱freesex| 熟女少妇亚洲综合色aaa.| 久久国产精品人妻蜜桃| 香蕉久久夜色| 欧美亚洲日本最大视频资源| 国产爱豆传媒在线观看 | 亚洲精品一区av在线观看| 亚洲成人精品中文字幕电影| 久热这里只有精品99| 草草在线视频免费看| 搡老妇女老女人老熟妇| 国产成人一区二区三区免费视频网站| 亚洲一区中文字幕在线| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 在线观看免费午夜福利视频| 亚洲色图av天堂| 国产黄a三级三级三级人| 国产成人欧美在线观看| 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | 99在线人妻在线中文字幕| 亚洲一区高清亚洲精品| 久久久久久人人人人人| 俺也久久电影网| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久人人做人人爽| 中文字幕精品亚洲无线码一区 | 日本免费a在线| 伦理电影免费视频| 啦啦啦免费观看视频1| tocl精华| 国产精品国产高清国产av| 亚洲精品国产精品久久久不卡| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 1024视频免费在线观看| 人人妻人人看人人澡| 国产高清激情床上av| 免费在线观看黄色视频的| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 午夜久久久在线观看| 色哟哟哟哟哟哟| 最近最新中文字幕大全免费视频| 国产亚洲精品综合一区在线观看 | 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 欧美激情极品国产一区二区三区| 黑人欧美特级aaaaaa片| 久久精品夜夜夜夜夜久久蜜豆 | 午夜久久久在线观看| 日韩免费av在线播放| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区| 亚洲专区中文字幕在线| 久久中文字幕一级| 两个人看的免费小视频| 在线观看一区二区三区| 国产成人欧美在线观看| 99国产极品粉嫩在线观看| 亚洲五月婷婷丁香| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 午夜成年电影在线免费观看| 亚洲国产毛片av蜜桃av| 亚洲成a人片在线一区二区| 国产99白浆流出| 亚洲一码二码三码区别大吗| 中文资源天堂在线| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 最好的美女福利视频网| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 日韩av在线大香蕉| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 久久狼人影院| tocl精华| 亚洲最大成人中文| 国产私拍福利视频在线观看| 午夜老司机福利片| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 国产爱豆传媒在线观看 | 欧美激情极品国产一区二区三区| 中文字幕人妻熟女乱码| 一区二区三区国产精品乱码| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 啪啪无遮挡十八禁网站| 高清在线国产一区| 成年版毛片免费区| 国产在线观看jvid| 国产精品爽爽va在线观看网站 | 色婷婷久久久亚洲欧美| 久久精品夜夜夜夜夜久久蜜豆 | 国产午夜精品久久久久久| www.自偷自拍.com| 免费看美女性在线毛片视频| 成人国语在线视频| 精品高清国产在线一区| 午夜福利18| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 久久精品夜夜夜夜夜久久蜜豆 | 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| 欧美一级a爱片免费观看看 | 亚洲久久久国产精品| 国产精品美女特级片免费视频播放器 | 无限看片的www在线观看| 国产欧美日韩一区二区三| 国产亚洲av嫩草精品影院| 精品高清国产在线一区| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 色av中文字幕| 大型黄色视频在线免费观看| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 亚洲片人在线观看| 国产av又大| 国产精品99久久99久久久不卡| 久久久久久久午夜电影| 一区二区三区精品91| 看黄色毛片网站| 国产免费av片在线观看野外av| 欧美色欧美亚洲另类二区| 欧美成人午夜精品| 日韩欧美免费精品| 久久热在线av| 国产av在哪里看| 少妇裸体淫交视频免费看高清 | 少妇裸体淫交视频免费看高清 | 好男人在线观看高清免费视频 | 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 国产精品亚洲一级av第二区| 他把我摸到了高潮在线观看| 日本免费a在线| 亚洲天堂国产精品一区在线| 妹子高潮喷水视频| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 一级a爱视频在线免费观看| 亚洲av成人av| av片东京热男人的天堂| 在线观看66精品国产| 不卡一级毛片| 91国产中文字幕| 久久国产精品影院| 午夜免费激情av| 国语自产精品视频在线第100页| 中文字幕另类日韩欧美亚洲嫩草| 成人永久免费在线观看视频| av在线天堂中文字幕| 9191精品国产免费久久| 日韩视频一区二区在线观看| 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线| 久久 成人 亚洲| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 波多野结衣高清作品| 淫妇啪啪啪对白视频| 亚洲成人国产一区在线观看| 国产成人av激情在线播放| 99热只有精品国产| 国内精品久久久久精免费| 亚洲国产欧洲综合997久久, | av在线天堂中文字幕| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 在线观看舔阴道视频| 欧美性猛交黑人性爽| 一级毛片高清免费大全| 90打野战视频偷拍视频| av电影中文网址| 俄罗斯特黄特色一大片| 日本熟妇午夜| 大型av网站在线播放| 国产亚洲精品av在线| 91成年电影在线观看| 9191精品国产免费久久| 性色av乱码一区二区三区2| 欧美 亚洲 国产 日韩一| 日本a在线网址| 男男h啪啪无遮挡| 在线观看一区二区三区| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 国产视频内射| 亚洲国产欧美日韩在线播放| 午夜激情福利司机影院| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 亚洲成人精品中文字幕电影| 亚洲精品国产一区二区精华液| 久久精品夜夜夜夜夜久久蜜豆 | 免费一级毛片在线播放高清视频| 嫩草影院精品99| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 熟妇人妻久久中文字幕3abv| 大型av网站在线播放| 欧美精品亚洲一区二区| 禁无遮挡网站| 999久久久国产精品视频| 久久久精品国产亚洲av高清涩受| 久久国产乱子伦精品免费另类| 精品欧美一区二区三区在线| 99re在线观看精品视频| 日韩欧美国产在线观看| 久久久水蜜桃国产精品网| 看片在线看免费视频| 90打野战视频偷拍视频| 日本熟妇午夜| 又大又爽又粗| 日韩中文字幕欧美一区二区| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站 | av福利片在线| 91成人精品电影| 老司机福利观看| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 黄色视频不卡| 成人永久免费在线观看视频| 亚洲精品色激情综合| 人人澡人人妻人| 黄色视频不卡| 久久精品亚洲精品国产色婷小说| 免费人成视频x8x8入口观看| 欧美精品亚洲一区二区| 制服诱惑二区| 亚洲真实伦在线观看| 欧美一级毛片孕妇| 在线观看一区二区三区| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 欧美绝顶高潮抽搐喷水| 1024视频免费在线观看| 成人av一区二区三区在线看| 国产97色在线日韩免费| 99国产极品粉嫩在线观看| av福利片在线| 久久婷婷成人综合色麻豆| 十八禁网站免费在线| 欧美成人一区二区免费高清观看 | 亚洲专区中文字幕在线| 一级作爱视频免费观看| 国产成人欧美| 又大又爽又粗| 国产精品免费视频内射| 黄频高清免费视频| 亚洲av成人一区二区三| 久久久国产精品麻豆| 久久国产亚洲av麻豆专区| 国产一卡二卡三卡精品| 日本在线视频免费播放| 国产不卡一卡二| 免费看日本二区| 18禁黄网站禁片免费观看直播| 亚洲免费av在线视频| 97碰自拍视频| 黄片大片在线免费观看| 精品福利观看| 性色av乱码一区二区三区2| 9191精品国产免费久久| 亚洲aⅴ乱码一区二区在线播放 | 91麻豆精品激情在线观看国产| 国产99久久九九免费精品| 天天添夜夜摸| 色老头精品视频在线观看| 午夜免费激情av| 91字幕亚洲| 免费看日本二区| 日韩欧美一区二区三区在线观看| 黄色毛片三级朝国网站| 亚洲av熟女| 精品国产亚洲在线| xxxwww97欧美| 精品国产美女av久久久久小说| 窝窝影院91人妻| 搡老妇女老女人老熟妇| 成人特级黄色片久久久久久久| 在线观看免费午夜福利视频| www日本黄色视频网| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 国产精品一区二区精品视频观看| av福利片在线| 巨乳人妻的诱惑在线观看| xxx96com| 天天添夜夜摸| 精品不卡国产一区二区三区| 日韩有码中文字幕| 男女下面进入的视频免费午夜 | 欧美午夜高清在线| 人人妻人人看人人澡| 人成视频在线观看免费观看| 日韩欧美 国产精品| 可以免费在线观看a视频的电影网站| 午夜a级毛片| 亚洲男人的天堂狠狠| 女人高潮潮喷娇喘18禁视频| 午夜免费观看网址| 国产高清videossex| 香蕉av资源在线| 国产高清videossex| 18禁国产床啪视频网站| 制服人妻中文乱码| 久久久久久久久久黄片| 国产高清videossex| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 日韩欧美国产在线观看| 午夜免费观看网址| 国产片内射在线| 亚洲成人国产一区在线观看| 黑人欧美特级aaaaaa片| www.999成人在线观看| 可以在线观看毛片的网站| 亚洲无线在线观看| 国产成人精品久久二区二区免费| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看 | 91成年电影在线观看| 成人精品一区二区免费| 露出奶头的视频| 在线观看舔阴道视频| 免费观看人在逋| 国产精品乱码一区二三区的特点| 性色av乱码一区二区三区2| 一本综合久久免费| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 麻豆av在线久日| 亚洲精品在线观看二区| 欧美大码av| 免费看美女性在线毛片视频| 动漫黄色视频在线观看| 国产v大片淫在线免费观看| 十八禁网站免费在线| 少妇熟女aⅴ在线视频| 男人操女人黄网站| 精华霜和精华液先用哪个| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av高清一级| 老司机靠b影院| 欧美一级毛片孕妇| 国产午夜精品久久久久久| 亚洲色图av天堂| 午夜激情福利司机影院| 久久精品国产清高在天天线| 亚洲国产日韩欧美精品在线观看 | 亚洲精品国产区一区二| 免费在线观看黄色视频的| 亚洲 欧美 日韩 在线 免费| 日韩欧美一区视频在线观看| 久久热在线av| 国产精品爽爽va在线观看网站 | 久久婷婷成人综合色麻豆| 国产成人一区二区三区免费视频网站| 欧美av亚洲av综合av国产av| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| 中文字幕久久专区| 免费看美女性在线毛片视频| 亚洲色图av天堂| 男人操女人黄网站| 一进一出抽搐gif免费好疼| 国产精品美女特级片免费视频播放器 | 国产精品美女特级片免费视频播放器 | 91麻豆av在线| 香蕉av资源在线| 脱女人内裤的视频| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| 高清在线国产一区| 国产三级黄色录像| 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 1024香蕉在线观看| 热re99久久国产66热| 日日干狠狠操夜夜爽| 欧美日韩黄片免| aaaaa片日本免费| 两个人免费观看高清视频| 国产99久久九九免费精品| 香蕉丝袜av| 国产亚洲av高清不卡| 久9热在线精品视频| 色在线成人网| 午夜久久久在线观看| 99在线人妻在线中文字幕| 亚洲欧美日韩高清在线视频| 免费看美女性在线毛片视频| 国产精品免费视频内射| 免费在线观看黄色视频的| 99re在线观看精品视频| 国产aⅴ精品一区二区三区波| videosex国产| 在线十欧美十亚洲十日本专区| 又大又爽又粗| 国产精品综合久久久久久久免费| 日本撒尿小便嘘嘘汇集6| 午夜a级毛片| 我的亚洲天堂| 久久中文字幕一级| 久久香蕉精品热| 免费在线观看成人毛片| 久久国产精品男人的天堂亚洲|