• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Burning rate and other characteristics of strontium titanate (SrTiO3)supplemented AP/HTPB/Al composite propellants

    2019-07-16 11:58:34SunilJinGrimGuptDhirendrKshirsgrVrushliKhireBlsurmninKndsurmnin
    Defence Technology 2019年3期

    Sunil Jin , Grim Gupt , Dhirendr R. Kshirsgr , Vrushli H. Khire ,Blsurmnin Kndsurmnin

    a HEMRL, Sutarwadi, Pune, India

    b DIAT, Girinagar, Pune, India

    Keywords:Strontium titanate Ammonium perchlorate Composite propellant Burning rate

    A B S T R A C T In a quest of search for a new burning rate modifier for composite propellant,strontium titanate(SrTiO3),a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications.Initially,SrTiO3 was characterized for particle size,morphology and material/phase identification(using XRD).By varying SrTiO3 content in a standard composite propellant,different compositions were prepared and their performance and processing parameters like the end of mix(EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.

    1. Introduction

    Composite propellant [1,2] containing ammonium perchlorate(AP), Aluminium powder (Al) and hydroxyl-terminated polybutadiene(HTPB)is the workhorse solid rocket propellant for most of the present missiles and rockets.To achieve a higher burning rate of composite propellant,burning rate modifiers are used in almost all propellant compositions. The transition metal oxides (TMOs)and their complexes are found to be the most effective burning rate modifiers for composite propellants. The effect of transition metal oxides on ballistic properties of composite propellant was studied and reviewed by many researchers [3-7]. The incorporation and evaluation of transition metal complexes (ferrocene,catocene, etc.) and grafted complexes (butacene) in composite propellant formulations have also been carried out by a number of researchers [8-10]. Mixed metal oxides are advantageous than single metal oxide in composite propellant formulations due to selectivity of catalytic reactions [11,12]. Various mixed oxides such as chromites [13,14], ferrites [15-17], etc. have been investigated as burning rate modifiers in composite propellant formulations by various researchers. However, only limited references are available for perovskite oxides application in composite propellant formulations.

    The perovskite structure is adopted by many oxides that have the chemical formula ABO3[18]. The general crystal structure of perovskite is a primitive cube, with the A-larger cation in the corner, the B-smaller cation in the middle of the cube, and the anion,commonly oxygen,in the centre of the face edges,where A is a monovalent, divalent or trivalent metal and B a pentavalent,tetravalent or trivalent element, respectively. The cation B is generally a transition metal element which can exhibit multiple valances.This may facilitate many intermediate reactions during AP decomposition or composite propellant combustion. Further, the perovskite crystal structure imparts possibility of having active catalytic sites on the surface of particles due to crystal imperfections(mainly substitutional defects).Hence,perovskite oxides may behave as a catalyst for AP decomposition or composite propellant combustion.

    Wang et al. have reported the catalytic effect of perovskite oxides LaFeO3,LaCoO3,and LaNiO3on AP decomposition and found a decrease in its second exothermic peak temperature [19]. Yu et al.reported a significant decrease in AP decomposition peak temperature (second exothermic) by NdCrO3[20]. Guan et al. compared catalytic effectiveness of irregular and nano-sheet FeTiO3on AP decomposition[21].From the available literature,it is observed that detailed study using perovskite oxides in propellant compositions have not been carried out so far.

    Strontium titanate, an important perovskite oxide, has been found effective in many areas of catalysis.It has been reported as a useful catalyst by J.J.Wu et al.for oxalic acid ozonation[22].Doped SrTiO3has been used as a reforming catalyst to produce hydrogen from dodecene [23]. There are references for application of SrTiO3as a photocatalyst for degradation of furfural [24] and also water splitting for producing hydrogen [25]. By considering the above catalytic applications of SrTiO3, it was hypotheses that it may also act as a good catalyst for burning rate enhancement of composite propellants.

    In the present study, strontium titanate was characterized and then systematically evaluated in a standard composite propellant.The processing/performance parameters such as EOM viscosity,thermal, mechanical and ballistic properties of SrTiO3based propellant compositions were then compared with the parameters of standard composition in order to ascertain its suitability as a possible burning rate modifier.

    2. Experimental

    2.1. Materials

    Bi-modal AP (300 μm and 50 μm) were used in propellant compositions. AP-300 μm was purchased from M/s Pandian Chemicals Ltd. (Cuddalore, India). The 50 μm average size fraction AP was prepared by grinding of 300 μm AP fraction in a pin disc mill(ACM-10). HTPB (average molecular weight: 2560 and hydroxyl number:41.8 mg KOH/g)and Al powder(average size 15 μm)were purchased from M/s Anabond Ltd. (Chennai, India) and M/s The Metal Powder Company (Madurai, India), respectively and employed as received. Strontium titanate (purity>99%), dioctyl adipate (DOA), toluene diisocyanate (TDI), N-phenyl-2-naphthylamine (NONOX-D), trimethylolpropane (TMP) and 1, 4-butanediol (n-BD) were purchased from trade and employed as received.

    2.2. Characterization

    X-ray diffraction (XRD) study of SrTiO3was carried out on a Phillips PANalyticalX'pert pro powder diffractometer employing Cu-Kα radiation. The particle size of SrTiO3was determined by photon cross-correlation spectroscopy (PCCS) based Sympatec NANOPHOX analyser. The surface morphology of SrTiO3was determined by using a ZEISS Sigma FESEM (Field Emission Scanning Electron Microscope).The propellant slurry EOM viscosity was measured using a dial-type Brookfield viscometer (Model HBT). A differential scanning calorimeter (DSC) of TA Instruments make(Model Q20) was used to carry out the thermal decomposition study at a heating rate of 10°C/min. The mechanical properties(tensile strength, E-modulus and percentage elongation) evaluation of the cured propellant samples were performed on a universal testing machine(UTM)of Hounsfield make following ASTM-D-638 type IV standard at 50 mm/min crosshead speed. The thermal transport properties (thermal conductivity, etc.) of propellant samples were measured using laser flash method on Anter Corporation,USA make machine(model flashline-3000)by taking the samples in the form of disks of 1.5 mm thickness and 12.5 mm diameter. The friction and impact sensitivities of the studied propellant compositions were determined using a Bundesanstalt fur Materialprufung(BAM)fall hammer(2 kg drop weight),Model No.BFH-10(OZM,Czech Republic)and a BAM friction apparatus,Model No. FSKM-10 (OZM, Czech Republic), respectively. Parr isoperibol calorimeter(model 6200)was used to measure calorimetric values(cal-val)of the prepared propellant samples under N2atmosphere.The density of cured propellant samples were measured using gas pycnometer. The propellant solid strand burning rate (SSBR) was measured by a stainless steel bomb pressurized with N2using acoustic emission technique.

    2.3. Incorporation of SrTiO3 in propellant formulations

    The mixing of propellant was carried out in a 1L mixer,following a standard procedure[7].All the liquid ingredients(except TDI)and antioxidant were added to the initially. Then catalyst, Al and AP were added in sequence with intermittent mixing. Before the addition of TDI, vacuum mixing was accomplished for 30 min.maintaining the mix temperature of 45±2°C. At this stage, the required quantity of TDI was incorporated into the mix and mixing was continued for another 40 min.After final mixing,the viscosity of the propellant slurry was measured and the slurry was cast into a 150 mm×150 mm X 40 mm aluminium tray under vacuum. The tray was kept at 50°C for 5 days in a water jacketed oven for propellant curing.

    In the present study,the propellant processing and performance parameters were studied for the propellant formulations mentioned in Table 1.

    3. Results and discussion

    3.1. Strontium titanate characterization

    Material/phase identification study of SrTiO3was carried out with the help of a continuous scanning mode powder XRD instrument(at 2°/min scanning rate).Fig.1 shows the obtained XRD peaks pattern which clearly reveals the crystalline nature of SrTiO3as sharp peaks are present.The peaks also match closely with XRD peaks presented in JCPDS-35-734 for cubic SrTiO3.

    Photon cross-correlation spectroscopy (PCCS) based analyser NANPHOX was used to measure the particle size of SrTiO3. The analysis revealed the average size of the powder as 0.22 μm.

    The surface morphology of SrTiO3was determined by FESEM.The FESEM image(Fig.2)shows irregularly shaped particles having size in the range of 200-400 nm.

    3.2. Catalytic effect of SrTiO3 on ammonium perchlorate

    Before evaluating SrTiO3in the composite propellants,its effect on AP thermal decomposition was studied. A mixture comprising 1.427% SrTiO3and 98.573% AP (corresponding to 1% SrTiO3in propellant composition)was analysed at a heating rate of 10°C/min by DSC.The results presented in Table 2 and Figs.3 and 4 indicate that the addition of SrTiO3in AP causes a reduction in temperatures of both exothermic peaks. However, the reduction in II exothermic peak temperature is quite significant in comparison to I exothermic peak. These findings infer that SrTiO3has the capability of catalysing AP thermal decomposition.

    Table 1Composition details of the studied propellants.

    Fig.1. XRD of SrTiO3.

    Fig. 2. FESEM of SrTiO3.

    Table 2Effect of SrTiO3 on thermal decomposition temperature of AP.

    Fig. 3. DSC of ammonium perchlorate.

    3.3. Evaluation of SrTiO3 in composite propellants

    The propellant compositions (Table 1) were prepared by incorporating SrTiO3at 1.0 and 2.0%level(by replacing an equal amount of coarse AP) in the standard composition. The propellant processing and performance parameters were then studied for all the prepared compositions.

    Fig. 4. DSC of mixture comprising 1.427% SrTiO3 and 98.573% AP.

    The propellant slurry viscosity, density and mechanical properties data are presented in Table 3. The data indicates that as the content of SrTiO3increases in composition, the EOM viscosity also increases. The increase in EOM viscosity of SrTiO3compositions may be due to lower particle size of SrTiO3in comparison to AP.However, despite the slightly higher viscosity of SrTiO3compositions, the propellant slurry was easily castable.

    The cured propellant density data (Table 3) show that the density of the SrTiO3based formulations increases with its content.This behaviour may be due to the higher density of SrTiO3in comparison to AP which was replaced for SrTiO3incorporation in the propellant compositions.The density of SrTiO3and AP was 5180 and 1950 kg/m3, respectively as measured using gas pycnometer.

    The mechanical properties data (Table 3) infers that as SrTiO3content in the compositions increase, all the three performance parameters (tensile strength, E-modulus and % elongation)decrease. This behaviour could be due to the less binding (adhesion) of SrTiO3particles with binder compared to AP particles.However,the mechanical properties of developed compositions are sufficient for any case bonded propellant application.

    Table 4 shows data on impact and friction sensitivity of the standard composition and the composition having 2% SrTiO3following standard procedures [26-29]. The impact sensitivity values are presented as height for 50%probability of an explosion.The friction sensitivity is presented as the minimum load which will not cause initiation for five consecutive trials. The data in the table reveals that the SrTiO3based compositions are slightly more sensitive towards impact and friction than the standard composition.This may be due to the catalytic action of SrTiO3on propellant thermal decomposition under impact and frictional loading.

    Propellant thermal conductivity, diffusivity and specific heat were measured for standard composition as well as a composition having 2% SrTiO3following standard procedures using flash laser thermal apparatus[30].The data obtained are presented in Table 5 which reveals that thermal conductivity, diffusivity and specific heat values of propellant increase with the addition of SrTiO3in the standard propellant composition.

    Thermal decomposition study of standard propellant composition and compositions containing SrTiO3was carried out using DSC and the data on endotherm/exotherm are presented in Table 6 and Figs.5 and 6.The standard propellant exhibits an endothermic peak and two exothermic peaks. The endotherm (at around 247°C) is attributed to orthorhombic to cubic phase transition of AP crystals and exotherms are due to decomposition of AP. The incorporation of SrTiO3does not cause an appreciable change in endothermic and the first exothermic peak, however, the second exothermic peak temperature reduces by 24°C. The decrease in second exothermic peak temperature signifies that SrTiO3is catalysing the composite propellant thermal decomposition.

    Table 3Effect of SrTiO3 on EOM viscosity, density and mechanical properties of the composite propellants.

    Table 4Effect of SrTiO3 on the sensitivity of propellant.

    Table 5Effect of SrTiO3 on thermal transport properties of composite propellant formulations.

    Table 6Effect of SrTiO3 on composite propellant thermal decomposition.

    Fig. 5. DSC of standard propellant composition.

    Fig. 6. DSC of 2% SrTiO3 propellant composition (Comp. 2).

    Table 7 shows the calorimetric values (cal-val) of the studied propellants.The incorporation of SrTiO3in the standard composite propellant causes a reduction in its cal-val.This behaviour is due to the fact that SrTiO3is not adding any energy to the propellant system and it has been incorporated by part replacement of energetic AP.

    The SSBR of studied formulations were measured at different pressures using acoustic emission technique in S.S.bomb under N2environment. The results presented in Table 7 and Fig. 7 show an increase in burning rate with increase in SrTiO3content. SrTiO3at 2.0% level causes more than 12% enhancement in burning rate (at 70 ksc pressure)in comparison to the burning rate of the standard composition.

    Strontium titanate,which contains Sr as well as Ti,the catalytic mechanism by which propellant burning rate enhances is very difficult to predict. Electron transfer by redox cycle may enhance because of the multivalent nature of Ti. In addition, there may be the presence of crystal defects in the SrTiO3,which can create holes and electrons (due to the presence of Sr in addition to Ti) in the crystal structure [31,32]. SrTiO3may provide a link for electron transfer from perchlorate ions to the ammonium ions in the AP decomposition step during propellant burning.

    SSBR data at different pressures were used to estimate pressure exponent (n-value) of the propellant formulations under study.Table 7 and Fig. 7 present the calculated n-values. The pressure exponent with 2% SrTiO3was 0.46 in comparison to 0.35 of standard composition.This slight increase in pressure exponent shows that premixed behaviour of flame might become more dominant in premixed/diffusion multi-flame of composite propellant combustion by the addition of SrTiO3in propellant composition.

    The obtained results can be useful for prediction of combustion of SrTiO3based composite propellants.The pressure exponent(‘n’)is of critical importance in maintaining the stable operation of any rocket motor [33]. It also has significant influence on ignition transient process [33,34]. Transient pressure in the combustion chamber of solid rocket motors is given as

    Table 7Ballistic properties of studied compositions using SrTiO3.

    Fig. 7. Effect of pressure on propellant SSBR.

    Where

    and pcis the steady combustion pressure given as

    Here,Ab- Propellant burning area

    At- Rocket motor nozzle throat area

    Vc- Chamber free volume

    c*-Characteristic velocity

    a- Constant from burning rate relation r =apn

    Small changes in Ab can lead to significant changes in chamber pressure(p)and subsequently in burning rate,if‘n’is close to 1.The composite propellant generally has ‘n’ below 0.5.

    4. Conclusion

    In this study, SrTiO3 was characterized and evaluated in a standard composite propellant having 18%Al.The propellant slurry EOM viscosity increases from 480 to 832 Pa s on the incorporation of 2.0%SrTiO3.The data on friction and impact sensitivity analysis of propellant samples showed that the developed composition with SrTiO3 is slightly more sensitive than the standard composition.The data on the burning rate reveals that in comparison to standard composition,12%enhancement in burning rate was observed with 2% SrTiO3 at 70 ksc.

    永久免费av网站大全| av免费在线看不卡| 国产精品国产高清国产av| 女人被狂操c到高潮| 一区二区三区免费毛片| 精品久久国产蜜桃| 在线免费观看的www视频| 黄片无遮挡物在线观看| 日韩国内少妇激情av| av专区在线播放| 久久精品国产亚洲av天美| 毛片女人毛片| 免费观看人在逋| av在线天堂中文字幕| 亚洲欧美成人综合另类久久久 | 亚洲欧美清纯卡通| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影| 老司机影院成人| 男女国产视频网站| 丰满人妻一区二区三区视频av| 亚洲精品久久久久久婷婷小说 | 欧美日韩精品成人综合77777| 婷婷色麻豆天堂久久 | 嫩草影院入口| a级毛片免费高清观看在线播放| 又粗又硬又长又爽又黄的视频| 精品国产三级普通话版| 久久99蜜桃精品久久| 汤姆久久久久久久影院中文字幕 | 中文字幕av在线有码专区| 老司机福利观看| 男人的好看免费观看在线视频| 美女xxoo啪啪120秒动态图| 亚洲精品乱久久久久久| 久久这里只有精品中国| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| 少妇的逼好多水| 久久99热这里只有精品18| 国产精品一区二区性色av| 国产成人精品久久久久久| 欧美日韩综合久久久久久| 久久久久久久久久成人| 亚洲国产精品久久男人天堂| 国产精品美女特级片免费视频播放器| 欧美一区二区亚洲| 久久久久久久久久黄片| 亚洲精品日韩在线中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲人成网站在线观看播放| 高清在线视频一区二区三区 | 免费黄网站久久成人精品| 久久久国产成人免费| 免费搜索国产男女视频| 美女xxoo啪啪120秒动态图| av在线天堂中文字幕| 偷拍熟女少妇极品色| 久久久久久国产a免费观看| 五月玫瑰六月丁香| 亚洲欧洲日产国产| 婷婷六月久久综合丁香| 国产又色又爽无遮挡免| 老师上课跳d突然被开到最大视频| 干丝袜人妻中文字幕| 校园人妻丝袜中文字幕| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 久久精品综合一区二区三区| 一级二级三级毛片免费看| 久久人人爽人人爽人人片va| 波多野结衣高清无吗| 成人毛片a级毛片在线播放| 亚洲成人av在线免费| 久久热精品热| 看十八女毛片水多多多| 欧美变态另类bdsm刘玥| 国产亚洲av片在线观看秒播厂 | 免费电影在线观看免费观看| 精品人妻视频免费看| 纵有疾风起免费观看全集完整版 | 国产av一区在线观看免费| 久久草成人影院| 日本免费a在线| 久久久久久久久久黄片| 国产国拍精品亚洲av在线观看| 亚洲欧美精品自产自拍| h日本视频在线播放| 少妇高潮的动态图| 色5月婷婷丁香| 日韩成人伦理影院| 国产伦精品一区二区三区四那| 啦啦啦观看免费观看视频高清| 国产免费又黄又爽又色| 国产一区有黄有色的免费视频 | 久久久久久大精品| 99在线人妻在线中文字幕| 久久久久久久久久黄片| 亚州av有码| 日韩大片免费观看网站 | 国产黄片视频在线免费观看| 最近视频中文字幕2019在线8| 欧美性猛交黑人性爽| 午夜a级毛片| 精品久久久久久久久亚洲| 蜜臀久久99精品久久宅男| 久久99精品国语久久久| 国产午夜福利久久久久久| 色综合色国产| 九草在线视频观看| 日韩欧美在线乱码| 麻豆一二三区av精品| a级一级毛片免费在线观看| 日韩一区二区视频免费看| 免费看日本二区| 狂野欧美白嫩少妇大欣赏| 国产美女午夜福利| 老司机影院成人| 99久久无色码亚洲精品果冻| 最近手机中文字幕大全| 欧美zozozo另类| 大香蕉97超碰在线| 亚洲综合精品二区| 一区二区三区乱码不卡18| 一边亲一边摸免费视频| 亚洲精品日韩在线中文字幕| 欧美又色又爽又黄视频| 2021天堂中文幕一二区在线观| 国产极品天堂在线| 日日啪夜夜撸| 国产精品国产三级专区第一集| 日韩精品有码人妻一区| 国产真实伦视频高清在线观看| 日本黄大片高清| 精品国产露脸久久av麻豆 | 天天躁日日操中文字幕| 偷拍熟女少妇极品色| 搡老妇女老女人老熟妇| 女人十人毛片免费观看3o分钟| 最近中文字幕高清免费大全6| 99九九线精品视频在线观看视频| 精品免费久久久久久久清纯| 成人午夜高清在线视频| av国产久精品久网站免费入址| 性色avwww在线观看| 毛片女人毛片| 国产在视频线精品| av国产久精品久网站免费入址| 亚洲国产精品成人综合色| 国产精品嫩草影院av在线观看| 亚洲婷婷狠狠爱综合网| 国产黄a三级三级三级人| 亚洲内射少妇av| 久久精品影院6| 精品久久久久久久久av| av又黄又爽大尺度在线免费看 | 欧美bdsm另类| 久久国产乱子免费精品| 汤姆久久久久久久影院中文字幕 | 国产片特级美女逼逼视频| 午夜福利在线观看吧| 亚洲av熟女| 一区二区三区乱码不卡18| 最后的刺客免费高清国语| 亚洲人与动物交配视频| 国产精品女同一区二区软件| 欧美性猛交黑人性爽| 亚洲内射少妇av| 国产一区二区亚洲精品在线观看| 亚洲18禁久久av| 久久99热这里只有精品18| 色噜噜av男人的天堂激情| 亚洲成人中文字幕在线播放| 日本午夜av视频| 亚洲av.av天堂| 两个人视频免费观看高清| 国产成人aa在线观看| 午夜福利视频1000在线观看| 亚洲欧美一区二区三区国产| 一级黄片播放器| 高清毛片免费看| av专区在线播放| 国语自产精品视频在线第100页| 亚洲成人av在线免费| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 少妇人妻一区二区三区视频| 国产精品av视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 成人性生交大片免费视频hd| 中文字幕精品亚洲无线码一区| 午夜精品国产一区二区电影 | 国产精品一区二区在线观看99 | 赤兔流量卡办理| 国产精品国产高清国产av| 亚洲第一区二区三区不卡| 2022亚洲国产成人精品| 日韩精品有码人妻一区| 国产成人福利小说| 色播亚洲综合网| 国产精品久久久久久久电影| 欧美一区二区精品小视频在线| 九九久久精品国产亚洲av麻豆| 一级二级三级毛片免费看| 日韩高清综合在线| 乱系列少妇在线播放| 成人亚洲精品av一区二区| 日韩成人伦理影院| 天堂中文最新版在线下载 | 久久精品久久精品一区二区三区| 精品欧美国产一区二区三| 极品教师在线视频| 丝袜喷水一区| 伊人久久精品亚洲午夜| 免费观看在线日韩| 久久人人爽人人片av| 极品教师在线视频| 国产精品麻豆人妻色哟哟久久 | 老司机福利观看| 久久久欧美国产精品| 两个人的视频大全免费| 深夜a级毛片| 国国产精品蜜臀av免费| 一本久久精品| 国产91av在线免费观看| 国产亚洲精品av在线| 亚洲av日韩在线播放| 九九久久精品国产亚洲av麻豆| 国产视频首页在线观看| 国产精品熟女久久久久浪| 精品久久久久久久久久久久久| 中文字幕久久专区| 色5月婷婷丁香| 精品熟女少妇av免费看| 美女大奶头视频| 久久久久久国产a免费观看| 国模一区二区三区四区视频| 国产乱来视频区| av线在线观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲电影在线观看av| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 日本免费a在线| 国产成人aa在线观看| 日本三级黄在线观看| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 久久99精品国语久久久| 久久久久久久久大av| 噜噜噜噜噜久久久久久91| 97热精品久久久久久| 秋霞在线观看毛片| 国产av一区在线观看免费| 国产伦理片在线播放av一区| 欧美区成人在线视频| 日本色播在线视频| 丰满人妻一区二区三区视频av| 久久99热这里只频精品6学生 | 午夜福利视频1000在线观看| 麻豆精品久久久久久蜜桃| 国产高清三级在线| 欧美激情国产日韩精品一区| 日韩中字成人| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 一区二区三区四区激情视频| 国产乱来视频区| 午夜免费男女啪啪视频观看| 我的老师免费观看完整版| 亚洲欧美成人综合另类久久久 | 成人欧美大片| 免费观看在线日韩| 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 简卡轻食公司| 亚洲在线自拍视频| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 久久精品综合一区二区三区| 性色avwww在线观看| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 亚洲av日韩在线播放| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆乱淫一区二区| videos熟女内射| 小蜜桃在线观看免费完整版高清| 国产女主播在线喷水免费视频网站 | 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 成人特级av手机在线观看| 日本免费a在线| 最近2019中文字幕mv第一页| 又爽又黄a免费视频| 亚洲最大成人中文| 日本色播在线视频| 亚洲最大成人av| 国内精品宾馆在线| 午夜精品国产一区二区电影 | 精品少妇黑人巨大在线播放 | 91精品伊人久久大香线蕉| 最近2019中文字幕mv第一页| 久久久久久久久久久丰满| 欧美人与善性xxx| 成年女人看的毛片在线观看| 国产不卡一卡二| 床上黄色一级片| 大香蕉97超碰在线| 欧美成人午夜免费资源| 日本熟妇午夜| 国产精品福利在线免费观看| 在线免费观看的www视频| 性插视频无遮挡在线免费观看| 中文字幕亚洲精品专区| 亚洲成色77777| 99久久中文字幕三级久久日本| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 午夜福利网站1000一区二区三区| 乱人视频在线观看| 成人亚洲精品av一区二区| 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 国产乱人偷精品视频| 麻豆久久精品国产亚洲av| 插逼视频在线观看| 午夜日本视频在线| 成人漫画全彩无遮挡| 午夜激情福利司机影院| 午夜免费男女啪啪视频观看| 91午夜精品亚洲一区二区三区| a级毛片免费高清观看在线播放| 成人av在线播放网站| 国产在线男女| 日产精品乱码卡一卡2卡三| 久久久精品欧美日韩精品| 午夜激情欧美在线| 国产精品野战在线观看| 成人毛片60女人毛片免费| 有码 亚洲区| 国产真实乱freesex| 成人午夜精彩视频在线观看| ponron亚洲| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 久久久久久久久中文| 蜜臀久久99精品久久宅男| 淫秽高清视频在线观看| 超碰97精品在线观看| 欧美激情久久久久久爽电影| 少妇人妻一区二区三区视频| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 日本午夜av视频| 国产黄片视频在线免费观看| 18禁动态无遮挡网站| 成人高潮视频无遮挡免费网站| 国内揄拍国产精品人妻在线| 美女内射精品一级片tv| 午夜久久久久精精品| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 亚洲三级黄色毛片| 在线观看av片永久免费下载| 一级毛片久久久久久久久女| 亚洲国产精品国产精品| 日韩一本色道免费dvd| 69人妻影院| 国产色爽女视频免费观看| 日韩av在线免费看完整版不卡| 七月丁香在线播放| 亚洲va在线va天堂va国产| 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品久久男人天堂| av.在线天堂| 欧美一区二区国产精品久久精品| 久热久热在线精品观看| 波多野结衣高清无吗| 亚洲最大成人手机在线| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品一,二区| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 成人综合一区亚洲| 美女大奶头视频| 在线观看美女被高潮喷水网站| 99久久成人亚洲精品观看| 国产乱人视频| 日韩成人av中文字幕在线观看| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 亚洲av成人精品一二三区| 亚洲国产色片| 色5月婷婷丁香| 精品午夜福利在线看| 免费看av在线观看网站| 欧美三级亚洲精品| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 中文字幕av成人在线电影| 午夜亚洲福利在线播放| 日韩视频在线欧美| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 久久精品国产亚洲av涩爱| 搡女人真爽免费视频火全软件| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 免费观看a级毛片全部| 春色校园在线视频观看| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 美女高潮的动态| 亚洲av日韩在线播放| 色播亚洲综合网| 在线播放无遮挡| 亚洲精品色激情综合| 又爽又黄无遮挡网站| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| videos熟女内射| 亚洲国产精品sss在线观看| 能在线免费观看的黄片| 亚洲av二区三区四区| 激情 狠狠 欧美| 国产成人精品一,二区| 亚洲怡红院男人天堂| 建设人人有责人人尽责人人享有的 | 亚洲高清免费不卡视频| 精品久久久久久久人妻蜜臀av| 国产中年淑女户外野战色| 国产精品女同一区二区软件| 久久精品国产亚洲网站| 国产老妇女一区| 高清av免费在线| 久久草成人影院| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 国产激情偷乱视频一区二区| 国产高清不卡午夜福利| 久久久久久久久大av| 中文字幕精品亚洲无线码一区| 三级经典国产精品| 男女国产视频网站| 国产乱人偷精品视频| 欧美一区二区精品小视频在线| 国产在视频线精品| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 啦啦啦观看免费观看视频高清| 中文字幕av成人在线电影| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 亚洲欧美精品专区久久| 国产精品嫩草影院av在线观看| 国产免费又黄又爽又色| av国产免费在线观看| 三级国产精品片| 中文天堂在线官网| 18禁在线无遮挡免费观看视频| 久久久精品大字幕| 精品一区二区免费观看| 久99久视频精品免费| 成年版毛片免费区| 亚洲最大成人av| 青春草视频在线免费观看| 最新中文字幕久久久久| 少妇熟女欧美另类| 国产女主播在线喷水免费视频网站 | 亚洲国产高清在线一区二区三| 免费大片18禁| 免费人成在线观看视频色| 久久久久精品久久久久真实原创| 国产精品美女特级片免费视频播放器| 国产老妇女一区| 一个人免费在线观看电影| 夜夜爽夜夜爽视频| 99热网站在线观看| 国产精品国产三级国产专区5o | 欧美性猛交╳xxx乱大交人| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 秋霞在线观看毛片| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 久久鲁丝午夜福利片| 欧美一区二区亚洲| 日韩一区二区视频免费看| 国产高清视频在线观看网站| 欧美成人精品欧美一级黄| 国产极品精品免费视频能看的| 卡戴珊不雅视频在线播放| 日韩成人伦理影院| 精品久久久久久久久av| 男女那种视频在线观看| 日韩制服骚丝袜av| 欧美成人免费av一区二区三区| 国产极品天堂在线| 午夜激情福利司机影院| 男的添女的下面高潮视频| 精品欧美国产一区二区三| 欧美区成人在线视频| 男女视频在线观看网站免费| 欧美变态另类bdsm刘玥| 亚洲国产欧洲综合997久久,| 国产在视频线在精品| 亚洲伊人久久精品综合 | 亚洲最大成人中文| 日本av手机在线免费观看| 啦啦啦韩国在线观看视频| 我的女老师完整版在线观看| 晚上一个人看的免费电影| 国产精品综合久久久久久久免费| 久久久色成人| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 亚洲色图av天堂| 免费看美女性在线毛片视频| 99热精品在线国产| 免费不卡的大黄色大毛片视频在线观看 | 免费大片18禁| 欧美激情久久久久久爽电影| 综合色丁香网| 内射极品少妇av片p| 亚洲国产欧美人成| 99热精品在线国产| 亚洲自偷自拍三级| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 免费看a级黄色片| 99热全是精品| 2022亚洲国产成人精品| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 午夜激情欧美在线| 日韩精品青青久久久久久| 欧美xxxx性猛交bbbb| 91久久精品电影网| 成人av在线播放网站| av.在线天堂| 2021少妇久久久久久久久久久| av.在线天堂| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 一级毛片我不卡| 寂寞人妻少妇视频99o| 老司机影院成人| 亚洲av日韩在线播放| 一本久久精品| 日本黄色视频三级网站网址| av卡一久久| 欧美+日韩+精品| av在线天堂中文字幕| 国产免费男女视频| 校园人妻丝袜中文字幕| 97超碰精品成人国产| 亚洲最大成人av| 18+在线观看网站| 久久精品影院6| 黄色欧美视频在线观看| 亚洲精品色激情综合| 极品教师在线视频| 国产亚洲5aaaaa淫片| 非洲黑人性xxxx精品又粗又长| 久久热精品热| 国产精品一区www在线观看| av.在线天堂| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 国模一区二区三区四区视频| 在线观看66精品国产| 亚洲精品影视一区二区三区av| 三级经典国产精品| 欧美xxxx黑人xx丫x性爽| 在线观看66精品国产| videossex国产| 插逼视频在线观看| 2021少妇久久久久久久久久久| 国产极品精品免费视频能看的| 国内精品宾馆在线| 我的老师免费观看完整版| 国产精品久久久久久精品电影小说 | 高清毛片免费看| 亚洲怡红院男人天堂| 国产亚洲av片在线观看秒播厂 | 精品国产露脸久久av麻豆 | 黑人高潮一二区| 日韩视频在线欧美| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| 久久综合国产亚洲精品| 亚洲成av人片在线播放无| 综合色丁香网| 成人午夜精彩视频在线观看| 国产精品,欧美在线| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 亚洲欧美精品综合久久99| 国产乱人视频| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看| 高清毛片免费看| 97超视频在线观看视频| 看片在线看免费视频| 国产视频首页在线观看| 内射极品少妇av片p| 免费搜索国产男女视频| 最近最新中文字幕免费大全7|