• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel aspects for thermal stability studies and shelf life assessment of modified double-base propellants

    2019-07-16 11:58:24SherifElsuneyAshrfElghfourMostfRdwnAhmedFhdHosmMostfRmySdekAmrMotzSchoolofChemiclEngineeringMilitryTechniclCollegeKoryElKoCiroEgypt
    Defence Technology 2019年3期

    Sherif Elsuney , Ashrf.M. A. Elghfour , Mostf Rdwn , Ahmed Fhd ,Hosm Mostf , Rmy Sdek , Amr Motz School of Chemicl Engineering, Militry Technicl College, Kory El-Ko, Ciro, Egypt

    b British University in Egypt, Elshrouk city, Cairo, Egypt

    Keywords:Double-base propellant Thermal stability Artificial aging Shelf-life assessment

    A B S T R A C T Modified DB propellants, based on energetic nitramine (RDX) were manufactured by solventless extrusion process. Thermal stability and shelf life assessment of modified DB propellant were investigated. Shelf life assessment was evaluated using Van't Hoff's formula and artificial aging at 70°C up to 120 days. Quantification of total heat released and heat flow with aging time was conducted using differential scanning calorimetry (DSC) and thermal activity monitoring (TAMIII) respectively. Modified DB formulation based on 20 wt % RDX demonstrated enhanced thermal stability in terms of controlled heat flow, and slow decomposition reactions at elevated temperature. This formulation demonstrated extended service life up to 56 years compared with reference formulation. These novel finding was ascribed to the high thermal stability of RDX and its compatibility with DB constituents.This manuscript shaded the light on novel and effective approach for thermal stability via monitoring thermal activity with aging.

    1. Introduction

    Modified double-base (DB) propellants have found wide applications in modern military and space rocketry, due their superior performance in terms of enhanced thrust compared to conventional DB[1,2].Modified DB propellants are evolved by integrating energetic fillers such as HMX or RDX[3-6]. Energetic heterocyclic nitramine (RDX) could be an ideal energetic filler for DB propellants. RDX can offer potential characteristics including [7]:

    · High thermal stability with decomposition temperature 213°C

    · High enthalpy of formation +318 kJ/kg

    · High heat of combustion 5.647 kJ/kg

    · High volume of gaseous products 903 L/kg

    All these features can inherit RDX a vital role for the development of DB propellants. Therefore RDX can significantly enhance the combustion characteristics in terms of specific impulse(thrust per unit weight of effective propellant),as well as burning rate.RDX can act as a blowing agent generating large amount of inert gasses pushing the luminous flame from the burning surface.Therefore it can offer superior platonization characteristics.

    RDX has a slightly negative oxygen balance as well as high heat of combustion. This means large amount of gaseous products at high combustion temperature. These features can offer enhanced combustion and ballistic characteristics mainly high specific impulse. Specific impulse is the thrust conveyed to a vehicle per effective weight of propellants; it is expressed in second (S).Modified DB propellants based on RDX can offer wide range of specific impulse that can be varied from 220 to 270 S [8-11]. This can extend the application of DB propellants in booster, sustainer,and dual thrust rocket motors [11-13]. Our recent research conducted on ballistic performance of modified DB propellants demonstrated enhanced combustion characteristics; as RDX offered enhanced thrust and action time. Fig. 1 represents the impact of RDX content on pressure-time curve of DB propellants using small-scale ballistic evaluation test motor.

    RDX offered an increase in specific impulse, characteristic exhaust velocity,action time,and total impulse(Table 1)[11,14-16].

    There was an increase in the total impulse with RDX content.

    The great impact of RDX on combustion characteristics was attributed to its positive heat of formation (+417 kJ/kg). RDX is an efficient explosive material with explosion heat of 5.647 kJ/g and gaseous product of 903 L/kg [14]. RDX has a slightly negative oxygen balance which means low molecular weight decomposition products [14,17]. Although, much research has been directed to investigate the combustion characteristics of modified DB propellants [7,18-20]; less attention has been directed to explore the impact of different energetic additives on thermal stability and shelf life assessment [21]. Thermal and chemical stability is one of the major drawbacks of DB propellants. The main energetic constituents of DB propellants i.e. nitrocellulose (NC) and nitroglycerine (NG) are molecules that aren't chemically stable. Whereas,decomposition of DB propellants is slow at ambient conditions; it becomes autocatalytic in harsh environmental conditions [9]. The main mechanisms through which chemical decomposition could take place include:

    1.1. Chain reactions

    Chain reactions begin with the homolytic breaking of the weak O-NO2bond,forming nitrogen dioxide and corresponding alkoxyl free radical [22-24]. The generated reactive free radicals instantly undergo successive reactions with nearby nitrate ester molecules(Equation (1)) [24].

    1.2. Saponification (hydrolysis)

    Another decomposition mechanism is hydrolysis of nitrate esters[23].This reaction is catalyzed by moisture and acidic residues(Equation (2)).

    Another main decomposition reaction is the enhanced hydrolysis.This reaction with low activation energy of 71 kJ/mol could be the dominant reaction at low temperatures [25].

    1.3. Auto-catalytic reactions

    Decomposition products of reaction (2) can undergo further decomposition in the presence of moisture and oxygen as follow

    Whereas the primary hemolytic reaction (2) can't be suppressed, the consecutive reactions (3-6) can be slowed down by binding or elimination of acidic residues from the system. Stabilization of DB propellants can be achieved by integrating stabilizing agents [25,26]. Stabilizers are capable of binding with nitrogen oxides to neutralize the decomposition products[27].Stabilized DB propellants can offer a safe shelf life of at least 20 years[28];similar shelf life should be secured for modified systems [29]. Completeinformation about the influence of high energy ingredients on thermal behavior and shelf life assessment of DB propellant is vital[30-33].So far,the real impact of energetic nitramines on thermal behavior and shelf life assessment of modified DB propellant is not fully investigated [34].

    Table 1Combustion characteristics of modified DB propellants based on RDX.

    It is widely accepted that thermal analysis (i.e. DSC) refers to a group of techniques in which a physical property of a substance is measured as a function of temperature whilst the substance is being subjected to a controlled heating in a controlled atmosphere.Calorimetry refers to measuring techniques that are used for direct determination of rate of heat production, heat flow, and heat capacity as function of temperature and time (Fig. 2).

    All chemical and physical processes result in either heat production or heat consumption. Micro calorimetry is a versatile technique that can monitor the thermal activity in terms of heat,heat flow,and heat capacity.Thermal activity monitoring(TAM III)works by channeling the heat produced or consumed by a reaction in the sample through heat flow sensors comprised of thermoelectric modules. When a temperature gradient is imposed across the thermoelectric module, a voltage is created. This voltage is proportional to the heat flow through the thermoelectric module and hence proportional to the rate of heat production or consumption by the sample.One side of the thermoelectric module is in contact with the sample and the other is kept isothermal by a heat sink. TAMIII can find wide application in monitoring the thermal stability of DB propellants with aging time.

    This paper is devoted to investigate the effect of energetic nitramine (RDX) on thermal stability of DB propellants, as well as shelf life assessment. Shelf life assessment of modified DB propellants was conducted using artificial aging by isothermal heating at 70°C for up to 120 days and employing Van't Hoff's equation.Quantification of total heat released with aging time was conducted using DSC.Furthermore quantification of heat flow with aging time was performed using TAMIII. Modified DB formulation based on RDX demonstrated enhanced thermal stability with lower decomposition rate relative to reference formulation. Furthermore it demonstrated extended service life up to 56 years. This is the first time ever to employ TAMIII in shelf life investigation.

    2. Manufacture of modified DB propellants

    It is widely accepted that screw extrusion technique can secure good mixing of different ingredients to the molecular level, high density,and dimensional stability of DB propellants.This technique includes many stages including: blending, followed by rolling,grinding, granulation, and finally extrusion to obtain DB grains of required shape and dimensions (Fig. 3) [35].

    Different modified DB propellants based on RDX up to 20 wt %were developed by solventless extrusion technique. The chemical composition of developed modified DB formulations is represented in Table 2.

    Fig. 2. Schematic for common techniques of thermal analysis and calorimetry.

    Fig. 3. Schematic for solventless extrusion process for manufacture of modified DB propellants.

    3. Thermal stability of modified DB propellants

    The impact of nitramine additive on thermal stability was investigated to secure safe storing, handling transportation, and processing [5,27-29]. Onset decomposition and self-ignition temperatures as well as total heat released upon combustion are the main parameters which need to be precisely evaluated. These parameters were assessed for modified DB propellant using DSC.The thermal activity during isothermal heating was monitored using TAM III.

    3.1. Thermal behavior using DSC

    DSC measurements offer quantitative information about physical and chemical changes (i.e. onset temperature, phase change,exothermic/endothermic decompositions) as a function of temperature or time (according to STANAG 4515). The measurements were performed using DSC-Q 2000 (Thermo-scientific, USA).1 mg of modified DB propellant was heated up to 350°C at 10°C/min,under nitrogen gas flow at 5 ml/min.

    3.2. Thermal activity monitoring using TAM lll

    TAMIII represents an ultra-sensitive heat flow measurement.This technique is complementary to thermal analysis instruments such as DSC. The NATO standardization STANAG 4582 was employed to standardize a procedure for the assessment of DB propellant thermal stability based on heat flow micro calorimetry method. Heat flow measurements were carried out via isothermal mode at 90°C. The weight of investigated sample was 4 g. The tested propellant sample was stored at isothermal heating 90°C for 3.43 days.It is widely accepted that these conditions are equivalent to an isothermal storage at 25°C for at least 10 years.According to STANAG 4582, the tested sample can offer 10 years service life, if the maximum heat flow is ≤of 5 J/g (350 μW/g at 90°C for 3.43 days).

    4. Shelf life assessment of DB propellants

    Artificial aging was conducted to reduce the time scale by storing the propellant at high storing temperature. This approach can offer prediction of service life in short time interval [36,37].Artificial aging was performed by isothermal heating at 70°C under ambient atmospheric conditions. The developed modified DB formulations were stored under isothermal heating for 7,14,28,60,90 and 120 days [38]. Van't Hoff's formula (Equation (6)) allowed the estimation of in-service periods at given in-storage temperatures,from the equivalent time-temperature loads during the artificial ageing. Van't Hoff's formula has been proved to be appropriate to ascertain the time-temperature profile [39].

    Table 2Chemical structure of developed modified DB propellants.

    WhereTE, TT, F and ΔTFare time in years at the in-service temperature(TEin°C),test time in days at the test temperature(TTin°C),reaction rate change factor per 10°C of temperature change (F usually between 2 and 4),and temperature interval for actual value F respectively. Factor F was determined using Arrhenius Equation(7) [39].

    Where Eais the activation energy (kJ/mol), and R is the ideal gas constant; F factor was deduced by compiling and comparing reaction rates obtained at different temperatures [36]. The range for F factor is often between 2 and 4 [39]. Table 3 demonstrates the artificial ageing conditions simulating an in-use time up to 46 years at 25°C for developed modified DB propellants.

    5. Thermal behavior of modified DB propellants

    Differential scanning calorimetry (DSC) can monitor any physical or chemical change which involves the evolution/absorption of heat. The total heat released maximum decomposition temperature, and onset decomposition temperature all these parameters can be evaluated using DSC; these parameters were evaluated for modified DB formulations compared to reference formulation.Even though, modified DB propellant demonstrated thermal behavior similar to reference formulation in terms of maximum decomposition temperature;they were found to be more energetic with an increase in total heat released with RDX content (Fig. 4).

    It is apparent that the onset decomposition temperature and maximum decomposition temperature are similar for all formulations. Modified DB formulation based on RDX demonstrated an extended decomposition peak with further heat output at 240°C.The extended secondary decomposition peak was correlated to exothermic decomposition of RDX. RDX is an energetic filler with high decomposition temperature and high thermal stability [7].Modified DB with 10 wt % and 20 wt % RDX demonstrated an increase in total heat release by 21%and 34%respectively.The impact of artificial aging on thermal behavior of reference formulation was investigated using DSC (Fig. 5).

    Table 3Ageing times calculated on the basis of thermal equivalent load at TE=25°C using the generalized Van't Hoff's rule with factor F=3.

    Fig. 4. DSC thermograms of fresh F0 (Reference), F2 (10% RDX), F4 (20% RDX)formulations.

    One of the main outcomes of this study is that reference formulation demonstrated a dramatic decrease in total heat release with aging time; this behavior was ascribed to the thermal decomposition reaction with aging.These decomposition reactions include chain reactions (Equation (1)), saponification (Equation(2)), and autocatalytic (Equations (3)-(5)). The breakdown of explosophorous groups to free radicals could decrease the resulted heat output during combustion.

    All developed modified DB formulations exhibited similar thermal behavior with aging time to reference formulation. This behavior includes a decrease in total heat released with aging(Fig. 6). Modified DB propellants may degrade by thermal decomposition of NC and NG, which might start with the hemolytic breakdown of the O-NO2bond of the aliphatic nitrate esters[25].This degradation can withstand the decrease in heat released with aging time.DSC thermograms confirmed the finding that there is in total heat release with aging time.This behavior was ascribed to the decrease in the required activation energy to start the chemical conversion.

    Fig. 5. Thermal behavior of F0 (Reference) DB formulation with aging time.

    Modified DB propellant based on RDX demonstrated thermal behavior with aging time similar to reference formulation. The secondary decomposition peak at 240°C can be ascribed to the thermal stability of RDX; higher energy is required for the activation of RDX.

    Fig. 6. Thermal behavior of modified DB propellant F4 (20% RDX) with aging time.

    6. Thermal stability of modified DB propellants

    Thermal stability was assessed using micro calorimeter; this was accomplished by monitoring the heat flow as a function of time while the sample being heated at 90°C for 3.43 days.These testing conditions mimic the real storage conditions for 10 years[STANAG 4582]. In this study TAM III micro calorimeter was employed to assess the thermal stability of developed modified DB propellants by monitoring of the heat flow versus time (days) and its value at the end of experiment.The heat flow thermogram of DB propellant using TAM III at isothermal heating temperature of 90°C is represented in Fig. 7.

    The heat flow measurements were conducted for the freshly manufactured DB propellants.The change in thermal stability with aging time was further investigated for modified DB propellants to reference formulation.The tracing of the heat flow for modified DB propellant based on 20 wt % RDX to reference formulation with aging was performed in an attempt to determine the maximum shelf life developed propellant (Table 4). The critical point for thermal stability is 350 μW/g at 90°C according to standard STANAG 4582.

    The analysis of the obtained results proved that the formulation samples examined by TAM III satisfy the criteria of limit of stability presented by STANAG 4582,and that modified DB propellant based on RDX demonstrated higher thermal stability than reference formulation.Modified DB formulation is stable for 46 years and can be stored for further 10 years.It is apparent that TAMIII an invasive technique that can offer fast recognition about thermal stability and shelf life of DB propellant.

    Fig. 7. STANAG plot of NEDB propellant base on 20% RDX (7 Days aged).

    Table 4TAM III Thermal behavior of Reference and MDB (20% RDX) with aging time.

    7. Conclusion

    Modified DB propellant based on RDX 20 wt % offered not only enhanced ballistic performance but also good thermal stability using DSC and advanced thermal activity monitoring (TAMII)micro-calorimeter. Artificial aging was found to be an effective approach to facilitate the planning service life and to simulate the natural ageing of developed MDB propellants. Artificial aging was conducted using and Van't Hoff's formula. Quantification of total heat release with aging time was conducted using DSC. Furthermore,novel approach to quantify thermal activity with aging time was conducted using TAMIII. MDB propellant formulations based on RDX demonstrated enhanced thermal stability and extended service life compared with reference formulation. It exhibited service life up to 56 years. This novel finding confirms that RDX is effective energetic filler that could enhance both the combustion characteristics and thermal stability.

    国产精品久久视频播放| 欧美成人午夜免费资源| 日韩精品青青久久久久久| 中文字幕制服av| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 午夜福利成人在线免费观看| 国产精品美女特级片免费视频播放器| 一级毛片电影观看| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影| 全区人妻精品视频| 国产午夜精品一二区理论片| 亚洲精品乱码久久久v下载方式| 18禁裸乳无遮挡免费网站照片| 国产av在哪里看| 五月伊人婷婷丁香| 日韩欧美 国产精品| 欧美+日韩+精品| 国产精品蜜桃在线观看| 欧美zozozo另类| 91av网一区二区| 亚洲av国产av综合av卡| 春色校园在线视频观看| 一级片'在线观看视频| 国产成人freesex在线| 亚洲内射少妇av| 免费看光身美女| 欧美日本视频| 乱码一卡2卡4卡精品| 午夜精品国产一区二区电影 | 日本wwww免费看| 日韩欧美精品v在线| 哪个播放器可以免费观看大片| av在线观看视频网站免费| 男人舔女人下体高潮全视频| av播播在线观看一区| 国产熟女欧美一区二区| 国产精品一区二区三区四区免费观看| 网址你懂的国产日韩在线| 老司机影院毛片| 亚洲av免费在线观看| 99久国产av精品国产电影| 简卡轻食公司| 国产精品蜜桃在线观看| 亚洲在线自拍视频| 欧美潮喷喷水| 亚洲人成网站在线观看播放| 久久久久久久大尺度免费视频| a级毛色黄片| 亚洲精品乱码久久久v下载方式| 观看免费一级毛片| 免费黄网站久久成人精品| 亚洲精品第二区| 五月天丁香电影| 最近的中文字幕免费完整| 人妻少妇偷人精品九色| 高清欧美精品videossex| 人妻少妇偷人精品九色| 午夜老司机福利剧场| 国产亚洲午夜精品一区二区久久 | 有码 亚洲区| 亚洲国产精品成人综合色| 亚洲精品,欧美精品| 婷婷六月久久综合丁香| 99热网站在线观看| 神马国产精品三级电影在线观看| 亚洲av国产av综合av卡| 日韩精品有码人妻一区| 国产av在哪里看| 亚洲国产精品sss在线观看| 久久99热这里只有精品18| 3wmmmm亚洲av在线观看| 乱人视频在线观看| 免费观看性生交大片5| 久久午夜福利片| 美女内射精品一级片tv| 国产亚洲精品久久久com| 成人av在线播放网站| 久久国内精品自在自线图片| 成年人午夜在线观看视频 | 性色avwww在线观看| 男女国产视频网站| av卡一久久| 高清av免费在线| 91aial.com中文字幕在线观看| 一级毛片电影观看| 最近视频中文字幕2019在线8| 国产精品爽爽va在线观看网站| 狂野欧美激情性xxxx在线观看| 18禁在线无遮挡免费观看视频| 亚洲欧洲日产国产| 男女国产视频网站| 最近中文字幕高清免费大全6| 欧美zozozo另类| 毛片女人毛片| 国模一区二区三区四区视频| 久久精品夜色国产| 国产精品伦人一区二区| 一个人免费在线观看电影| 久久99热这里只有精品18| 国产黄片视频在线免费观看| 国精品久久久久久国模美| 亚洲精品色激情综合| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 寂寞人妻少妇视频99o| 只有这里有精品99| 免费电影在线观看免费观看| 最近视频中文字幕2019在线8| 美女内射精品一级片tv| 成人性生交大片免费视频hd| 成年人午夜在线观看视频 | 中文字幕亚洲精品专区| 在线观看一区二区三区| 欧美精品一区二区大全| 蜜臀久久99精品久久宅男| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 最新中文字幕久久久久| 九色成人免费人妻av| 中国国产av一级| 亚洲国产精品成人综合色| 99热全是精品| 亚洲国产成人一精品久久久| 日本三级黄在线观看| 亚洲三级黄色毛片| 午夜免费观看性视频| 久久鲁丝午夜福利片| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 亚洲最大成人中文| 国产伦一二天堂av在线观看| 在线a可以看的网站| 久久久久久九九精品二区国产| av播播在线观看一区| 国产男人的电影天堂91| 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区 | 在线免费观看的www视频| 国产亚洲午夜精品一区二区久久 | 两个人视频免费观看高清| 在现免费观看毛片| 国产精品熟女久久久久浪| 色视频www国产| 国产高清三级在线| 久久精品熟女亚洲av麻豆精品 | 你懂的网址亚洲精品在线观看| 两个人的视频大全免费| 亚洲精品视频女| 日韩不卡一区二区三区视频在线| 一级a做视频免费观看| 成人午夜高清在线视频| 狂野欧美白嫩少妇大欣赏| 欧美成人午夜免费资源| 夜夜爽夜夜爽视频| 亚洲丝袜综合中文字幕| 插逼视频在线观看| 麻豆久久精品国产亚洲av| 哪个播放器可以免费观看大片| 亚洲美女视频黄频| 亚洲精品国产成人久久av| 久久国内精品自在自线图片| 亚洲一区高清亚洲精品| 国产大屁股一区二区在线视频| 亚洲性久久影院| 免费av不卡在线播放| 在线观看av片永久免费下载| 国内揄拍国产精品人妻在线| 国产一区二区亚洲精品在线观看| 国产精品精品国产色婷婷| 丰满少妇做爰视频| 99热6这里只有精品| 欧美3d第一页| 天堂影院成人在线观看| 日韩一区二区视频免费看| 伊人久久精品亚洲午夜| 日韩精品有码人妻一区| 最近最新中文字幕免费大全7| 18禁在线播放成人免费| 国产淫片久久久久久久久| 免费在线观看成人毛片| 九九爱精品视频在线观看| 成人一区二区视频在线观看| 国产黄片美女视频| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 一级毛片电影观看| 国产黄片视频在线免费观看| 99久国产av精品国产电影| 国产成人aa在线观看| 超碰97精品在线观看| 久久久a久久爽久久v久久| 日韩成人伦理影院| 国产免费福利视频在线观看| 亚洲美女视频黄频| 国产国拍精品亚洲av在线观看| 国产精品一及| 欧美精品国产亚洲| 亚洲精品影视一区二区三区av| 久久久久九九精品影院| 啦啦啦啦在线视频资源| 国产色婷婷99| 欧美+日韩+精品| 亚洲精品aⅴ在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲最大av| 亚洲av免费高清在线观看| 男人狂女人下面高潮的视频| 美女被艹到高潮喷水动态| 99视频精品全部免费 在线| 少妇人妻一区二区三区视频| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 99热全是精品| 十八禁国产超污无遮挡网站| 麻豆成人av视频| 永久免费av网站大全| 99热网站在线观看| 搡老妇女老女人老熟妇| 男人和女人高潮做爰伦理| 久热久热在线精品观看| 亚洲无线观看免费| 日本免费在线观看一区| 日韩精品有码人妻一区| 青青草视频在线视频观看| 午夜爱爱视频在线播放| 国产在线一区二区三区精| 九草在线视频观看| 国产亚洲5aaaaa淫片| 只有这里有精品99| 听说在线观看完整版免费高清| 18禁在线无遮挡免费观看视频| 男人狂女人下面高潮的视频| 少妇的逼水好多| h日本视频在线播放| 亚洲国产精品sss在线观看| 国产一区二区亚洲精品在线观看| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 天堂俺去俺来也www色官网 | 欧美极品一区二区三区四区| 成人一区二区视频在线观看| 欧美xxⅹ黑人| av国产免费在线观看| 亚洲内射少妇av| 18禁在线无遮挡免费观看视频| 国产亚洲一区二区精品| 十八禁国产超污无遮挡网站| 网址你懂的国产日韩在线| 只有这里有精品99| 国国产精品蜜臀av免费| 国产在视频线精品| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 精品久久久久久久久亚洲| 欧美日韩视频高清一区二区三区二| 国产精品美女特级片免费视频播放器| 国产在视频线在精品| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 免费看美女性在线毛片视频| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| 免费无遮挡裸体视频| 26uuu在线亚洲综合色| 国产综合精华液| 国产亚洲一区二区精品| 欧美97在线视频| 国产熟女欧美一区二区| 亚州av有码| 精品久久久精品久久久| 亚洲天堂国产精品一区在线| 国产探花极品一区二区| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 亚洲精品成人av观看孕妇| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 男女国产视频网站| 国产中年淑女户外野战色| 国产成人a区在线观看| 国产精品一区二区在线观看99 | 777米奇影视久久| 亚洲高清免费不卡视频| 欧美成人精品欧美一级黄| 成人综合一区亚洲| 日本-黄色视频高清免费观看| 高清日韩中文字幕在线| 女人十人毛片免费观看3o分钟| 欧美成人精品欧美一级黄| 亚洲性久久影院| av在线观看视频网站免费| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 高清视频免费观看一区二区 | 国产老妇伦熟女老妇高清| 精品一区二区三卡| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| videossex国产| 极品少妇高潮喷水抽搐| 成人亚洲欧美一区二区av| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 日本三级黄在线观看| 国产白丝娇喘喷水9色精品| 精品一区二区免费观看| 欧美一区二区亚洲| 成人性生交大片免费视频hd| 联通29元200g的流量卡| 亚洲精品aⅴ在线观看| 如何舔出高潮| 久热久热在线精品观看| 国产伦理片在线播放av一区| 国产真实伦视频高清在线观看| 深爱激情五月婷婷| 国产精品一区www在线观看| 丝袜喷水一区| 亚洲国产高清在线一区二区三| av又黄又爽大尺度在线免费看| 亚洲最大成人手机在线| 国产一级毛片在线| 欧美激情久久久久久爽电影| 精品国产三级普通话版| 成人无遮挡网站| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 美女国产视频在线观看| 大片免费播放器 马上看| 亚洲久久久久久中文字幕| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 久久久久久久大尺度免费视频| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 观看美女的网站| 一级av片app| 天天一区二区日本电影三级| 美女大奶头视频| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影 | 欧美人与善性xxx| 高清av免费在线| 男人狂女人下面高潮的视频| 91久久精品电影网| 午夜福利视频精品| 国产伦一二天堂av在线观看| 亚洲av成人精品一二三区| 久久精品国产亚洲网站| av在线蜜桃| 日韩成人av中文字幕在线观看| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 一夜夜www| 成人综合一区亚洲| eeuss影院久久| 欧美xxxx性猛交bbbb| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 女的被弄到高潮叫床怎么办| 极品教师在线视频| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 亚洲三级黄色毛片| 日韩伦理黄色片| 国产精品熟女久久久久浪| 免费看光身美女| 最近最新中文字幕免费大全7| 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区| 亚洲av免费在线观看| 免费黄色在线免费观看| 国产探花极品一区二区| 黑人高潮一二区| 久久精品久久久久久久性| av天堂中文字幕网| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 在线a可以看的网站| 有码 亚洲区| 日本黄色片子视频| 看十八女毛片水多多多| 天堂√8在线中文| 国产视频内射| 亚洲色图av天堂| 亚洲一级一片aⅴ在线观看| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡 | 黄片无遮挡物在线观看| 欧美日韩国产mv在线观看视频 | 亚洲欧洲日产国产| 国产精品蜜桃在线观看| av福利片在线观看| 久久人人爽人人爽人人片va| 免费在线观看成人毛片| 色5月婷婷丁香| 亚洲美女视频黄频| 午夜精品在线福利| 欧美高清成人免费视频www| 国产 一区精品| 国精品久久久久久国模美| 又爽又黄a免费视频| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 女的被弄到高潮叫床怎么办| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 成人性生交大片免费视频hd| 国产探花极品一区二区| 亚洲av男天堂| 国产成人aa在线观看| 十八禁网站网址无遮挡 | 少妇人妻一区二区三区视频| 国产免费视频播放在线视频 | 亚洲欧洲国产日韩| 在现免费观看毛片| 色5月婷婷丁香| 热99在线观看视频| 好男人在线观看高清免费视频| 亚洲国产日韩欧美精品在线观看| 亚洲欧洲国产日韩| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 亚洲精品成人av观看孕妇| 精品酒店卫生间| 亚洲精品乱久久久久久| 亚洲人与动物交配视频| 黄色一级大片看看| 亚洲18禁久久av| 国产69精品久久久久777片| 国产av码专区亚洲av| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app| 天堂中文最新版在线下载 | 亚洲精品成人久久久久久| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 2018国产大陆天天弄谢| 男人狂女人下面高潮的视频| 欧美xxⅹ黑人| 一个人免费在线观看电影| av一本久久久久| 日韩亚洲欧美综合| kizo精华| 99久久精品热视频| 精品人妻熟女av久视频| 国产成人freesex在线| av免费在线看不卡| 99热全是精品| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 亚洲最大成人av| 亚洲av在线观看美女高潮| 成人毛片a级毛片在线播放| 综合色丁香网| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 欧美不卡视频在线免费观看| 嫩草影院新地址| 国产午夜精品一二区理论片| 亚洲av成人av| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 99热6这里只有精品| 精品一区二区三区人妻视频| 18禁在线无遮挡免费观看视频| 亚洲国产日韩欧美精品在线观看| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 国产精品综合久久久久久久免费| 91在线精品国自产拍蜜月| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 一级毛片我不卡| 内射极品少妇av片p| 夫妻午夜视频| 精品人妻一区二区三区麻豆| av国产免费在线观看| 午夜激情欧美在线| 国产成人精品久久久久久| 欧美激情在线99| 欧美变态另类bdsm刘玥| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 嫩草影院入口| 色5月婷婷丁香| 国产黄a三级三级三级人| 国产久久久一区二区三区| 婷婷色麻豆天堂久久| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 国产精品精品国产色婷婷| 丝袜喷水一区| 看非洲黑人一级黄片| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 男人狂女人下面高潮的视频| freevideosex欧美| 国产黄色视频一区二区在线观看| 两个人的视频大全免费| 丰满少妇做爰视频| 一个人看的www免费观看视频| 男女国产视频网站| 中文字幕久久专区| 精品午夜福利在线看| 色尼玛亚洲综合影院| 亚洲精品成人久久久久久| 最近的中文字幕免费完整| 天堂中文最新版在线下载 | 身体一侧抽搐| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放| 精品久久久久久久久av| 亚洲天堂国产精品一区在线| 精品久久久久久久久亚洲| 亚洲精品中文字幕在线视频 | 亚洲无线观看免费| 久久久精品94久久精品| 成年女人在线观看亚洲视频 | 欧美日韩精品成人综合77777| 人妻系列 视频| 亚洲欧美一区二区三区黑人 | freevideosex欧美| 国产美女午夜福利| 91午夜精品亚洲一区二区三区| 久久久色成人| 肉色欧美久久久久久久蜜桃 | 99九九线精品视频在线观看视频| 国产日韩欧美在线精品| 26uuu在线亚洲综合色| 韩国高清视频一区二区三区| 纵有疾风起免费观看全集完整版 | 国产69精品久久久久777片| 久久久亚洲精品成人影院| 精品欧美国产一区二区三| 国产熟女欧美一区二区| 丰满少妇做爰视频| av福利片在线观看| 大片免费播放器 马上看| 成人亚洲精品一区在线观看 | 又爽又黄a免费视频| 少妇丰满av| 成年av动漫网址| 精品久久久久久电影网| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕 | 天堂网av新在线| 欧美精品国产亚洲| 成人午夜精彩视频在线观看| 舔av片在线| 国产精品一区二区三区四区免费观看| 午夜福利在线观看吧| 肉色欧美久久久久久久蜜桃 | av卡一久久| 99久久九九国产精品国产免费| 天天躁日日操中文字幕| 插逼视频在线观看| 欧美xxxx黑人xx丫x性爽| 你懂的网址亚洲精品在线观看| 国产精品久久视频播放| 成年版毛片免费区| 久久97久久精品| 熟妇人妻久久中文字幕3abv| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 久久久久久国产a免费观看| 免费观看精品视频网站| 国产精品人妻久久久影院| av在线老鸭窝| 亚洲av免费在线观看| 国产色爽女视频免费观看| 亚洲av男天堂| 伊人久久国产一区二区| 国产伦精品一区二区三区视频9| 国产一级毛片在线| 欧美日韩在线观看h| 麻豆av噜噜一区二区三区| 国产极品天堂在线| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 国产中年淑女户外野战色| 日韩av在线免费看完整版不卡| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 久久人人爽人人片av| 国产亚洲5aaaaa淫片| 蜜桃亚洲精品一区二区三区| 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 亚洲成人一二三区av| 亚洲国产精品sss在线观看| 亚洲成人一二三区av| 美女主播在线视频| 亚洲av不卡在线观看| 亚洲美女视频黄频|