• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigation of EDFA transient effects in variable duty cycle pulsed signals

    2019-07-16 11:58:14MeenSrthFredyFrnisDipinSrinivs
    Defence Technology 2019年3期

    D. Meen , K.T. Srth , Fredy Frnis , E. Dipin , T. Srinivs

    a Electronics and Radar Development Establishment (LRDE), DRDO, Bangalore, Karnataka, 560093, India

    b Model Engineering College, Thrikkakara, Cochin, Kerala, 682021, India

    c Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India

    Keywords:EDFA Transients WDM Variable duty cycle Suppression

    A B S T R A C T We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles.The work includes the analysis using three different duty-cycles,10%,20%and 50%.A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals.We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.

    1. Introduction

    WDM systems have enabled the transmission of multiple data streams, each modulating a separate optical carrier, along a single optical link. The broad gain spectrum of Erbium Doped Fiber Amplifier (EDFA) is particularly useful in amplifying the WDM signal. Advancements in microwave photonics technology have enabled the efficient transmission of high frequency RF signals through optical links. This have opened up a wide array of novel applications in phased array radar, microwave photonic etc. As Phased array radars require distribution of various signals to more than thousand transmit/receive modules, sufficient signals levels must be ensured before splitting,which can be easily accounted for by using optical amplifiers, EDFA is being the most common used.Additionally, they require the simultaneous transmission of low bitrate variable duty-cycle pulses for control and synchronisation between the elements.The synchronised operation of all Transmit/Receive modules is of greater importance during the operation of a radar system.These low bitrate duty cycle pulses when transmitted through an EDFA, give rise to transients along with distortion [1].This leads to misinterpretation of data at the receiver side. In the case of cascaded EDFA configurations, the transients can accumulate over length and can worsen the scenario. As synchronisation signals used in radars are critical in nature, it is very important to suppress these transients and restore faithful distribution of signals. The objective of this study is to analyze the effect of EDFA transients observed during the amplification of variable duty-cycle signals and propose methods to mitigate these effects.

    Transients are the result of slow gain characteristics of EDFA,which induces saturation and recovery effects to low bit rate signals.This is because,the input signal drains the population off the upper level during its ON time and EDFA takes times to replenish the population by pumping. The gain saturation and recovery effects lead to transients and distortion of amplified output. But as the on-time of high bit rate pules are rather short, the change in population inversion and hence gain are rather small. This work reports the simulation and experimental results for EDFA transient effects with different duty-cycle pulsed signals. A transient suppression technique using a complementary signal is also introduced.

    Low bit rate pulse causes input signal saturation, which effectively decreases the population inversion by stimulating ions to lower level in large numbers, hence causing the gain to decrease(saturation phase).After the input pulse is removed,the population inversion and hence gain, returns to the initial state (recovery phase).This effect,known as saturation induced gain modulation,is a main source of cross talk in EDFA. The effect was studied and numerically analyzed [2]. Gain saturation and recovery times are discussed with different bit rates and pump levels. It was also proved that the recovery times were reduced with higher pump power.As the saturation and recovery times are rather long,higher bit rate systems are practically unaffected by transient effect. A numerical model of transient response of an EDFA pumped at 1.48 μm, while also considering the gain-saturation effects due to Amplified Spontaneous Emission (ASE) is discussed [3]. Also the paper considered variation in gain with EDFA length. It was again proved that the gain saturation and recovery effects have long time periods of ~2 ms and is dependent on pump power.Pulse distortion due to the recovery time effects are also studied.Additionally,EDFA gain variation for different pulse repetition rate, with high input power and relatively low pump powers, is simulated and 3-dB point of gain saturation was found to be at 20 kHz. EDFA pulse transients for very short, high power, pulses (100ns) have been studied [4], which is expected to be useful for optical memory devices.Pump power(CW,980 nm)dependence of gain saturation for a high power 100ns pulse input pulse is discussed.Pump power dependency of small signal gain and saturation power is also discussed. A pump probe technique is introduced to measure the population recovery in CW pumped EDFA [5]. A double exponent recovery profile was obtained in both their test cases.The change in population inversion caused by the pump signal is probed by the probe signal. A pump-probe technique to obtain the temporal evolution of population inversion in a CW pumped EDFA system is discussed [6]. Temporal profiles for amplified pulses are obtained for different pump and signal power levels. Pump power control can also be used to control the transients [7,8]. Pulse distortion caused by transient effects in a cascaded EDFA configuration is analyzed by altering different parameters like number of cascaded EDFA,peak power and extinction ratio of input pulse[9].In phased array radar applications, low bitrate digital signals are used as reference signals and these signals when transmitted over fiber optic links will have transient effects with respect to dutycycle variations [10]. Control system techniques can be used to control the transients [11,12]. Also, transients create problems in Optical Burst Switching (OBS) networks due to the abrupt power changes in EDFA input power.A feed-forward method to suppress the EDFA transients is discussed [13].

    Thus to best of our knowledge, the single shot properties of EDFAs for varied pulse width have not been actively studied.So this work focuses on transient effects of EDFA caused by signals with different duty-cycle and bitrates. Additionally, EDFA transient effects on WDM links are also discussed. We also propose two different Feed forward transient suppressing methods.

    2. Experimental set up

    Schematic of experimental set up used for single wavelength pulsed signal analysis is shown in Fig.1. Except EDFA, the setup is made from components (shaded) available as part of commercial WDM test unit. A 1530 nm laser diode (1 mw) is modulated by a variable duty-cycle digital signal of 2 kHz. The laser output is amplified using an EDFA operating in the saturation region with a pump power of 70 mW (980 nm). The output is then fed to photodetector of WDM unit and electrical signal is observed using Digital Phosphor Oscilloscope (DPO).

    To evaluate dependency of transient effects on duty cycle, we used signals of 3 different duty-cycles 10%, 20% and 50%. The measured recovery time(a few hundred microseconds)was found to vary with pump power and input signal frequency. But the dependency of EDFA transients on duty-cycle and bit rate variations alone is considered within the scope of this paper.

    A typical transient obtained for a signal of 2 kHz pulse signal is shown in Fig. 2. The spikes at the output signal (yellow, below)caused due to transients are clearly visible. For analysis of EDFA transients with WDM configuration, the schematic as shown in Fig.3 was setup.Pulse signals of frequency 10 kHz and 2.4 MHz are used to modulate the laser sources. A high bitrate(2.4 MHz) pulse signal modulates l510 nm laser source and another a low bitrate(10 kHz) signal modulates a laser source at 1530 nm. An Array Waveguide (AWG) based multiplexer is used for multiplexing of signals. Further this multiplexed output is passed through a 3 dB coupler,where one of the outputs is fed to a photo detector(PD)as reference channel and the other is fed to EDFA.After amplification the signal is fed to another PD for observation.Both PD outputs are analyzed with Tektronix DPO70404B.

    Fig.1. Block schematic of experimental setup for transient measurement (with single wavelength source).

    3. Results and discussions

    EDFA transient effects in variable duty-cycle(10%,20%and 50%)pulsed signals are analyzed using setup shown in Fig.1.Initially,the transient effects were simulated in a standard simulation environment (OptiSystem). The transients obtained with 10%, 20% and 50% pulsed signals are shown in Fig. 4.

    Time dependent population inversion ΔN21(t)is obtained[5]as

    where α is the normalized pump power,expressed as Pp/Pth;where Ppand Pthare the pump power and the pump threshold respectively;β is the normalized signal power,expressed as Ps/Psat,where Psand Psatare the signal power and the signal saturation power respectively;τ21is the spontaneous emission lifetime from level 2 to 1.

    Also,the dependence of ΔN21(t)on input and output intensities is [5],where Ioutand Iinare input and output intensities respectively. As per equation (2) the power relation can be derived as,

    From (1), (2) and (3), Poutcan be expressed as

    Fig. 2. Transient effect observed at EDFA output (blue) due to a signal input of 2 kHz (yellow). The pulse width is 350μs. The reading values 200 μs per division horizontal and 500 mV per division vertical.

    Fig. 3. Block schematic of experimental setup for WDM link transient measurement(with low and high bitrate signals).

    Fig. 4. Transients variations for 50% (Green), 20% (Red) and 10% (black) single wavelength input.

    where K1and K2are constants. So, it can be seen that Poutis following an exponential curve proportional to exp(exp(-K2t)).The results obtained in Fig. 4 was further curve fitted using an exponential function of degree 2. The fitted curve was found to have a very low RMSE (Root Mean Square Error) of order 10-3, proving simulation results to be exponential and hence correlating well with equation (3) and (4). The simulated transient curves (Black)and fitted curve (blue) for 50% duty-cycle pulse signal is given as shown in Fig. 5.

    It was further observed that the transient curves of 20%and 10%duty-cycle overlap with that of 50% up to their corresponding ON time. This means that transient response for any lower duty-cycle can be predicted from that of higher duty-cycle output signal.This shows that the curve fitted equation of 50% signal can in general be used for finding transients of any lesser pulse widths.Table 1 gives a comparison of output signal obtained from actually fitted curves of 10% (Fig. 6) and 20% (Fig. 7) signals along with corresponding values deduced from curvefit equation of 50%dutycycle signal transient.

    It can be observed that the error between predicted and individual curve fits values are of the order of 10-4.

    Another analysis is performed to validate the simulation results against experimental results by plotting the duty cycle vs decay rate as shown in Fig.8.It can be observed that decay rate decreases with experimental results also as in the case of modeling results.

    4. Transient suppression technique

    As transient effects negatively impact the pulse shape at the output of the link, it can lead to misinterpretation of data. Also, in cascaded EDFA applications, the transients can accumulate over length and can cause problems at detector. The objective of transient suppression technique is to enable the faithful detection of the input signal at the output. The proposed methods intent to do this by trying to avoid signal distortion at EDFA stages by keeping the net input through EDFA constant all the time. To accomplish this, an additional signal having a complementary shape is also multiplexed in to the link at a different wavelength which ensures the EDFA input power remains constant.But the previous work[9]mentions about a single pulse of duty-cycle of the order 10-4only.Fig. 9 shows the block schematics of the setup which can be used for suppression of transient associated with variable duty cycle signals.

    Fig. 5. Transient effect with 50% duty-cycle signal (blue) and corresponding fitted curve (black).

    Table 1Comparison of individual curvefit amplitude (10%and 20% signal) with predicted values obtained from 50% signal curvefit.

    Fig. 6. Transient effect with 10% duty-cycle signal (blue) and corresponding fitted curve (black).

    Fig. 7. Transient effect with at 20% duty-cycle (blue) and corresponding fitted curve(black).

    Fig. 8. Comparison of Experimental and modeling results - Decay rate vs Duty cycle.

    The effects of compensation on signals with different dutycycles are shown in Fig.10. It can be observed that the transients settle down rather quickly after the first pulse with the presence of complementary pulse. This might affect the amplitude of the output signal, but as digital pulses are relatively insensitive to signal to noise ratio,it can easily be regenerated and amplified.The effect of complementary signal will be prominent from the negative edge of first transmitted pulse.

    Fig. 9. Block schematic of the setup for EDFA transient suppression using complementary signal.

    Fig.10. Transient suppression by complementary pulse for different duty-cycles.

    Fig.11 shows the block schematic that can be used for transient suppression of 50% duty cycle signal. The delay introduced should be equivalent to the ON/OFF time of transmitted signal. The experimental result obtained for compensation using optical delay line is shown in Fig.12.

    We also found that the wavelength of compensation signal affects the actual transient suppression process. The closer the compensation wavelength (to the signal wavelength), the better the compensation will be. This is clearly visible in Fig. 13, where compensation pulse at 1570.8 nm (black) was found to be more effective than those at 1575 nm(red)and 1590 nm(Green).In this case the signal wavelength was at 1570 nm.

    We also analyzed transient effect with WDM signals. Additionally,as a part of experimental verification of the simulation results,a WDM configuration as in Fig.3 was setup.In this case,two laser sources of wavelengths 1510 nm and 1530 nm signals are used.Laser Source of wavelength 1510 nm is modulated by a high frequency signal of 2.4 MHz and source with 1530 nm is modulated by a low frequency signal of 10 kHz respectively. Snapshot of setup is shown in Fig.14.

    Fig.11. Block schematic of the setup for EDFA transient suppression using optical delay line.ODL-Optical Delay Line,VOA-Variable Optical Attenuator,DPO-Digital Phosphor Oscilloscope.

    Fig. 12. Experimental result of suppressed transients (blue) for low bit rate input(green) using delay line method.

    Fig.13. Variation in transient suppression with different wavelengths.

    Fig.15 shows results obtained with DPO, the high to low transition shown is the 10 kHz signal's negative edge.Up to the negative edge,the effect of 10 kHz signal is more prominent,as shown by the absence of oscillations at 2.4 MHz. During the negative cycle of 10 kHz signal,the amplifications are obtained for 2.4 MHz signal as shown by the oscillation in the lower part of the signal.

    Simulation results obtained for the same setup in Fig. 14 is shown in Fig.16.It can be seen that the results are similar too.The low bit rate pulse is found to suppress the amplification of higher bit rate pulse during its ON period. So the 2.4 MHz signal have output only during the OFF period of 10 kHz signal.

    Fig. 14. Experimental Setup showing transients in WDM multiplexed high and low frequency signals.

    Fig.15. Transients in WDM link: WDM input (blue) and output (yellow-zoomed).

    Fig.16. Transient effect in high bit rate channel WDM link: Simulation result.

    5. Conclusion

    Many applications,like radar distribution network,demand the transmission of pulses with different duty-cycles. It's known that the slow gain response of EDFA leads to transients effects at the amplified signal.We analyzed the variation of transients for signals with different duty-cycles and found that the transients can in fact be predicted by knowing the transient curve of a larger duty-cycle pulse.Additionally,we have analyzed the transient effect in a WDM link consisting of high and low bitrate pulse signals, each modulating lasers at different wavelengths and multiplexed into EDFA.The observed transient effect was particularly prominent during the negative edge of low bit rate pulse as proved by simulation and experimental studies. We also bring out two methods to suppress transient effect which uses complementary signal pulse modulating a laser at a different wavelength. It was also found that the nearer the compensation wavelength, the better the transient suppression.

    久久久久久国产a免费观看| 男人的好看免费观看在线视频| 搞女人的毛片| 高清毛片免费看| 欧美成人精品欧美一级黄| 熟女人妻精品中文字幕| videossex国产| 国产精品av视频在线免费观看| 伦理电影大哥的女人| 国产亚洲精品av在线| 欧美极品一区二区三区四区| 最近中文字幕高清免费大全6| 精华霜和精华液先用哪个| 国产精品不卡视频一区二区| 99热这里只有是精品50| 99在线视频只有这里精品首页| 国产成人a∨麻豆精品| 免费av毛片视频| 日本与韩国留学比较| 久久精品91蜜桃| 国产伦在线观看视频一区| 国内久久婷婷六月综合欲色啪| 中文字幕熟女人妻在线| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| а√天堂www在线а√下载| 欧美区成人在线视频| 黄色欧美视频在线观看| 最近的中文字幕免费完整| 波多野结衣高清作品| 日韩人妻高清精品专区| 久久亚洲国产成人精品v| 人妻久久中文字幕网| 午夜老司机福利剧场| 亚洲av.av天堂| 不卡视频在线观看欧美| 亚洲精华国产精华液的使用体验 | 成人一区二区视频在线观看| 99热这里只有精品一区| 欧美成人一区二区免费高清观看| 丰满人妻一区二区三区视频av| 亚洲最大成人中文| 中文在线观看免费www的网站| 美女 人体艺术 gogo| 国产av在哪里看| 国产精品野战在线观看| 欧美另类亚洲清纯唯美| 一区福利在线观看| 久久精品91蜜桃| 国产精品不卡视频一区二区| 亚洲第一电影网av| 亚洲av成人精品一区久久| 国产成人aa在线观看| 欧美成人一区二区免费高清观看| 精品国产三级普通话版| 九九在线视频观看精品| 婷婷色av中文字幕| 99在线视频只有这里精品首页| 久久6这里有精品| 精品一区二区免费观看| 一进一出抽搐gif免费好疼| 美女被艹到高潮喷水动态| 亚洲成a人片在线一区二区| 国产精品一及| 2022亚洲国产成人精品| 在线观看免费视频日本深夜| 亚洲四区av| 我要搜黄色片| 人妻夜夜爽99麻豆av| 欧美最黄视频在线播放免费| 最近最新中文字幕大全电影3| 插阴视频在线观看视频| 99在线人妻在线中文字幕| 只有这里有精品99| 在线观看66精品国产| 麻豆精品久久久久久蜜桃| 日韩一区二区三区影片| 毛片女人毛片| 欧美成人a在线观看| 午夜福利在线观看免费完整高清在 | 久久精品综合一区二区三区| 国产精品爽爽va在线观看网站| 国产一区二区在线av高清观看| 亚州av有码| 精品一区二区三区人妻视频| 国产乱人视频| 伦精品一区二区三区| 亚洲久久久久久中文字幕| 嫩草影院精品99| 又粗又硬又长又爽又黄的视频 | 国产欧美日韩精品一区二区| 精品久久久久久成人av| 九九爱精品视频在线观看| 成年免费大片在线观看| 成人性生交大片免费视频hd| 久久午夜福利片| 我要看日韩黄色一级片| 我的女老师完整版在线观看| 我的女老师完整版在线观看| 日韩制服骚丝袜av| 国产真实伦视频高清在线观看| 91aial.com中文字幕在线观看| 搞女人的毛片| 国产精品一区二区三区四区免费观看| 国产黄片美女视频| 欧美区成人在线视频| 在线国产一区二区在线| 在线播放无遮挡| 国产黄片美女视频| 久久这里有精品视频免费| 国产又黄又爽又无遮挡在线| 日本三级黄在线观看| 尤物成人国产欧美一区二区三区| 成人欧美大片| 国产精品电影一区二区三区| 亚洲美女搞黄在线观看| 麻豆精品久久久久久蜜桃| 日韩欧美精品免费久久| 在线免费十八禁| 国产v大片淫在线免费观看| 国产精品久久电影中文字幕| 成人二区视频| 国产在线精品亚洲第一网站| 成熟少妇高潮喷水视频| 丝袜喷水一区| 久久精品久久久久久久性| av免费在线看不卡| 91麻豆精品激情在线观看国产| 有码 亚洲区| 免费看美女性在线毛片视频| 午夜福利在线观看吧| 久久精品夜色国产| 一进一出抽搐动态| 亚洲国产精品成人久久小说 | h日本视频在线播放| 你懂的网址亚洲精品在线观看 | 又黄又爽又刺激的免费视频.| 女的被弄到高潮叫床怎么办| 一级毛片久久久久久久久女| 亚洲精品色激情综合| 亚洲激情五月婷婷啪啪| 99久久精品热视频| 亚洲精品国产成人久久av| 久久99热这里只有精品18| 精品久久久久久久久亚洲| 国产精品久久久久久亚洲av鲁大| 日本黄大片高清| 欧美日韩在线观看h| 国产精品无大码| 少妇丰满av| 国产蜜桃级精品一区二区三区| 五月伊人婷婷丁香| 九草在线视频观看| 老熟妇乱子伦视频在线观看| 伦精品一区二区三区| av.在线天堂| 中文欧美无线码| 国产亚洲5aaaaa淫片| 国语自产精品视频在线第100页| 伦精品一区二区三区| 欧美又色又爽又黄视频| 国产蜜桃级精品一区二区三区| 青春草亚洲视频在线观看| 97热精品久久久久久| 精品欧美国产一区二区三| 国产单亲对白刺激| 尤物成人国产欧美一区二区三区| 日韩欧美国产在线观看| 国产精品永久免费网站| 女的被弄到高潮叫床怎么办| 国产综合懂色| 天堂av国产一区二区熟女人妻| 97超碰精品成人国产| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 日韩欧美一区二区三区在线观看| 亚洲精品成人久久久久久| 国产精品福利在线免费观看| 免费观看a级毛片全部| 免费观看a级毛片全部| 欧美日本亚洲视频在线播放| 国产 一区精品| 国产真实伦视频高清在线观看| 亚洲欧洲日产国产| 午夜免费激情av| 极品教师在线视频| 亚洲在线观看片| 亚洲美女搞黄在线观看| 少妇裸体淫交视频免费看高清| 亚洲在线观看片| 日韩欧美在线乱码| 久久精品国产亚洲av天美| 国产精品美女特级片免费视频播放器| 淫秽高清视频在线观看| 国产高清有码在线观看视频| 亚洲内射少妇av| 我要搜黄色片| 性插视频无遮挡在线免费观看| 欧美性猛交黑人性爽| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| av在线天堂中文字幕| 青青草视频在线视频观看| 日本免费一区二区三区高清不卡| 免费看a级黄色片| 久久热精品热| 亚洲av男天堂| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 久久久久网色| 午夜激情欧美在线| 高清在线视频一区二区三区 | 91在线精品国自产拍蜜月| 超碰av人人做人人爽久久| 给我免费播放毛片高清在线观看| 亚洲成a人片在线一区二区| 国产视频内射| 日韩亚洲欧美综合| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 日韩欧美 国产精品| 亚洲乱码一区二区免费版| 免费av毛片视频| 国产一区二区三区在线臀色熟女| 嫩草影院入口| 一边摸一边抽搐一进一小说| 国产69精品久久久久777片| 精品久久久噜噜| 内射极品少妇av片p| 日本黄大片高清| 国产精品福利在线免费观看| 我的女老师完整版在线观看| 中国国产av一级| 插阴视频在线观看视频| 日韩 亚洲 欧美在线| 久久久久久久久久久丰满| 免费看光身美女| 2022亚洲国产成人精品| 精华霜和精华液先用哪个| 两个人的视频大全免费| 亚洲乱码一区二区免费版| 在线观看一区二区三区| 偷拍熟女少妇极品色| 一进一出抽搐动态| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| 欧美一区二区精品小视频在线| 日韩中字成人| 久久久久久大精品| 老司机影院成人| 亚洲国产精品久久男人天堂| 天堂av国产一区二区熟女人妻| 三级男女做爰猛烈吃奶摸视频| 国内揄拍国产精品人妻在线| 色哟哟·www| 国产精品女同一区二区软件| 99热只有精品国产| 超碰av人人做人人爽久久| 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 国产精品不卡视频一区二区| 日本黄大片高清| 免费av毛片视频| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 99久国产av精品| 日韩大尺度精品在线看网址| 午夜久久久久精精品| 久久久久国产网址| 国产精品人妻久久久久久| 网址你懂的国产日韩在线| www.色视频.com| 日日撸夜夜添| 国模一区二区三区四区视频| 能在线免费观看的黄片| 成人亚洲精品av一区二区| 免费一级毛片在线播放高清视频| 女同久久另类99精品国产91| eeuss影院久久| 亚洲国产欧美人成| 在线观看午夜福利视频| 欧美色欧美亚洲另类二区| 丝袜喷水一区| 你懂的网址亚洲精品在线观看 | 欧美最新免费一区二区三区| 自拍偷自拍亚洲精品老妇| 国产成人91sexporn| 性色avwww在线观看| 啦啦啦啦在线视频资源| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看| 大香蕉久久网| 亚洲精品久久久久久婷婷小说 | 99久久精品一区二区三区| 国产熟女欧美一区二区| 此物有八面人人有两片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| 国产 一区 欧美 日韩| 99久久九九国产精品国产免费| 深夜a级毛片| 亚洲欧洲国产日韩| 亚洲七黄色美女视频| 欧美xxxx性猛交bbbb| 亚洲三级黄色毛片| 日本黄色视频三级网站网址| 精品国产三级普通话版| 国产精品久久视频播放| 免费黄网站久久成人精品| 啦啦啦观看免费观看视频高清| 在线观看66精品国产| 久久久成人免费电影| 一区二区三区四区激情视频 | 免费观看在线日韩| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 国产精品永久免费网站| 国产精品一区二区在线观看99 | 国产精品,欧美在线| 欧美性猛交╳xxx乱大交人| 免费观看的影片在线观看| 久久精品国产99精品国产亚洲性色| 国产高清三级在线| www.av在线官网国产| 边亲边吃奶的免费视频| 久久精品国产清高在天天线| 女人十人毛片免费观看3o分钟| 国产中年淑女户外野战色| 久久久久久久久中文| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| АⅤ资源中文在线天堂| 色播亚洲综合网| 嘟嘟电影网在线观看| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕一区二区三区有码在线看| 日韩中字成人| 我要看日韩黄色一级片| 欧美xxxx性猛交bbbb| 尤物成人国产欧美一区二区三区| 黄色日韩在线| 少妇丰满av| 欧美成人一区二区免费高清观看| 在线播放国产精品三级| 看十八女毛片水多多多| 3wmmmm亚洲av在线观看| 午夜福利在线观看吧| 久久精品国产亚洲av天美| 国产极品精品免费视频能看的| av免费在线看不卡| 亚洲婷婷狠狠爱综合网| 婷婷色av中文字幕| 成人高潮视频无遮挡免费网站| 91午夜精品亚洲一区二区三区| 波多野结衣高清作品| 久久九九热精品免费| 久久久久久久久久久丰满| 国产精品1区2区在线观看.| 黄片无遮挡物在线观看| 欧美性感艳星| 免费在线观看成人毛片| 中文字幕久久专区| 国产高清不卡午夜福利| 久久精品久久久久久噜噜老黄 | 97人妻精品一区二区三区麻豆| 久久精品久久久久久噜噜老黄 | 国产精品日韩av在线免费观看| 少妇人妻精品综合一区二区 | 亚洲激情五月婷婷啪啪| 18禁在线播放成人免费| 麻豆乱淫一区二区| 99久久精品一区二区三区| 91久久精品电影网| 国产一区二区三区在线臀色熟女| 成人鲁丝片一二三区免费| 老熟妇乱子伦视频在线观看| 国产精品久久久久久精品电影| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| 12—13女人毛片做爰片一| 精品久久久久久久久av| 热99re8久久精品国产| 波多野结衣巨乳人妻| 此物有八面人人有两片| 免费看美女性在线毛片视频| 啦啦啦啦在线视频资源| 欧美不卡视频在线免费观看| 美女国产视频在线观看| 给我免费播放毛片高清在线观看| 国产精品久久电影中文字幕| 人体艺术视频欧美日本| 亚洲精品色激情综合| 国产黄色视频一区二区在线观看 | 亚洲图色成人| 网址你懂的国产日韩在线| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 久久久久久久久久久丰满| 日韩欧美 国产精品| 综合色av麻豆| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 亚洲欧洲日产国产| 99热全是精品| 亚洲人成网站在线观看播放| 永久网站在线| 久久婷婷人人爽人人干人人爱| 国产精品不卡视频一区二区| 大型黄色视频在线免费观看| 国产精品日韩av在线免费观看| 久久午夜福利片| 天堂影院成人在线观看| 久久精品91蜜桃| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 成人一区二区视频在线观看| 1000部很黄的大片| 久久久久久国产a免费观看| 成人鲁丝片一二三区免费| 亚洲欧美精品综合久久99| 色5月婷婷丁香| 99热网站在线观看| 久久韩国三级中文字幕| 97人妻精品一区二区三区麻豆| 小说图片视频综合网站| 国产精品国产高清国产av| a级一级毛片免费在线观看| 天堂网av新在线| 高清毛片免费看| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 晚上一个人看的免费电影| 能在线免费观看的黄片| 成人av在线播放网站| 国产单亲对白刺激| 国产人妻一区二区三区在| 成人亚洲精品av一区二区| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 岛国在线免费视频观看| 久久久久久久午夜电影| 人妻少妇偷人精品九色| 久久精品影院6| 亚洲人成网站在线播| 蜜桃久久精品国产亚洲av| 又爽又黄无遮挡网站| 亚洲欧美中文字幕日韩二区| 一本久久精品| 又爽又黄a免费视频| av又黄又爽大尺度在线免费看 | 国国产精品蜜臀av免费| 中文精品一卡2卡3卡4更新| 日本五十路高清| 男人舔女人下体高潮全视频| 亚洲欧美成人综合另类久久久 | 国产 一区精品| 国产一区二区三区av在线 | 99热6这里只有精品| 性欧美人与动物交配| 国产毛片a区久久久久| 日韩制服骚丝袜av| 成人午夜高清在线视频| 亚洲自偷自拍三级| 精品欧美国产一区二区三| 欧美不卡视频在线免费观看| 97超视频在线观看视频| 欧美极品一区二区三区四区| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 亚洲欧洲日产国产| 91在线精品国自产拍蜜月| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 免费观看精品视频网站| 久久精品国产亚洲av天美| 国产男人的电影天堂91| av在线天堂中文字幕| 亚洲国产精品成人综合色| 国产美女午夜福利| 久久久久九九精品影院| 在线播放国产精品三级| 在线观看免费视频日本深夜| 91久久精品电影网| 久久久久久伊人网av| 九九热线精品视视频播放| 国产精品一区www在线观看| 日韩av在线大香蕉| 国产亚洲av嫩草精品影院| 日韩一区二区三区影片| 亚洲三级黄色毛片| 国产精品蜜桃在线观看 | 中文精品一卡2卡3卡4更新| 日本一二三区视频观看| 国产亚洲欧美98| 久久精品国产鲁丝片午夜精品| 国产免费男女视频| 国产成人91sexporn| 性插视频无遮挡在线免费观看| 国产精品一二三区在线看| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 国产精品电影一区二区三区| 国产精品一及| 久久久久九九精品影院| 如何舔出高潮| 亚洲中文字幕日韩| 国产精品国产三级国产av玫瑰| 能在线免费观看的黄片| 我的老师免费观看完整版| 嫩草影院入口| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 国产不卡一卡二| 一本久久中文字幕| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 日日干狠狠操夜夜爽| 久久热精品热| 老师上课跳d突然被开到最大视频| 日韩一区二区三区影片| 亚洲欧美日韩高清专用| 中国美女看黄片| 亚洲av免费高清在线观看| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| 精品久久久久久久末码| 精品无人区乱码1区二区| 一边摸一边抽搐一进一小说| 在线免费观看不下载黄p国产| 非洲黑人性xxxx精品又粗又长| 一本精品99久久精品77| 国内久久婷婷六月综合欲色啪| 亚洲人成网站高清观看| www.av在线官网国产| 欧美+亚洲+日韩+国产| 亚洲成av人片在线播放无| 久久久久国产网址| 夜夜看夜夜爽夜夜摸| 精品不卡国产一区二区三区| 3wmmmm亚洲av在线观看| 国产三级中文精品| 美女大奶头视频| 色哟哟·www| 国产老妇伦熟女老妇高清| 成人永久免费在线观看视频| 久久久久国产网址| h日本视频在线播放| 日韩高清综合在线| 亚洲人成网站在线播| 天堂av国产一区二区熟女人妻| 丝袜喷水一区| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 好男人视频免费观看在线| 美女黄网站色视频| 日本一本二区三区精品| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩国产亚洲二区| 国产免费男女视频| 国产69精品久久久久777片| 我要搜黄色片| 欧美一区二区亚洲| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 日本黄色片子视频| 日本一本二区三区精品| 国产探花极品一区二区| 国产三级在线视频| 久久综合国产亚洲精品| 综合色丁香网| 美女高潮的动态| 国产视频内射| 国产v大片淫在线免费观看| av在线亚洲专区| 欧美+亚洲+日韩+国产| 国产一区亚洲一区在线观看| 亚洲综合色惰| 午夜福利高清视频| 99热只有精品国产| videossex国产| 蜜桃久久精品国产亚洲av| 国产精品久久久久久av不卡| 级片在线观看| 欧美日本视频| 一个人看视频在线观看www免费| 男的添女的下面高潮视频| 久久中文看片网| 国产视频首页在线观看| 男女视频在线观看网站免费| 亚洲人与动物交配视频| 国产单亲对白刺激| 成人欧美大片| 三级国产精品欧美在线观看| 久久6这里有精品| 校园春色视频在线观看| 久久精品91蜜桃| 看非洲黑人一级黄片| 免费大片18禁| 久久热精品热| 91aial.com中文字幕在线观看| 69av精品久久久久久| 能在线免费观看的黄片| 国产精品一区www在线观看| 国内精品久久久久精免费| 天堂av国产一区二区熟女人妻| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 |