• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SeqSQC:ABioconductoRPackage foREvaluating The Sample Quality of Next-generation Sequencing Data

    2019-07-12 06:35:24QianLiuQiangHuSongYaoMarilynKwanJaniseRohHuAZhaoChristineAmbrosoneLawrenceKushiSongLiuianqianZhu
    Genomics,Proteomics & Bioinformatics 2019年2期

    Qian Liu*,Qiang Hu,Song Yao,Marilyn L.Kwan,Janise M.Roh HuAZhao,Christine B.Ambrosone,Lawrence H.Kushi,Song Liu Q ianqian Zhu*

    1 Department of Biostatistics,University at Buffalo,SUNY,Buffalo NY14260,USA

    2 Department of Biostatistics and Bioinformatics,Roswell Park Comprehensive CanceRCenter,Buffalo NY14263,USA

    3 Department of CanceRPrevention and Control,Roswell Park Comprehensive CanceRCenter,Buffalo NY14263,USA4 Division of Research,KaiseRPermanente Nor The rn California,Oakland CA94612,USA

    5 Department of Epidemiology,The University of TexasMD Anderson CanceRCenter,Houston TX77030,USA

    KEYWORDS Next-generation sequencing;Quality assessment;1000Genomes Project;Whole-exome sequencing;BioconductoRpackage

    Abstract As next-generation sequencing(NGS)technology has become widely used to identify genetic causalvariants foRvarious diseasesand traits,AnumbeRof packages foRchecking NGSdatAquality have sprung up in public domains.In addition to The quality of sequencing data,saMp le quality issues,such as genderMismatch,abnormal inbreeding coefficient,cryptic relatedness,and population outliers,can also have fundamental iMpact on downstreaManalysis.However, The re is Alack of tools specialized in identifying problematic saMples froMNGS data,of ten due to The liMitation of saMp le size and variant counts.We developed SeqSQC,ABioconductoRpackage,to

    Introduction

    The past several years have seen The exp losion of genetic and genoMic studies utilizing next-generation sequencing(NGS)technology in basic sciences,translational research,and clinics[1-7].The high-throughput datAgenerated froMNGS bring neWchallenges to datAprocessing,analysis,and interpretation[8].Asuccessful NGS study relies in large part on rigorous quality control(QC)to ensure that artifacts are removed before datAanalysis,so that real signals are not masked by quality issues. The re are three levels of QC process:base/read level QC to clean up raWsequencing data;sample level QC to remove population outliers and problematic saMp lesWith gendeRMismatch,abnormal inbreeding coefficient,oRcryptic relatedness;and variant level QC to eliMinate inaccurate variant calls,foRexaMple,those resulting froMsequencing errors in homo-polymers and incorrect read mapping.

    Most currently available QC tools foRNGS datAare designed foRThe base/read level QC,which typically involves assessing The intrinsic quality of The raWreads to diagnose artifacts that arise froMThe library preparation and sequencing run[9-14].FoRinstance,NGSQC[9]can monitoRbase/coloRcode across each tile/panel,as well as quality measures foRpaired-end/mate paiRlibraries,whereas NGS QC Toolkit[10]is designed foRhomo-polymeRtrimMing and primer/adaptoRcontaMination removal.In addition,FastQC(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) provides comprehensive assessment of variation in quality scores and sequence content across The base/sequence/tile,sequence length distribution and dup lication levels,aswell as sequence over-representation.QuaCRS[13],an integrated quality control pipeline foRRNA-Seq data,incorporates several Rtools like FastQC foRper-base read quality,RNA-SeQC foRsummarization of QC metric in Atable format,and RSeQC[15]foRuseful saturation functions.QC-chain[14]is Atool foRquality assessment and trimMing of raWreads,identification,quantification,and filtration of unknown contaMination.

    In contrast, The re is no publicly available tool designed to perforMsamp le level QC on NGS data.Although The principles and steps foRThe saMple levelQC are essentially The same between NGS datAand genome-Wide association study(GWAS)data, The re are neWchallenges inherent to The NGS that prevent us froMdirectly using The tools designed foRGWAS data,such as PLINK[16],SNPRelate[17],GWASTools[18],GenABEL[19],and QCGWAS[20].First,unlike GWAS analyses,which usually include thousands of saMp les,NGS studies typically involve amuch smalleRsaMp le size due to The still high cost of sequencing compared to genotyping.Second,while whole-exome sequencing(WES)ismore costeffective than whole-genome sequencing(WGS),The total numbeRof variantsgenerated froMWES ismuch smaller,usually at The scale of around 250,000 foRAsaMple size of 50.The calculations of metrics foRsamp le level QC,such as saMple relatedness,require large numbers of samples and variants to generate reliable estimates,which are not available foRmany NGS studies.FoRexamp le,PLINK prefers at least 100,000 independent variants foRestimating saMple relatedness,which exceeds The numbeRof linkage disequilibrium(LD)-pruned variants generated froMtypical WES studies of 50 samp les(~65,000 variants).Although PLINK/SEQ (https://atgu.mgh.harvard.edu/p linkseq/)allows variant summary and filtering,it is designed specifically foRlarge-scale and population-based sequencing data,and unlike PLINK,it does not have Acomponent foRsaMple level QC.

    Here,we present SeqSQC,ABioconductoRpackage,foRsamp le levelQC in NGSstudies.SeqSQC takes variant calling format(VCF)files and samp le annotation file containing sample population and gendeRinformation as input and reports problematic samp les to be removed froMdownstreaManalysis.Through incorporation of benchmark datAassembled froMThe 1000Genomes Project,SeqSQC can accommodate NGSstudies of small saMple size and loWnumbeRof variants.

    Method

    Assembly of benchmark dataset

    We collected 87 samp les froMWGS datAof The 1000Genomes Project(Phase 3,release 20130502)as Abenchmark dataset(Table 1),which includes 22 African(AFR)saMples,22 East Asian(EAS)samp les,21 European(EUR)saMples,and 22 South Asian(SAS)samples.We selected 1-3 related pairs froMeach population that best represented The corresponding relationships(e.g.,parent-of fspring pairs,and full oRhalfsibling pairs)and The n randoMly selected unrelated samp les foRAtotal of 20 pedigrees peRpopulation.As Aresult, The re are eight known related pairs including fouRparent-of fspring pairs,two full-sibling pairs,and two half-sibling oRavunculaRpairs in The benchmark dataset.The benchmark dataset contained only variantsWith MinoRallele frequency(MAF)>0.01 in at least one of The fouRpopulations.FoRAgiven NGS study cohortof interest,SeqSQC merges The benchmark datasetWith The NGSdataset of The study cohort to forMAfinaldataset foRQC and only variants present in The benchmark dataset are used foRsaMple level QC.FoRvariants absent froMThe study cohort,Ahomozygous reference allele isassumed as long as The variants are located within The capture regions of The NGS platforMeMp loyed.

    Test cohorts froMThe 1000 Genomes Project

    To test The performance of SeqSQC,The remaining samp les(afteRexcluding those in The benchmark dataset)froMThe 1000 Genomes Project were grouped into fouRtest cohorts according to The ancestries(647 AFR,493 EAS,484 EUR,and 472 SAS).We The n added six randoMpopulation outliers(two froMeach of The o The Rthree populations)to each test cohort.We also intentionally added one duplicate saMple and one contaMinated samp le to each test cohort.The intended duplicate samp lewas Adup licate of one samp le randoMly selected froMThe test cohort,whereas The contaMinated saMp le was generated by combining The genotypes froMfive randoMly selected samp les in The test cohort.All samp les in each test cohort were summarized in Table 1.To MiMic The WES data,we retained in The test cohorts only The variants locatedWithin The capture regionsof Agilent SureSelectHuman Exon v5,one of The most populaRcapture platforMs to date.

    To corroborate The results of SeqSQC,PLINK was also used to perforMsample QC in each test cohort based on all The WGS variants that have MAF≥0.01,Missing rate≤0.1,and did not violate The Hardy-Weinberg equilibrium(HWE)(P≥1E-6).The variantswere LD-pruned before The calculation of inbreeding coefficients and identity by descent(IBD)coefficients.FoRThe sex check,Asample is predicted to be female ormale ifThe X chromosome inbreeding coefficient is≤0.2 or≥0.8.FoRinbreeding check,saMp les With inbreeding coefficients that are five standard deviations beyond The mean are considered problematic.FoRIBD check,sample pairswith The proportion of IBD(PI_HAT)≥0.125 are predicted as related.

    To test The performance of SeqSQC on small saMple size,we generated test cohorts consisting of one(HG 00116),two(HG 00116 and HG 00120),oRthree samples(HG 00116,HG 00120,and NA18960).HG 00116 is Amale EUR,HG 00120 isAfemale EURand Arelativeof HG 00116,whereas NA18960 is amale EASand servesasan intended population outlieRin The three-saMp le test cohort.

    She knew this was the last evening she should ever see the prince, for whom she had forsaken119 her kindred and her home; she had given up her beautiful voice, and suffered unheard-of pain daily for him, while he knew nothing of it

    Study cohorts of breast cancerWES data

    We performed WES on 143 trip le-negative breast canceRpatients(all female)froMthree population groups(69 AFR,26 Asian(ASN),and 48 EUR),using Agilent SureSelect Human Exon v5 capture kit.Specimens were obtained froMThe Pathways Study,Aprospective cohort study of women diagnosed With breast canceRin The KaiseRPermanente Nor The rn CaliforniAhealth system[21],and froMThe DatABank and BioRepository(DBBR)at Roswell Park CoMprehensive CanceRCenter[22](126 and 17 samp les,respectively).We applied SeqSQC to this dataset to exaMine The iMpact of samp le QC on downstreaManalysis of breast canceRrisk genes.When The population in The study cohortwas specified as ASN,both EAS and SAS samp les in The benchmark datasetwere considered froMThe same population as The study cohort and were included foRThe sex check and inbreeding check.In The population outlieRcheck foRASN,princip le component analysis(PCA)prediction o The Rthan EAS oRSAS was considered as population outlier.

    In ordeRto identify candidate breast canceRrisk genes,we first isolated rare functional variants,and The n restricted to recurrent genes in The cohort(genes that weremutated in at least two individuals).To obtain rare variants,we first removed non-clinically associated variants in dbSNP[23](dbSNP129),and The n excluded any variants thatwere present in The 1000 Genomes Project[24,25](ALL population,2015 August release)and The Exome Sequencing Project(ESP;ESP6500siv2 all;http://evs.gs.washington.edu/EVS/)[26],as wellas any variantsWith MAF>0.1%in Exome Aggregation Consortium(ExAC;exac03nontcga)[27].We also filtered out variants that were not functionally important,including nonexonic variants(except splicing variants),synonymous variants,and nonsynonymous variants that are predicted to be benign by multip le bioinformatics sof tware,including SIFT[28],PolyPhen2[29,30](PolyPhen 2HD IV,PolyPhen 2HVar),LRT [31],MutationTaster [32],MutationAssessor [33],FATHMM[34],MetaSVM,and MetaLR[35].Variants in segmental dup licationswere also excluded due to high false positive rate of variant calling[36].ANNOVAR[37]was used to facilitate The se variant filtering steps.We fur The Rfiltered out long insertions and deletions(>20 bp)and any variants in genes that are not expressed in breast.

    Implementation

    AfloWchartof SeqSQC functionalities is disp layed in Figure 1.SeqSQC consists of three majoRmodules:datApreparation,saMp le QC,and result summary.The samp le QC module includes The folloWing five steps:Missing rate check,sex check,inbreedingcheck,IBD check,and population outlieRcheck.The entire samp le level QC is Wrapped up in one function:sampleQC.By executing this function,Alist of problematic samp lesand AQC reportWith interactive plots in htMl format,are generated according to The criteriAdefined foReach QC step.Problematic samp les identified at each QC step are automatically removed before getting to The next step.We provide AbriefovervieWof SeqSQC asbelow.Amore detailed description of package functionality and usage can be found in The package vignette and manual [R console type in browseVignettes(‘‘SeqSQC”) foRThe vignette],oRat The Bioconductor website for SeqSQC:(http://bioconductor.org/packages/SeqSQC).

    Figure 1 Flowchart of The SeqSQC functionalitiesIn The datApreparationmodule,SeqSQC merges The study cohortWith The benchmark data.Merged datAof SeqSQC classareused foRThe subsequent saMp le QC and result summary.The input files allowed in SeqSQC include AVCffile,ABED file foRcapture region,and an annotation file With saMp le population and gendeRinformation.UseRcould use The Wrap up function foRan automated saMple QC,to generateallQC results,Aproblematic saMple listWith indication of The reason foRremoval,and AsaMple QC reportWith interactive plots foReach QC step.UseRcan also call The specific QC function,oRcustoMize The settingsof each QC step,including The criteriAfoRdefining problematic saMp les and The choice of statisticalmethods.

    InputOnly bi-allelic single nucleotide variants(SNVs)froMThe VCfinput are included as input foRsamp le QC analysis.

    Samplemissing rate check

    SaMplesWith aMissing rate>0.1 are considered problematic.Functions MissingRate and plotQC(QCstep=‘‘MissingRate”)are developed to calculate and p lot The samp leMissing rate,respectively.

    Sex check

    We first filteRout The pseudo-autosomal regions in X chromosome. The n The samp le inbreeding coefficient(F)is calculated based on The numbers of variants on X chromosome foRall samp les in The study cohort and those foRbenchmark samp les of The same population as The study cohort.The sample is predicted to be femaleWith F≤0.2 and maleWith F≥0.8,while The saMples With 0.2<F<0.8,are considered as ambiguous(pred.sex=0).Accordingly,The samp le gendeRis predicted using The function SexCheck,while The X chromosome inbreeding coefficients are p lotted using plotQC(QCstep=‘‘SexCheck”),where samp les With gendeRMismatch are highlighted.

    Inbreeding check

    Using LD-pruned autosomal variants,we calculate The inbreeding coefficients foReach samp le in The study cohort and foRbenchmark samples of The same population as The study cohort.Samp lesWith inbreeding coefficients thatare five standard deviations beyond The mean are considered problematic.Functions Inbreeding and plotQC(QCstep=‘‘Inbreeding”) are used to calculate and p lot The inbreeding coefficients,respectively.

    IBD check

    Using LD-pruned autosomal variants,we first calculate The IBD coefficients foRall samp le pairs.We The n predict related saMple pairs in study cohort using The support vectormachine(SVM)method[38]With lineaRkernel and The known relatedness embedded in benchmark datAas The training set.All predicted related pairs are also required to have Acoefficient of kinship≥0.08.The samp le With higheRMissing rate in each related paiRis removed.The function IBDCheck calculates The IBD coefficients foReach samp le paiRand predicts The relatedness foRsamp les in The study cohort.The function plotQC(QCstep=‘‘IBD”) The n draws The descent coefficients,K 0 and K 1,foReach pair.

    Population outlieRcheck

    Results

    One strength of SeqSQC is that it incorporates Abenchmark dataset generated froMThe 1000 Genomes Project With The study cohort(The NGS datAto be checked foRquality)during The QC process.This benchmark dataset contains 20 independent samples selected froMeach of The fourmajoRpopulations(AFR,EAS,EUR,and SAS)and eight related saMple pairs(4 parent-of fspring pairs,2 full-sibling pairs, and 2 half-sibling oRavunculaRpairs)(Table 1 and Methods).The benchmark serves as Asupervised guide to The identification of problematic samp les.It is especially useful foRNGS datAwith liMited samp le size oRvariant number,asmerging with The benchmark datAcould automatically boost The saMp le size and variant numbeRfoRThe study cohorts.

    Evaluation of SeqSQC performance using test cohorts froMThe 1000 Genomes Project

    In ordeRto evaluate The performance of SeqSQC in identifying problematic samples,we generated fouRtest cohorts froMThe 1000 Genomes Project foReach of The fourmajoRpopulations(AFR,EAS,EUR,and SAS)as The true identity of The se samp les is known.In each test cohort,we embedded one intended duplicate samp le,one contrived contaMinated saMple,and six population outliers(Table 1 and Methods).Since saMp les froM The 1000Genome Projectwerewhole-genome sequenced,to MiMic WES data,we kept in The VCffile only those variants that fall in capture regions of Agilent SureSelect Human Exon v5 p latform(seeMethod section).Asexpected,SeqSQC successfully detected The contaMinated samp le in inbreeding check,The dup licate saMple in IBD check,and all six population outliers in ei The Rinbreeding check oRpopulation outlieRcheck(Table S1 and Figure 2). The re were Atotal of 19 selfreported related pairs in The fouRtest cohorts.SeqSQC confirmed 18 of The Mbut identified one self-reported full-sibling paiRin The AFRtest cohort as unrelated.Notably,this fullsibling paiRwas confirmed to be unrelated using The IBD segment sharing analysis froMThe 1000 Genomes Project.

    Surprisingly,SeqSQC also detected additional unintended problematic samp les in each of The test cohorts(Table S1).In The AFRtest cohort,two self-reported female sampleswere predicted to bemale by SeqSQC(Figure 2Aand Figure S1),in addition to one inbreeding outlier(Figure 2B)and 12 related samp le pairs detected(Figure 2C).Moreover,SeqSQC identified three,two,and six related saMple pairs in The EAS,EUR,and SAS test cohorts,respectively,and ano The Rtwo samp les With genderMismatch identified in The EURtest cohort.

    As an alternative approach to corroborate The se neWproblematic samp les identified by SeqSQC,we used PLINK to carry out samp le QC based on The entire WGS datAof The same saMp les,which aremore than 30 times largeRthan The datAused by SeqSQC(Methods).PLINK confirmed all The neWly identified problematic saMp les by SeqSQC,including The fouRgendeRMismatch saMp les,23 related samp les,and one inbreeding outlier.The list of The se problematic samp les(oRsaMp le pairs)is provided in Table S2.

    To demonstrate The capability of SeqSQC to perforMsamp le QC on NGSdataWith small samp le size,we generated test cohorts With only one,two,oRthree saMp les froMThe 1000 Genomes Project,respectively.As shown in Figure S2,SeqSQC correctly identified The sample characteristicsand pinpointed problematic saMples on The se small datasets.

    Application of SeqSQC to study cohorts of breast canceRWES data

    We showed here an examp le of SeqSQC app lication to The ‘‘real-world”WES data.This WES dataset contained 143 trip le-negative breast canceRpatients froMthree populations(69 AFR,26 ASN,and 48 EUR).SeqSQC was run on each population foRsample-level QC.

    SeqSQC detected two inbreeding outliers(one AFRand one EUR),and fouRpopulation outliers(two saMples each froMAFRand ASN populations)(Table 2,Figures S3 and S4).AfteRremoving The se six problematic saMp les,The numbers of recurrent genes as well as The contained rare and potentially functional variants were reduced froM1887 to 1803 and froM4643 to 4436,respectively. The se datAindicate that sample-level QC has non-trivial impact on downstreaManalysis of breast canceRrisk genes.

    Conclusion

    SeqSQC is ABioconductoRpackage that automates and accelerates sample cleaning of NGS datAon any scale.It enables The identification of problematic samp les With high Missing rate,gendeRMismatch,contaMination,abnormal inbreeding coefficient,cryptic relatedness,oRdiscordant population information.With Abuilt-in benchmark dataset carefully assembled froMThe 1000Genomes Project,SeqSQC is particularly useful foRNGS studiesWith liMited sample size oRvariant number.Designed With efficiency in Mind,it stores The genotype in GenoMic DatAStructure(GDS)format,which could increase The datAstorage efficiency by 5-fold and datAaccess speed by 2-3-fold,respectively[18,39].FoRexaMp le,it took less than 10Min to coMplete all saMple QC steps foR143WES saMp les froMThe study cohort of breast canceRpatients(32Gb main memory,2.00GHz Intel?Xeon?E5-2620).SeqSQC is userfriend ly in that The entire QC process is highly automated and only one command line is needed to get The final QC reports.The package generates interactive p lots foReach QC step as an intuitive interface foRvisualization.Fur The rmore,users can custoMize settings foRThe QC process,including The criteriAfoRdefining problematic saMples and The choice of statisticalmethods.

    Based on The WESvariants of test cohorts assembled froMThe 1000 Genomes Project,SeqSQC successfully identified all intended problematic samples including The related samp les,simulated contaMinated sample,The duplicate samp le,and The population outliers.SeqSQC also detected additional unexpected problematic samples.All The se problematic samp les were confirmed by PLINK when running on The same saMp les using WGS variants provided by The 1000 Genomes Project.Since The 1000Genomes Project dataset isWidely used around The world in genetic studies,Acatalog of The problematic saMp les,such as those detected by SeqSQC,would be Auseful resource to The research community.

    We foreseeAvariety of extensionsof SeqSQC.FoRexaMple,due to insufficient first cousin pairs froMThe 1000 Genomes Project,The current version of SeqSQC doesnot aiMto detect weak relatedness such as first cousins.With The continuous expansion of The 1000 Genomes Project and o The Rpublicly available sequencing projects,we Will boost The sensitivity of detectingweak relationship by SeqSQC using upgraded benchmark data.Ano The Rissue thatneedsattention ishoWto handle samp le QC in adMixed population.Currently we only include The fouRmost-studied population groups in The benchmark dataset(AFR,EUR,EAS,and SAS)in SeqSQC.The adMixed population such as Hispanic oRadMixed-American could not be properly handled by SeqSQC yet.We expect that future inclusion of representative saMp les froMadMixed populations into The benchmark datAcould help bridge thisgap.As potential batch effect could exist between The study dataset and The benchmark dataset,we Will include Abatch effect detection function in The future release of SeqSQC.

    Figure 2 The sample quality check foRThe AFRtest cohort froMThe 1000 Genomes ProjectA.Sex check.655 study saMp les and 22 benchmark saMp les of AFRancestry were shown.G ray lineswere drawn when sex inbreeding coefficient equals 0.2 oR0.8 as threshold foRsaMple genders(SeeMethod).Two self-reported female saMpleswere detected to bemale by SeqSQC(indicated as two red trianglesamong The group of cyan triangles).B.The p lotof inbreeding coefficients.655 study samp lesand 22 benchmark saMp lesof AFRancestrywere shown.G ray lineswere drawn when autosoMal inbreeding coefficient equals to five standard deviations beyond mean.Any point beyond The gray lines was defined to be problematic.Eight inbreeding outliers were detected(including one simulated saMp leWith contaMination,six intended population outliers,and one unintended inbreeding outlier;see Tables S1 and S2).C.IBD check.AfteRremoving problematic saMples detected froMprevious QC steps,Atotal of 732 saMp les(including 645 study saMples and 87 benchmark saMp les)were shown in pairWise fashion.SaMp lesWith known relationships are highlighted,including DU(red),FS(green),HF(organge),and PO(pink),whereas saMp lesWith unknown relationship weremarked in black.‘‘+”highlights The expected position foReach corresponding relationship.NeWly-detected relationships froMthis test cohort are highlighted With red circles.D.The p lot of The first two PC axes froMThe PCAanalysis.AfteRremoving problematic saMp les detected froMpreviousQC steps except foRThe six intended population outliers,as well as The related samp les in benchmark data,Atotal of 718 independent samples(including 638 study saMples and 80 benchmark saMp les)were shown.Six intended population outliers(two froMeach population of EAS,EUR,and SAS)arehighlighted With red circles.The AFRsaMp leswere separated into different groups in PC2 since The y came froMdifferent sub-populations including ACB,ASW,ESN,GWD,LWK,MSL,and YRI.AFR,African;EAS,East Asian;EUR,European;SAS,South Asian;DU,duplicate;FS,full-sibling;HF,half-sibling/avunculaRpair;UN,unknown;PO,parent-of fspring pair;PCA,principal coMponent analysis;ACB,African Caribbeans in Barbados;ASW,Americans of African ancestry in Southwestern USA;ESN,Esan in N igeria;GWD,Gambian in Western D ivisions in The Gambia;LWK,LuhyAin Webuye,Kenya;MSL,Mende in SierrALeone;YRI,YorubAin Ibadan,N igeria.

    We recognize that samp le QC can also be done before sequencing using ei The Rhigh-density SNP arrays oRcustoMdesigned SNP panels(e.g.,iPLEX?Pro Sample ID Panel)to verify samp le quality,gender,and relationships.As it allows picking up problematic samp les before The expensive sequencing procedure,pre-sequencing samp le QC is Agood practice even though it Will increase The cost and The DNAamount needed foRThe project.On The o The Rhand even ifsaMp les are perfectly fine according to The pre-sequencing QC,technical errors like samp leMislabeling and contaMination can still happen during The library preparation and sequencing procedure,and The refore saMp le QC afteRsequencing is still necessary.

    Table 2 The problematic samples in WES of 143 breast canceRpatients

    Availability of datAand materials

    The datasets generated and/oRanalyzed in The current study are available upon request froMThe corresponding authors.

    Authors’contributions

    QL,QH,and QZ conceived The ideAand designed The study.QL developed The sof tware.QH,SY,MLK,JMR,LHK,HZ,CBA,and SL were involved in datAinterpretation.QL and QZ drafted The manuscript With The assistance of QH,SY,MLK,JMR,LHK,HZ,CBA,and SL.All authors read and approved The finalmanuscript.

    Competing interests

    The authors have declared no competing interests.

    AcknoWledgments

    This study was supported by The National CanceRInstitute(NCI), The National Institutes of Health (N IH),USA(G rant Nos.CA162218 awarded to SL and HZ,CA105274 awarded to LHK,and CA195565 awarded to LHK and CBA).This work was also supported by The NCI(G rant No.P30CA016056 awarded to Roswell Park CoMprehensive CanceRCenteRinvolving The use of DBBR,GenoMic, Bioinformatics, and Biostatistics Shared Resources).CBAis also supported by The Breast CanceRResearch Foundation,USA.

    Supplementary material

    Supp lementary datAto this article can be found online at https://doi.org/10.1016/j.gpb.2018.07.006.

    老女人水多毛片| 草草在线视频免费看| 国产一区二区亚洲精品在线观看| 国产成人影院久久av| 麻豆av噜噜一区二区三区| 国产av麻豆久久久久久久| 国产黄片美女视频| 激情在线观看视频在线高清| 国产精品电影一区二区三区| 亚洲欧美激情综合另类| 成人无遮挡网站| 俄罗斯特黄特色一大片| 乱人视频在线观看| 亚洲美女视频黄频| 特级一级黄色大片| 99久国产av精品| 男人的好看免费观看在线视频| 国产精品一区二区三区四区久久| 国产爱豆传媒在线观看| 嫩草影视91久久| av黄色大香蕉| 国产单亲对白刺激| 国产高清有码在线观看视频| 欧美+亚洲+日韩+国产| 美女被艹到高潮喷水动态| 亚洲成a人片在线一区二区| 中国美女看黄片| 我要看日韩黄色一级片| 久久久久久久精品吃奶| 给我免费播放毛片高清在线观看| 能在线免费观看的黄片| 国产精品亚洲av一区麻豆| 国产v大片淫在线免费观看| 精品午夜福利视频在线观看一区| 国产免费男女视频| 免费在线观看影片大全网站| 国产在视频线在精品| 一进一出抽搐gif免费好疼| 欧美绝顶高潮抽搐喷水| 国内久久婷婷六月综合欲色啪| 免费一级毛片在线播放高清视频| 韩国av一区二区三区四区| 蜜桃亚洲精品一区二区三区| 高清毛片免费观看视频网站| 一本精品99久久精品77| 日韩中文字幕欧美一区二区| 男女床上黄色一级片免费看| 国产真实乱freesex| 男女那种视频在线观看| 悠悠久久av| 哪里可以看免费的av片| 熟女人妻精品中文字幕| 天堂av国产一区二区熟女人妻| 亚洲 欧美 日韩 在线 免费| 哪里可以看免费的av片| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 夜夜看夜夜爽夜夜摸| 亚洲,欧美精品.| 嫁个100分男人电影在线观看| 尤物成人国产欧美一区二区三区| 成年女人看的毛片在线观看| 国产精品三级大全| 一级黄片播放器| 18+在线观看网站| 黄色一级大片看看| 久久久久久久亚洲中文字幕 | 嫩草影院精品99| 亚洲av熟女| 欧美乱妇无乱码| 欧美3d第一页| 成人美女网站在线观看视频| 夜夜躁狠狠躁天天躁| 人妻丰满熟妇av一区二区三区| 日韩大尺度精品在线看网址| 12—13女人毛片做爰片一| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 少妇被粗大猛烈的视频| 午夜福利在线观看吧| 国产在视频线在精品| 亚洲人成网站在线播放欧美日韩| 精品乱码久久久久久99久播| 在现免费观看毛片| 午夜视频国产福利| 国产午夜精品久久久久久一区二区三区 | 久久久色成人| 天堂网av新在线| 一进一出抽搐gif免费好疼| 国产一区二区亚洲精品在线观看| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 日韩中文字幕欧美一区二区| 嫩草影院精品99| 又爽又黄无遮挡网站| 久久久久久久久久成人| 国产精品一区二区性色av| 亚洲一区二区三区色噜噜| 一级av片app| 亚洲av免费高清在线观看| 欧美激情在线99| 99在线视频只有这里精品首页| 99久久精品国产亚洲精品| 99热这里只有是精品50| 黄色一级大片看看| 久久国产精品影院| 午夜福利18| 国产黄a三级三级三级人| 久久亚洲真实| 国产69精品久久久久777片| 亚洲在线观看片| 国产精品一区二区三区四区免费观看 | 欧美午夜高清在线| 午夜亚洲福利在线播放| 99在线视频只有这里精品首页| 国产久久久一区二区三区| 18+在线观看网站| 国产精品一区二区性色av| 久久久成人免费电影| 欧美一区二区亚洲| 一级作爱视频免费观看| 国产大屁股一区二区在线视频| 国产精品99久久久久久久久| 亚洲专区中文字幕在线| 宅男免费午夜| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 欧美高清性xxxxhd video| 日日摸夜夜添夜夜添小说| 欧美区成人在线视频| 精品久久久久久,| АⅤ资源中文在线天堂| 久久亚洲真实| 欧美中文日本在线观看视频| 国产伦精品一区二区三区四那| 亚洲国产精品合色在线| 黄片小视频在线播放| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人看人人澡| 亚洲自偷自拍三级| 黄片小视频在线播放| 国产精品精品国产色婷婷| 久久久久久久精品吃奶| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 波多野结衣高清无吗| 综合色av麻豆| 99在线视频只有这里精品首页| 国产色爽女视频免费观看| 国产伦在线观看视频一区| 久久香蕉精品热| 久久国产乱子免费精品| 精品久久国产蜜桃| 午夜福利视频1000在线观看| 国内久久婷婷六月综合欲色啪| 伊人久久精品亚洲午夜| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 国产精品伦人一区二区| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 校园春色视频在线观看| .国产精品久久| 精品久久久久久,| 麻豆国产97在线/欧美| 嫩草影院入口| 亚洲男人的天堂狠狠| 99久久99久久久精品蜜桃| 夜夜看夜夜爽夜夜摸| 3wmmmm亚洲av在线观看| 亚洲七黄色美女视频| 午夜激情福利司机影院| 国产在线男女| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 午夜精品久久久久久毛片777| av黄色大香蕉| 国产亚洲精品久久久久久毛片| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 中国美女看黄片| 亚洲人成网站在线播| 国产免费男女视频| 亚洲成人免费电影在线观看| 特级一级黄色大片| 午夜精品在线福利| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片 | 亚洲av中文字字幕乱码综合| 欧美最新免费一区二区三区 | 色精品久久人妻99蜜桃| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 波多野结衣巨乳人妻| 热99在线观看视频| 亚洲一区高清亚洲精品| 亚洲精品在线美女| 一个人免费在线观看电影| 一本精品99久久精品77| 久久人人精品亚洲av| 亚洲欧美日韩无卡精品| 久久精品人妻少妇| www日本黄色视频网| 久久午夜福利片| 哪里可以看免费的av片| 在线观看舔阴道视频| 99久国产av精品| 变态另类丝袜制服| 亚洲综合色惰| 欧美黄色片欧美黄色片| 日韩欧美三级三区| 一个人免费在线观看的高清视频| 十八禁网站免费在线| 久久久久久久久大av| 国产伦精品一区二区三区视频9| 久久国产乱子免费精品| 在线观看66精品国产| 久久人妻av系列| 中文字幕精品亚洲无线码一区| 中亚洲国语对白在线视频| 夜夜爽天天搞| 男女之事视频高清在线观看| 国产欧美日韩一区二区三| 欧美午夜高清在线| 精品久久国产蜜桃| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 免费黄网站久久成人精品 | 在线十欧美十亚洲十日本专区| 午夜日韩欧美国产| 99热这里只有是精品50| 色尼玛亚洲综合影院| 很黄的视频免费| 国产亚洲精品久久久com| 欧美成人性av电影在线观看| 国产三级黄色录像| 亚洲成人中文字幕在线播放| 国产精品影院久久| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 亚洲,欧美,日韩| 国产熟女xx| 中文在线观看免费www的网站| 三级男女做爰猛烈吃奶摸视频| 国产色婷婷99| 婷婷丁香在线五月| 精品熟女少妇八av免费久了| 狠狠狠狠99中文字幕| 午夜a级毛片| 宅男免费午夜| 久久精品综合一区二区三区| 久久久久国内视频| 欧美色视频一区免费| 最新在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 高潮久久久久久久久久久不卡| 精品久久久久久久久久久久久| 亚洲av五月六月丁香网| 国产精品综合久久久久久久免费| 国产精品久久久久久亚洲av鲁大| 国产成年人精品一区二区| 我要搜黄色片| 国产麻豆成人av免费视频| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 99国产综合亚洲精品| 欧美成人一区二区免费高清观看| 久9热在线精品视频| 亚洲成人久久爱视频| 午夜亚洲福利在线播放| 成年人黄色毛片网站| 在线免费观看不下载黄p国产 | 国产av不卡久久| 91在线精品国自产拍蜜月| 国产成人av教育| 亚洲精品乱码久久久v下载方式| 欧美极品一区二区三区四区| 熟女人妻精品中文字幕| 午夜福利在线观看吧| 中亚洲国语对白在线视频| 亚洲av一区综合| 亚洲七黄色美女视频| 嫁个100分男人电影在线观看| 国产精品美女特级片免费视频播放器| 欧美国产日韩亚洲一区| 成人高潮视频无遮挡免费网站| 亚洲中文字幕日韩| 亚洲片人在线观看| 免费看美女性在线毛片视频| 久久久久九九精品影院| 久久久国产成人精品二区| 直男gayav资源| 国产免费男女视频| 国产探花极品一区二区| 成年女人看的毛片在线观看| av在线观看视频网站免费| 亚洲自拍偷在线| 熟女电影av网| 两性午夜刺激爽爽歪歪视频在线观看| 免费在线观看影片大全网站| 亚洲国产欧洲综合997久久,| 久久久久性生活片| 中文资源天堂在线| 一级黄色大片毛片| 一进一出抽搐gif免费好疼| 精品人妻视频免费看| 十八禁网站免费在线| 免费搜索国产男女视频| 女人十人毛片免费观看3o分钟| 国产精品爽爽va在线观看网站| 在线观看午夜福利视频| 欧美3d第一页| 久久久精品大字幕| 在线观看66精品国产| 深夜a级毛片| 午夜免费成人在线视频| 少妇被粗大猛烈的视频| 九九久久精品国产亚洲av麻豆| ponron亚洲| www日本黄色视频网| 色综合亚洲欧美另类图片| 欧美性感艳星| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 国产精品野战在线观看| 成人欧美大片| a级一级毛片免费在线观看| 成人欧美大片| 激情在线观看视频在线高清| 国产野战对白在线观看| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| eeuss影院久久| 亚洲精品色激情综合| a级毛片a级免费在线| av视频在线观看入口| 美女cb高潮喷水在线观看| 日韩 亚洲 欧美在线| 精品欧美国产一区二区三| 亚洲欧美清纯卡通| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 亚洲狠狠婷婷综合久久图片| 亚洲最大成人手机在线| 男女那种视频在线观看| 国产精品一及| 在线免费观看的www视频| 亚洲综合色惰| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 亚洲中文字幕日韩| 女生性感内裤真人,穿戴方法视频| 日韩 亚洲 欧美在线| 亚洲成av人片在线播放无| 好男人电影高清在线观看| 91久久精品国产一区二区成人| 欧美日韩亚洲国产一区二区在线观看| netflix在线观看网站| 色在线成人网| 亚洲aⅴ乱码一区二区在线播放| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 亚洲第一区二区三区不卡| www.色视频.com| 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| av在线观看视频网站免费| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 午夜影院日韩av| 女人十人毛片免费观看3o分钟| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 桃红色精品国产亚洲av| av专区在线播放| 2021天堂中文幕一二区在线观| 免费大片18禁| 国产av一区在线观看免费| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 亚洲成人久久性| 亚洲精品粉嫩美女一区| 在现免费观看毛片| 看免费av毛片| av天堂在线播放| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 亚洲 国产 在线| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 一个人免费在线观看的高清视频| 午夜激情福利司机影院| 成人永久免费在线观看视频| 草草在线视频免费看| 给我免费播放毛片高清在线观看| netflix在线观看网站| 五月伊人婷婷丁香| 免费人成视频x8x8入口观看| 午夜久久久久精精品| 日本成人三级电影网站| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 免费无遮挡裸体视频| av欧美777| 好男人在线观看高清免费视频| 黄色配什么色好看| 日本 av在线| 国产淫片久久久久久久久 | 好看av亚洲va欧美ⅴa在| 精品一区二区免费观看| 精品人妻熟女av久视频| 久久久久免费精品人妻一区二区| 精品人妻视频免费看| 俺也久久电影网| 国产在线男女| 深夜a级毛片| 一边摸一边抽搐一进一小说| 午夜免费男女啪啪视频观看 | 国产亚洲欧美98| 国产免费一级a男人的天堂| 91久久精品国产一区二区成人| 91九色精品人成在线观看| 深夜精品福利| 99热这里只有是精品在线观看 | 深夜精品福利| 天天躁日日操中文字幕| 日本一本二区三区精品| 免费看a级黄色片| 国产亚洲精品久久久com| 91狼人影院| 十八禁网站免费在线| 99久国产av精品| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 国产精品电影一区二区三区| 亚洲美女视频黄频| 麻豆国产av国片精品| 天堂av国产一区二区熟女人妻| 亚洲精品成人久久久久久| 国产精品久久久久久人妻精品电影| a在线观看视频网站| 99国产精品一区二区三区| 国产一区二区在线av高清观看| 日本一本二区三区精品| 久久久久久久久大av| 成人亚洲精品av一区二区| 国产午夜精品久久久久久一区二区三区 | 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 亚洲国产精品999在线| 亚洲国产色片| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| a级一级毛片免费在线观看| 国产一区二区激情短视频| 直男gayav资源| 午夜福利18| 一级av片app| 成人三级黄色视频| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区 | 一夜夜www| 又黄又爽又刺激的免费视频.| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 琪琪午夜伦伦电影理论片6080| 久久伊人香网站| 欧美日本亚洲视频在线播放| 午夜福利在线观看免费完整高清在 | 亚洲熟妇熟女久久| 日本一本二区三区精品| 国产私拍福利视频在线观看| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 亚洲中文字幕日韩| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类 | 欧美最新免费一区二区三区 | 97超级碰碰碰精品色视频在线观看| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 搡老熟女国产l中国老女人| 亚洲av成人av| 天堂影院成人在线观看| 丁香欧美五月| 两人在一起打扑克的视频| 久久国产精品影院| 精品免费久久久久久久清纯| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| 中文在线观看免费www的网站| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 国产成人欧美在线观看| 日韩欧美国产一区二区入口| 国产美女午夜福利| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 午夜福利在线在线| 最近在线观看免费完整版| 亚洲国产精品合色在线| 一个人免费在线观看电影| 欧美潮喷喷水| 十八禁网站免费在线| 国产色爽女视频免费观看| 一区福利在线观看| 欧美3d第一页| 国产精品久久久久久亚洲av鲁大| 久久久色成人| 亚洲中文字幕日韩| 亚洲精华国产精华精| 白带黄色成豆腐渣| 两个人视频免费观看高清| 日日摸夜夜添夜夜添av毛片 | 18禁黄网站禁片免费观看直播| 一级作爱视频免费观看| 欧美区成人在线视频| 欧美zozozo另类| 一本综合久久免费| 国产成人福利小说| 窝窝影院91人妻| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 男女床上黄色一级片免费看| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 精品日产1卡2卡| 精品人妻视频免费看| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 每晚都被弄得嗷嗷叫到高潮| 久久午夜亚洲精品久久| 亚洲人成网站在线播放欧美日韩| 天天躁日日操中文字幕| 国产免费男女视频| 亚洲av电影在线进入| 成人欧美大片| 亚洲自偷自拍三级| 男女那种视频在线观看| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 十八禁网站免费在线| 日韩大尺度精品在线看网址| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 国产蜜桃级精品一区二区三区| 精品午夜福利视频在线观看一区| 男人舔奶头视频| 亚洲国产色片| 欧美+亚洲+日韩+国产| 国产视频内射| 精品久久久久久,| 国产精品伦人一区二区| 一a级毛片在线观看| 直男gayav资源| 亚洲18禁久久av| 免费av观看视频| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 男人的好看免费观看在线视频| 在线天堂最新版资源| 久久性视频一级片| 国产高清视频在线播放一区| 久久久国产成人免费| ponron亚洲| 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 欧美xxxx性猛交bbbb| 此物有八面人人有两片| 男人和女人高潮做爰伦理| 久久香蕉精品热| 嫩草影院入口| 99久久九九国产精品国产免费| 精品免费久久久久久久清纯| 国产免费男女视频| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 两个人的视频大全免费| 欧美日韩福利视频一区二区| 精品人妻偷拍中文字幕| 18禁黄网站禁片午夜丰满| 久久久久久九九精品二区国产| 男人和女人高潮做爰伦理| 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 亚洲精品一区av在线观看|