• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers

    2019-07-12 13:05:00RavindraDondeJitendraKumarGayatriGoudaManojKumarGuptaMitadruMukherjeeSkYasinBakshPradoshMahadaniKhirodKumarSahooLambodarBeheraSushantaKumarDash
    Rice Science 2019年4期

    Ravindra Donde, Jitendra Kumar, Gayatri Gouda, Manoj Kumar Gupta, Mitadru Mukherjee,Sk Yasin Baksh, Pradosh Mahadani, KhirodKumar Sahoo, Lambodar Behera, Sushanta Kumar Dash

    ?

    Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers

    Ravindra Donde1, Jitendra Kumar1, Gayatri Gouda1, Manoj Kumar Gupta3, Mitadru Mukherjee1,Sk Yasin Baksh1, Pradosh Mahadani, KhirodKumar Sahoo2, Lambodar Behera1, Sushanta Kumar Dash1

    ()

    The introgression of wild chromosomal segments into popular rice varieties is one of the potential approaches for developing varieties for drought stress condition. Sixteen genotypes, including nine, twoand five chromosome segments substitution lines (CSSLs) with different levels of tolerance/susceptibility to drought stress, were selected for diversity study. Sixty-three microsatellite markers were utilized for assessing genetic diversity. A total of 95 alleles were amplified,and out of them, 60 were polymorphic. Six unique alleles, amplified by the microsatellite loci RM276, RM472, RM488, RM537, RM541 and RM28089, were identified in six genotypes, namely FR13A, Brahamanakhi, RUF44, Swarna-, Brahamanakhi and Satyabhama. The highest genetic similarity was found among CSSLs. Polymorphism information content (PIC) value varied from 0 to 1.00 with an average of 0.66 per locus. Twenty-eight microsatellites were found to be polymorphic, which could be used in marker-assisted selection programme. All the sixteen genotypes were grouped into two major clusters at genetic similarity of 0.64. In the cluster I, five CSSLs identified as diverse genotypes had wild ancestor segments responsible for drought tolerance, and hence they could be utilized as potential donors. The popular Indian varieties, Swarna-and IR64-, could be used as recurrent parents in the future breeding program for developing varieties for abiotic stresses such as submergence and drought.

    genetic diversity;marker-assisted selection; microsatellite marker; rice; drought stress; submergence; chromosome segment substitution line

    Rice (L.) is one of the most important staple food crops for more than 3.5 billion people (Xu et al, 2016).It is thelargest consumed calorie source among the food grains representing 21% of the entire calorie supply (Khush, 2005;Tian et al, 2006; Sweeney and McCouch, 2007; Gaikwad et al, 2014).In India, rice is mostly grown in a wet season under monsoon rains and around 50% of the area is rain-fed which is frequently subjected to various stresses, including flash flood, drought and salinity, particularly in coastal regions (Khush, 2005). Drought is a major abiotic stress that limits rice productivity in rainfed and upland ecosystems (Venuprasad et al, 2012). Drought affects approximately 34 million hectare of rainfed rice and 8million hectare of upland rice area in Asia alone (Venuprasad et al, 2009b). Upon exposure to different environmental stresses, the productivity, quantity and quality of rice are severely affected (Varshney et al, 2011). Similarly, floods and submergence caused by heavy rains can occur at any stage of crop growth and affect more than 10–15 million hectare of rice in Southeast Asia in particular and Asia in general causing an annual economic loss of approximately 1 billion dollar(Septiningsih et al, 2009; Singh et al, 2010; Ismail et al, 2013). Rice production in rainfed ecosystems depends mainly on monsoon rainfall and run-off water from the catchment areas (Molden et al, 2010).

    The recombination breeding plays a major role in the accumulation of minor genes for grain yield under drought stress. It is imperative to know the genetic diversity among germplasm before proceeding for any breeding programme. Highly heterotic F1s and immense variability in F2s along with promising transgressive segregants in advance generation could be obtained by crossing diverse genotypes. In the process of choosing diverse parents for complementing drought and submergence tolerance, the selection of parent is really a deciding factor for getting proper recombinants. Hence,andalong with some promising cultures were studied for assessing necessary diversity for selecting recombinants with higher grain yield under drought and submergence stress.

    The earlier efforts of the breeders for assessing genetic diversity using conventional phenotypic traits were supposed to be less efficient because of its interaction with the environment. However, the molecular markers have made it possible to assess the diverse cultivars more efficiently for prospective utilization as parents. Simple sequence repeat (SSR) is one of the most useful molecular markers for assessing the genetic relationships amongst plant cultivars (Flint-Garcia et al, 2005; Gawenda et al, 2012;Choudhary et al, 2013; Gaikwad et al, 2014; Zhao et al, 2014). They are multiallelic, highly polymorphic, co-dominant and abundant in the genome. The current study aimed to find out the highly diverse genotypes useful for inclusion in hybridization programmes to develop drought-tolerant varieties along with submergence tolerance. Sixty-three SSR markers were used to assess genetic diversity among 16 genotypes including popular high-yielding Indian rice varieties and phenotypically promising drought tolerant chromosomesegments substitution lines (CSSLs). These CSSLs had been screened under rainout shelter fordrought tolerance atthe reproductive stage and were used as a donor for the introgression of wild segments into popular rice varieties (Barik et al, 2017). Hence, it is important to identify and select the ideal parents for hybridization as well as back-cross breeding programme with the assist of marker-assisted selection using polymorphic markers among the parents.

    MATERIALS AND METHODS

    Rice materials

    Sixteen rice genotypes, including nine, twoand five CSSLs, were used in our study (Supplemental Table 1). Among them, 13 are tolerant to drought stress while the others are susceptible. The CSSLs were developed by Susan McCouch at Cornell University, USA (Arbelaez et al, 2015). They were developed by backcrossing with recurrent parent Curinga (ssp.), a commercial rice variety developed and released at Brazil in 2005 using marker-assisted selection using two different wild donor parents. The recurrent parent Curinga was a semi-early maturing and drought-tolerant cultivar. In the first set, the donor wasW2112 (https://shigen.nig.ac.jp/rice/oryzabase/Oryzabase), and in the second set, the donor wasGriff IRGC105491. These lines contained wild introgression segments fromandin Curinga background. The first and second set has been designated as(MER) and(RUF), respectively (Arbelaez et al, 2015).

    Thevarieties (Azucaena and Curinga) and five CSSLs have been identified a drought tolerant through screening under rainout shelter condition (Supplemental Table 1) (Barik et al, 2017). Out of ninevarieties, two were popular high-yielding submergence tolerant rice varieties viz., Swarna-and IR64-, and could withstand flash flood situation due to the presence ofgene,butare sensitive to drought condition, while four are drought tolerant genotypes (viz. Satyabhama, Brhamnakhi, N22 and CR143-2-2) for upland and aerobic situations with appreciable grain yield. Among the rest three genotypes, FR13A is international submergence tolerance Donor, IR20 is an international drought sensitive check, and Nerical is an upland/aerobic genotype for drought tolerance suitable for Africa(Supplemental Table 1).

    Genomic DNA isolation

    The young leaf samples were collected from one-month-old transplanted plants of each genotype during dry season in 2017. Genomic DNA was isolated from 3–4 cm of bulked leaf samples following sodium dodecyl sulfate (SDS) method (Dellaporta, 1983). The quantity and quality were estimated applying a spectrophotometer and agarose gel electrophoresis using known concentration of lambda DNA. The samples were diluted in TE buffer (10 mmol/L Tris-HCl, 1 mmol/L EDTA, pH 8.0) to get a final concentration of 30 ng/μL for amplification.

    PCR amplication and electrophoresis

    The genetic diversity/similarity of the 16 genotypes were assessed by using 63 SSR markers. Out of them, twelve markers are linked to drought-tolerant QTLs (Supplemental Table 2).The primer sequences for the63 SSR markers can be found in the Gramene website (http://www.gramene.org). The amplification was carried out in a 20 μL reaction mixture volume containing 1 μL genomic DNA, 5 pmol/L of forward and reverse primer and 1× PremixVersion 2.0 (XcelGen). The PCR was performed in Eppendorf thermocycler (Eppendorf vapo.protect 96 well) as per following cycling parameters: initial denaturation at 94oC for 4 min followed by 35 cycles of denaturation at 94oC for 30 s, annealing at 55oC–67oC (depending upon primer Tm) for 1 min and extension at 72oC for 30 s and final extension at 72oC for 7 min. The amplified products were separated on 2.5%–3.0% agarose gels using 1× TBE buffer and stained with ethidium bromide (0.5 μg/mL). The gels were visualized under UV radiation and photographed using a gel documentation system (G Box, Syngene) to detect polymorphism. The size of amplified bands was determined based on the migration, relative to molecular weight of the markers (50 bp DNA ladder, Thermo Scientific, USA).

    Data analysis

    The amplified bands (alleles) were scored as present (1) or absent (0) for each genotype and primer combination. The data were entered into a binary matrix and subsequently analyzed using the software package, NTSYS-pc (Version 2.02) (Rohlf, 1988). The total number of alleles per locus, percentage of polymorphic alleles, low-frequency alleles (frequency of allele ≤ 30%), high-frequency alleles (frequency of allele > 30%), and polymorphism information content (PIC) were calculated to assess the diversity of alleles of marker locus. The genetic similarity coefficients were calculated and used to assess the genetic relationship among 16 genotypes, which were used to construct a dendrogram using unweighted pair group method using arithmetic averages (UPGMA) sequential agglomerative hierarchal nested (SHAN) cluster. Principal component analysis (PCA) was performed to highlight the resolving power of the coordination. The similarity coefficient (Rohlf, 1988; Behera et al, 2013) was calculated to measure the goodness of fit of clusters. PCA was carried out using the computer package NTSYS-pc (Version 2.02) (Rohlf, 1988).

    RESULTS

    Allelic diversity of microsatellite markers

    A total of 95 reproducible alleles were amplified with an average of 1.5 alleles per locus. The number of alleles varied from 1 to 3 alleles/locus, and 60 alleles (63.2%) were found to be polymorphic which were amplified by 28 SSRs (Table 1).

    Unique alleles

    The unique alleles play important role in the identification of genotypes. These unique alleles might be a diagnostic marker and could be useful for marker-assisted selection. The present study identified a total of six unique alleles (6.3% of total alleles). These unique alleles were amplified by six SSRs, namely RM276, RM472, RM488, RM537, RM541 and RM28089 (Table 1) and were found in genotypes viz., FR13A, Brahamanakhi, Swarna-, Brahamanakhi, RUF44and Satyabhama.

    Low and high-frequency alleles

    A total of 77 (81.1%) high-frequency alleles with an average of 1.2 alleles per locus were observed. Similarly, 13 of low-frequency alleles (13.7%) were identified among 16 rice genotypes. Twelve SSR markers amplified at least one low-frequency allele while all the 63 SSR markers amplified at least one high-frequency allele each (Table 1).

    Polymorphism information content (PIC)

    The PIC value provides an estimate of discriminating power of a marker locus in a given population. PIC value varied from 0 to 0.98 with an average of 0.66. Out of 63 SSRs, 19 showed higher PIC value (> 0.60). The highest PIC values, i.e. 1.0, was observed in three markers, namely RM541, RM276 and RM28089, followed by a value ranging from 0.98 to 0.96 in markers RM279, RM530, RM22, RM28079 and RM1261 (Table 1).

    Table 1.Number of alleles (Na), number of polymorphic alleles (Np), unique allele (Nu), low-frequency allele (Fla), high-frequency allele (Fha) and polymorphism information content (PIC) for 63 simple sequence repeats (SSRs) in 16 rice genotypes.

    Principal component analysis (PCA)

    PCA was used to classify group and sub-group genotypes according to their similarity and genetic information contents. The present study could group 16 genotypes into three major clusters (Fig. 1). This classification would provide an indication regarding their prospective use as parents based on the genetic distance. This was more or less as per expectation because all the CSSLs have been derived from the same Curinga background with the introgression of RUF and MER. This molecular information could be used in marker-assisted backcross breeding (MABC) program to develop drought-tolerant variety. The CSSLs formed a completely different group whereasgenotypes formed another group. In PCA, the right-hand side group representsgenotypes in an orange circle while left-hand side in a blue circle represents CSSLs genotypes.

    Fig. 1. Two-dimensional plot (A) and three-dimensional plot (B) from the principal component analysis (PCA) for 16 rice genotypes based on 63 simple sequence repeat markers.

    Table 2. Genetic similarity coefficient among 16 rice genotypes.

    Bra, Brahamanakhi; Sat, Satyabhama.

    Genetic similarity and UPGMA cluster analysis

    Genetic similarity coefficients of pair-wise comparisons estimated on the basis of all the 63 SSRs ranged from 0.54 to 1.00 with an average of 0.72 (Table 2), indicating moderate level genetic diversity present in genotypes. The genotype RUF16 showed the highest genetic similarity with RUF48 (i.e.0.98), followed by Curinga with MER20 (0.96), RUF16 with RUF13 (0.96), and RUF48 with RUF13 (0.96). The least genetic similarity (0.54) was found between Brahamanakhi with RUF16 and RUF48 (Table 2). Clustering based on UPGMA provided a clear resolution of relationships among all the 16 rice genotypes. The genetic similarity coefficient between two major clusters was observed to be 0.64 (Fig. 2). Cluster I is divided into two sub-clusters:cluster I-A consisting of six genotypes (five CSSLs viz. RUF13, RUF48, RUF16, RUF44 and MER20 along with Curinga)andcluster I-B consisting of two genotypes (Azucena and IR20). The genetic similarity index varied from 0.84 to 1.00 (Table 2). The second cluster consisted of 8genotypes with an average genetic similarity of 0.76.

    Fig. 2. Unweighted pair-group method with arithmetic means (UPGMA) dendrogram for 16 rice genotypes based on genetic similarity by 63 simple sequence repeat markers.

    DISCUSSION

    The assessment of genetic diversity of germplasm is one of the potential approach for variety development (Sajib et al, 2012; Nachimuthu et al, 2015). Identification of diverse parents is supposed to be the primary step for designing effective breeding strategy for hybridization and subsequent selection (Sajib et al, 2012). Genetic diversity assists in the development of genotype that is suitable and adaptable to rapid climate change through the introduction of foreign genes (Jasim Aljumaili et al, 2018). SSRs are considered to be appropriate for assessment of genetic diversity, fingerprinting for varietal identification and assessment of seed purity because of their ability to detect large numbers of discrete alleles accurately and efficiently (Charcosset and Moreau, 2004; Sajib et al, 2012; Nachimuthu et al, 2015; Ganie et al, 2016; Jasim Aljumaili et al, 2018).

    This study reveals sufficient genetic diversity among 16 rice genotypes, and hence they could be differentiated from each other. Total 95 alleles were produced by 63 SSRs, out of which 60 alleles were found polymorphic. The polymorphic alleles play important roles in many research fields such as variety differentiation, diversity characterization and conservation to identify potential parents (Marathi, 2012). Out of 63 SSRs, 28 were reported as polymorphic markers. The number of alleles per locus detected in the present study is similar to earlier reports (Jasim Aljumaili et al, 2018). However, Pradhan et al (2016) observed a higher number of alleles per locus. Roy et al (2015) used 29 SSR markers to assess diversity among 7 rice genotypes, where 84 alleles were detected with an average of 2.89 alleles per locus. Similarly, Singh et al (2016) identified 63 alleles with an average of 2.75 alleles per locus.

    The present study reported six unique alleles. The unique alleles were used as a diagnostic marker for specific varietal identification, and they could distinguish varieties from the rest of the genotypes (Kumbhar et al, 2015). These unique alleles might play an important role under plant stress situation so that crop can withstand drought stress as well as flash flood situation. In this context, these unique genotypes could be used as potential donors for hybridization with recurrent parents for abiotic and biotic stress tolerance in resistance breeding programme. Similar observations were reported by others (Saini et al, 2004; Behera et al, 2012; Anandan et al, 2016). Allele frequency plays important role in monitoring linkage between markers and QTL (Venuprasad et al, 2009a; Sajib et al, 2012; Sun et al, 2013). The present study reported low and high frequency alleles of 13 and 77, respectively (Table 1). Behera et al (2012) reported a high-frequency allele of 53.6% in the 69 genotypes whereas Choudhary et al (2013) reported 85% of the population shares high-frequency allele. Four loci, namely RM210, RM276, RM252 and RM279, amplified the highest number of high-frequency alleles (i.e. 3 alleles) in our study. Similarly, Singh et al (2016) reported that all the 51 primers amplify at least one high-frequency allele in 729 Indian rice varieties. Anandan et al (2016) reported high-frequency alleles with an average of 0.24 in 96 Indian rice genotypes having variation in seedling vigour.

    PIC values ranged from 0 to 1.00 with an average of 0.66. Previous researchers reported similar PIC values (0.24 to 0.95) with an average of 0.81 per locus in medicinal rice (Behera et al, 2012), 0.14 to 0.75 in 192 diverse rice genotypes (Nachimuthu et al, 2015), 0.962 to 0.991 in 142 diverse rice genotypes (Ganie et al, 2016), 0.67 to 0.97 in100 high yielding rice genotypes (Choudhary et al, 2013), and 0.29 to 0.93 in seven aromatic rice varieties (Roy et al, 2016). Moreover, Patel et al (2014) reported PIC value ranging from 0.36 to 0.78, whereasShah et al (2016) reported lower PIC value 0.34 andAnandan et al (2016) reported PIC ranging from 0.04 to 0.37 with an average of 0.24,which support current findings.

    In PCA, six genotypes were grouped together into cluster I (blue circle), viz. RUF13, RUF48, RUF16, RUF44, MER20 and Curinga, which were very close to each other. Eightgenotypes Swarna-, IR64-, FR13A, N22, Nerieal Satyabhama, Brhamankhi and CR143-2-2 were grouped into cluster II (orange circle). However, genotypes Azucena and IR20 placed themselves very closely because of substantial genetic similarity among them (Fig. 1). The present study clarified that CSSLs viz. MER20, RUF44, RUF16, RUF13 and RUF48 are different from populargenotypes i.e. Swarna-and IR64-, similar to genetic phylogeny shown in the dendrogram (Fig. 2). This information could be utilized in near future for designing effective breeding strategy for developing variety for yield under drought stress situation. Further, it will also assist to develop quite variable transgressive segregants utilizing those genotypes from distinct clusters. The groupings identified by PCA were comparable to those identified by UPGMA cluster analysis (Fig. 1). A similar finding was reported by Behera et al (2012) in 33 medicinal rice genotypes when accessing genetic diversity among them.

    Our study indicated a moderate level of diversity among 16 rice genotypes. This diversity is supposed to play an important role in rice genetic improvement. Though some genotypes from different origin are not clustered exactly according to their phylogeny,they could be grouped in the same cluster, probably due to similar yield potential, morphology, tolerance to submergence and similarity at the genome level. Cluster I comprised all CSSLs containing introgressions fromand wild ancestors. Upadhyay et al (2011) reported a genetic similarity ranging from 0.38 to 0.82 in 29 popular Indian rice accessions. Yang et al (2014) detected two major groups based on 35 SSR markers in 416 rice genotypes, representingandsub-species.

    The cluster II consisted of different fixed lines, viz. popular varieties, basically derived frombelong to three subclusters of. Similar to our observation, Upadhyay et al (2011) found that popular varieties are grouped together according to their development rather than the ecology, which may be due to differential selection pressure and selection criteria. The morphological and biochemical characters, especially isozymes, have often been utilized for classification of rice varieties by rice geneticists and breeders. Classification of rice varieties asandisbased on the morphological, serological and inter-parental hybrid fertility characters.

    CONCLUSIONS

    The present study clearly indicated that microsatellite markers are useful in assessing genetic diversity. The 63 SSR markers successfully classified 16 rice genotypes. A basic molecular allelic dataset was created which could distinguish drought-tolerant and drought-sensitive as well as submergence tolerant rice genotypes. The set of markers could also be utilized for studying polymorphism and assessing hybridity while crossing the genotypes, and they might assist in marker-assisted selection. The present study identified 28 polymorphic markers that could also be utilised for marker-assisted selection programme. The current genetic diversity analysis clearly differentiated genotypes into separate groups viz. CSSLs (containing chromosomal segments from wild ancestors as a source of drought tolerance) andparents (IR64-and Swarna-as lowland submergence tolerant genotypes) to be utilized as most distant parental categories. This would assist further for hybridization as well as identification of potential donors in marker-assisted selection because of their tolerance to drought and submergence. The effective breeding strategy could be formulated for designing high-yielding drought as well as submergence-tolerant varieties for rainfed areas utilizinglines as recurrent parents.

    ACKNOWLEDGEMENTS

    We gratefully acknowledge the financial support from Department of Biotechnology (DBT) Ministry of Science and Technology, Indian Council of Agricultural Research (ICAR) and the Director, ICAR-National Rice Research Institute, India, for providing all lab and field facilities. Special thanks to Susan R. McCouch, Rice GeneticsLabDepartment of Plant Breeding and Genetics, Cornell University, for providing CSSLs and guidance.

    Supplemental DatA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/ journal/16726308; http://www.ricescience.org.

    Supplemental Table 1. List of drought tolerant and susceptible rice genotypes used for the assessment of genetic diversity.

    Supplemental Table 2. List of microsatellite markers associated with drought-tolerant QTLs used for assessment of genetic diversity study.

    Anandan A, Anumalla M, Pradhan S K, Ali J. 2016. Population structure, diversity and trait association analysis in rice (L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers.,11(3): e0152406.

    Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E. 1993. Optimizing parental selection for genetic linkage maps.,36(1): 181–186.

    Arbelaez J D, Moreno L T, Singh N, Tung CW, Maron L G, Ospina Y, Martinez C P, Grenier C, Lorieux M, McCouch S. 2015. Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice,and, in a common recurrent parent,cv. Curinga.,35: 81.

    Barik M, Dash S K, Padhi S, Swain P. 2017. Effect of drought on morpho-physiological, yield and yield traits of chromosome segment substitution lines (CSSLs) derived from wild species of rice.,54(1): 65–72.

    Behera L, Patra B C, Sahu R K, Nanda A, Sahu S C, Patnaik A, Rao G J N, Singh O N. 2012. Assessment of genetic diversity in medicinal rices using microsatellite markers.,6(9): 1369–1376.

    Behera L, Mohanty S, Pradhan S, Singh S, Singh O, Sahu R,Sahu S, Dash S, Mohapatra T.2013. Assessment of genetic diversity of rainfed lowland rice genotypes using microsatellite markers.,73: 142–152.

    Charcosset A, Moreau L. 2004. Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity.,137(1): 81–94.

    Choudhary G, Ranjitkumar N, Surapaneni M, Deborah D A, Vipparla A, Anuradha G, Siddiq E A, Vemireddy L R. 2013. Molecular genetic diversity of major Indian rice cultivars over decadal periods.,8(6): e66197.

    Dellaporta S L, Wood J, Hicks J B. 1983. A plant DNA minipreparation: Version II., 1: 19–21.

    Flint-Garcia S A, Thuillet AC, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. 2005. Maize association population: A high-resolution platform for quantitative trait locus dissection.,44: 1054–1064.

    Gaikwad K B, Singh N, Bhatia D, Kaur R, Bains N S, Bharaj T S, Singh K. 2014. Yield-enhancing heterotic QTL transferred from wild species to cultivated riceL.,9(6): e96939.

    Ganie S A, Borgohain M J, Kritika K, Talukdar A, Pani D R, Mondal T K. 2016. Assessment of genetic diversity ofQTL among the rice (L.) genotypes.,22(1): 107–114.

    Gawenda I, Schr?der-Lorenz A, Debener T. 2012. Markers for ornamental traits inorchids: Population structure, linkage disequilibrium and association mapping.,30(1): 305–316.

    Ismail A M, Singh U S, Singh S, Dar M H, Mackill D J. 2013. The contribution of submergence-tolerant () rice varieties to food security in flood-prone rainfed lowland areas in Asia.,152: 83–93.

    Jasim Aljumaili S, Rafii M Y, Latif M, Sakimin S Z, Arolu I W, Miah G. 2018. Genetic diversity of aromatic rice germplasm revealed by SSR markers.,2018: 1–11.

    Khush G S. 2005. What it will take to feed 5.0 billion rice consumers in 2030.,59: 1–6.

    Kumbhar S D, Kulwal P L, Patil J V, Sarawate C D, Gaikwad A P, Jadhav A S. 2015. Genetic diversity and population structure in landraces and improved rice varieties from India.,22(3): 99–107.

    Marathi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara V K, Atwal S S, Prabhu K V, Singh N K, Singh A K. 2012. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (L.)., 12: 137.

    Molden D, Oweis T, Steduto P, Bindraban P, Hanjra M A, Kijne J. 2010. Improving agricultural water productivity: Between optimism and caution.,97(4): 528–535.

    Nachimuthu V V, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian B A, Ponniah G, Gunasekaran K, Swaminathan M, Suji K K, Sabariappan R. 2015. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in,8: 30.

    Patel S, Ravikiran R, Chakraborty S, Macwana S, Sasidharan N, Trivadi R, Aher B. 2014. Genetic diversity analysis of colored and white rice genotypes using microsatellite (SSR) and insertion-deletion (INDEL) markers.,26(6):497–507.

    Pradhan S K, Barik S R, Sahoo A, Mohapatra S, Nayak D K, Mahender A, Meher J, Anandan A, Pandit E. 2016. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice., 11: e0160027.

    Rohlf F J. 1988. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing.

    Roy P S, Rao G J N, Jena S, Samal R, Patnaik A, Patnaik S S C, Jambhulkar N N, Sharma S, Mohapatra T. 2016. Nuclear and chloroplast DNA variation provides insights into population structure and multiple origin of native aromatic rices of Odisha, India.,11(9): e0162268.

    Roy S, Banerjee A, Mawkhlieng B, Misra1 A K, Pattanayak A, Harish G D, Singh S K, Ngachan S V, Bansal K C, 2015. Genetic diversity and population structure in aromatic and quality rice (L.) landraces from North-Eastern India.,10:e0129607.

    Saini N, Jain N, Jain S, Jain R K. 2004. Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR and SSR markers.,140(3): 133–146.

    Sajib A M, Hossain M, Mosnaz A, Hossain H, Islam M, Ali M, Prodhan S H. 2012. SSR marker-based molecular characterization and genetic diversity analysis of aromatic landreces of rice (L.)., 1: 107–116.

    Septiningsih E M, Pamplona A M, Sanchez D L, NeerajaC N, Vergara G V, Heuer S, Ismail A M, Mackill D J. 2009. Development of submergence-tolerant rice cultivars: Thelocus and beyond.,103(2): 151–160.

    Shah S M, Arif M, Aslam K, Shabir G, Thomson M J. 2016. Genetic diversity analysis of Pakistan rice () germplasm using multiplexed single nucleotide polymorphism markers.,63(7): 1113–1126.

    Singh N, Dang T T M, Vergara G V, Pandey D M, Sanchez D, Neeraja C N, Septiningsih E M, Mendioro M, Tecson-Mendoza E M, Ismail A M, Mackill D J. 2010. Molecular marker survey and expression analyses of the rice submergence-tolerance gene.,121(8): 1441–1453.

    Singh N, Choudhury D R, Tiwari G, Singh A K, Kumar S, Srinivasan K, Tyagi R K, Sharma A D, Singh N K, Singh R. 2016. Genetic diversity trend in Indian rice varieties: An analysis using SSR markers.,17: 127.

    Sun J, Qian Q, Ma DR, Xu ZJ, Liu D, Du HB, Chen WF. 2013. Introgression and selection shaping the genome and adaptive loci of weedy rice in northern China.,197(1): 290–299.

    Sweeney M, McCouch S. 2007. The complex history of the domestication of rice.,100(5): 951–957.

    Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. 2006. Construction of introgression lines carrying wild rice (.) segments in cultivated rice (L.) background and characterization of introgressed segments associated with yield-related traits.,112(3): 570–580.

    Upadhyay P, Singh V K, Neeraja C. 2011. Identification of genotype specific alleles and molecular diversity assessment of popular rice (L.) varieties of India.,5(2): 130–140.

    Varshney R K, Bansal K C, Aggarwal P K, Datta S K, Craufurd P Q. 2011. Agricultural biotechnology for crop improvement in a variable climate: Hope or hype?,16(7): 363–371.

    Venuprasad R, Bool M, Dalid C O, Bernier J, Kumar A, Atlin G N. 2009a. Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population.,167(2): 261–269.

    Venuprasad R, Dalid C O, Del Valle M, Zhao D, Espiritu M, Sta Cruz M T, Amante M, Kumar A, Atlin G N. 2009b. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis.,120(1): 177–190.

    Venuprasad R, Bool M E, Quiatchon L, Sta Cruz M T, Amante M, Atlin G. 2012. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1.,30(1): 535–547.

    Xu Q, Yuan X P, Wang S, Feng Y, Yu H Y, Wang Y P, Yang Y L, Wei X H, Li X M. 2016. The genetic diversity and structure ofrice in China as detected by single nucleotide polymorphism analysis.,17: 53.

    Yang F, Chen Y L, Tong C, Huang Y, Xu F F, Li K H, Corke H, Sun M, Bao J S. 2014. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (L.).,34(4): 1747–1763.

    Zhao Y L, Wang H M, Chen W, Li Y H. 2014. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (L.) germplasm population.,9(1): e86308.

    14 November 2018;

    14 January 2019

    Sushanta KumarDash (skdash139@gmail.com)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2019.01.004

    (Managing Editor: Fang Hongmin)

    久久国产亚洲av麻豆专区| 婷婷色综合www| 免费看光身美女| 欧美精品av麻豆av| 亚洲成av片中文字幕在线观看 | 老司机亚洲免费影院| 精品午夜福利在线看| 国产毛片在线视频| 啦啦啦在线观看免费高清www| 精品久久久久久电影网| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 久久精品国产鲁丝片午夜精品| 精品一区在线观看国产| 免费观看在线日韩| 国产白丝娇喘喷水9色精品| 热re99久久精品国产66热6| 一本久久精品| 国产成人91sexporn| 波野结衣二区三区在线| 丝袜喷水一区| 亚洲少妇的诱惑av| 亚洲av在线观看美女高潮| 精品国产国语对白av| 一本色道久久久久久精品综合| 视频在线观看一区二区三区| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 男人添女人高潮全过程视频| 最近中文字幕高清免费大全6| 中文精品一卡2卡3卡4更新| 亚洲激情五月婷婷啪啪| 国产日韩欧美在线精品| 韩国高清视频一区二区三区| 成人漫画全彩无遮挡| 人妻少妇偷人精品九色| www.色视频.com| 最近中文字幕高清免费大全6| 国产成人精品无人区| 国产乱来视频区| 国产男女超爽视频在线观看| 成人二区视频| 欧美成人午夜免费资源| 黑人高潮一二区| 国产精品蜜桃在线观看| av卡一久久| 在线观看国产h片| 久久99热这里只频精品6学生| 一边亲一边摸免费视频| 伦理电影大哥的女人| 少妇被粗大的猛进出69影院 | 黑人巨大精品欧美一区二区蜜桃 | √禁漫天堂资源中文www| 精品久久久久久电影网| 国产成人a∨麻豆精品| www日本在线高清视频| 最新中文字幕久久久久| 亚洲国产欧美日韩在线播放| 亚洲国产日韩一区二区| 精品国产一区二区三区四区第35| 久久久精品区二区三区| 亚洲国产av影院在线观看| 成人影院久久| 毛片一级片免费看久久久久| 蜜桃国产av成人99| 内地一区二区视频在线| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 久久久国产精品麻豆| 女人久久www免费人成看片| 国产白丝娇喘喷水9色精品| 黄色 视频免费看| 日本wwww免费看| 精品少妇黑人巨大在线播放| 亚洲精品久久成人aⅴ小说| 精品午夜福利在线看| 国产成人精品婷婷| 免费观看av网站的网址| 女的被弄到高潮叫床怎么办| 亚洲国产色片| 日本欧美视频一区| 18禁动态无遮挡网站| 如何舔出高潮| 在线亚洲精品国产二区图片欧美| 中文精品一卡2卡3卡4更新| 在线观看三级黄色| 91午夜精品亚洲一区二区三区| 国产一区二区三区综合在线观看 | 国产色婷婷99| 亚洲在久久综合| 大陆偷拍与自拍| 亚洲av成人精品一二三区| 成人无遮挡网站| 精品亚洲成国产av| 男女啪啪激烈高潮av片| 9色porny在线观看| 欧美精品亚洲一区二区| 人妻一区二区av| 亚洲av国产av综合av卡| 国产成人精品婷婷| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| 国产免费一区二区三区四区乱码| 国产色婷婷99| 国产精品一国产av| 美女内射精品一级片tv| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| www.熟女人妻精品国产 | 欧美bdsm另类| 亚洲精品国产av成人精品| 精品亚洲成国产av| 满18在线观看网站| 国产精品成人在线| 在线观看免费日韩欧美大片| 18禁国产床啪视频网站| 自线自在国产av| 久久人人97超碰香蕉20202| 欧美亚洲 丝袜 人妻 在线| 18+在线观看网站| 久热久热在线精品观看| 国产深夜福利视频在线观看| 亚洲 欧美一区二区三区| 国产成人a∨麻豆精品| 婷婷色综合www| 精品少妇内射三级| 欧美人与性动交α欧美精品济南到 | 五月玫瑰六月丁香| 欧美日韩视频高清一区二区三区二| 精品一区二区三区四区五区乱码 | 日韩成人av中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区国产| 亚洲欧美日韩另类电影网站| 在线 av 中文字幕| 久久久久国产精品人妻一区二区| 精品国产国语对白av| 国产视频首页在线观看| 国产日韩一区二区三区精品不卡| 久久综合国产亚洲精品| 99久久综合免费| 欧美国产精品一级二级三级| 黄色毛片三级朝国网站| 久久久久久伊人网av| 精品久久久久久电影网| 色哟哟·www| 伊人亚洲综合成人网| 熟女电影av网| 2022亚洲国产成人精品| 丝袜人妻中文字幕| 国产成人91sexporn| 免费观看a级毛片全部| 精品一区二区免费观看| 两性夫妻黄色片 | av线在线观看网站| 久久精品国产鲁丝片午夜精品| 99热这里只有是精品在线观看| 成人黄色视频免费在线看| 伊人久久国产一区二区| 国产亚洲午夜精品一区二区久久| 色婷婷av一区二区三区视频| 婷婷色麻豆天堂久久| 成人亚洲精品一区在线观看| 国产深夜福利视频在线观看| 日韩视频在线欧美| 日本欧美视频一区| 久久婷婷青草| 国产欧美亚洲国产| 久久国产精品大桥未久av| 精品国产露脸久久av麻豆| freevideosex欧美| 国产一区二区三区av在线| 欧美xxⅹ黑人| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩另类电影网站| 老女人水多毛片| 成年人午夜在线观看视频| 少妇人妻久久综合中文| 亚洲国产精品999| 久久久欧美国产精品| 日韩成人伦理影院| 国产欧美日韩一区二区三区在线| 亚洲av在线观看美女高潮| 精品一区二区三区四区五区乱码 | 亚洲色图综合在线观看| 国内精品宾馆在线| 亚洲欧美一区二区三区国产| 日本wwww免费看| 亚洲精品日韩在线中文字幕| 在线精品无人区一区二区三| 天天操日日干夜夜撸| 亚洲一级一片aⅴ在线观看| 91aial.com中文字幕在线观看| 国产精品久久久久久久电影| 美女主播在线视频| 七月丁香在线播放| 国产免费福利视频在线观看| 一区在线观看完整版| 国产精品国产三级专区第一集| 最近最新免费中文字幕在线| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 69av精品久久久久久| 欧美精品人与动牲交sv欧美| 国产精品偷伦视频观看了| 亚洲国产精品一区二区三区在线| 三级毛片av免费| 日韩一卡2卡3卡4卡2021年| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 久久人人97超碰香蕉20202| 午夜福利免费观看在线| 久热爱精品视频在线9| 欧美日韩亚洲国产一区二区在线观看 | 日韩三级视频一区二区三区| 国产成人精品无人区| 成人国语在线视频| 免费在线观看影片大全网站| 欧美国产精品一级二级三级| 一本综合久久免费| 三上悠亚av全集在线观看| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频 | 日韩欧美一区视频在线观看| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全免费视频| 国产精品美女特级片免费视频播放器 | 无人区码免费观看不卡| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久午夜电影 | 狠狠狠狠99中文字幕| 操美女的视频在线观看| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲综合一区二区三区_| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 亚洲国产精品sss在线观看 | 身体一侧抽搐| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 美国免费a级毛片| 精品人妻在线不人妻| 大香蕉久久成人网| 久久国产精品人妻蜜桃| 亚洲精品成人av观看孕妇| 国产不卡av网站在线观看| 亚洲人成伊人成综合网2020| av电影中文网址| 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区| 狂野欧美激情性xxxx| 无限看片的www在线观看| 啦啦啦免费观看视频1| 交换朋友夫妻互换小说| 黄色丝袜av网址大全| 激情视频va一区二区三区| 国产精品二区激情视频| 免费在线观看黄色视频的| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 国产一区二区三区视频了| cao死你这个sao货| 一本综合久久免费| 国产亚洲欧美在线一区二区| 久久青草综合色| 丁香欧美五月| 夜夜夜夜夜久久久久| 黄色 视频免费看| 中国美女看黄片| 99国产精品一区二区三区| 岛国毛片在线播放| 精品国内亚洲2022精品成人 | 久久性视频一级片| 大码成人一级视频| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 无限看片的www在线观看| 女人久久www免费人成看片| 久久人妻av系列| 欧美精品高潮呻吟av久久| 人人妻人人澡人人看| 999久久久精品免费观看国产| 大型av网站在线播放| 亚洲午夜理论影院| 美女高潮到喷水免费观看| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| av福利片在线| 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看 | 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 97人妻天天添夜夜摸| 亚洲九九香蕉| 午夜福利影视在线免费观看| 91成年电影在线观看| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| 国产成人欧美在线观看 | 无限看片的www在线观看| 久久久久久久午夜电影 | 丰满人妻熟妇乱又伦精品不卡| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 自线自在国产av| 嫁个100分男人电影在线观看| 国产精品乱码一区二三区的特点 | 国产精品综合久久久久久久免费 | 久久久久精品人妻al黑| 午夜免费鲁丝| 天堂√8在线中文| 黄色丝袜av网址大全| 成年动漫av网址| av片东京热男人的天堂| 男女午夜视频在线观看| 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 男人的好看免费观看在线视频 | 国产精品一区二区免费欧美| 他把我摸到了高潮在线观看| aaaaa片日本免费| 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 欧美不卡视频在线免费观看 | 成在线人永久免费视频| 99久久国产精品久久久| 制服人妻中文乱码| 久久久久久久国产电影| 日韩欧美免费精品| 午夜免费鲁丝| 午夜福利视频在线观看免费| 国产精品久久视频播放| 国产1区2区3区精品| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 成熟少妇高潮喷水视频| 丰满饥渴人妻一区二区三| 国产三级黄色录像| 女警被强在线播放| 91大片在线观看| 无遮挡黄片免费观看| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 亚洲av美国av| 18禁裸乳无遮挡动漫免费视频| 亚洲自偷自拍图片 自拍| 另类亚洲欧美激情| 久久九九热精品免费| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| 999精品在线视频| 俄罗斯特黄特色一大片| 91麻豆av在线| 丝瓜视频免费看黄片| 日韩欧美免费精品| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 久久国产精品人妻蜜桃| 亚洲少妇的诱惑av| 最新的欧美精品一区二区| 欧美成狂野欧美在线观看| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 黄色视频不卡| 亚洲九九香蕉| 制服人妻中文乱码| 丁香欧美五月| 最近最新免费中文字幕在线| 9色porny在线观看| 91字幕亚洲| 久久人妻熟女aⅴ| 亚洲avbb在线观看| 亚洲av成人一区二区三| 精品视频人人做人人爽| 19禁男女啪啪无遮挡网站| 十分钟在线观看高清视频www| 黄色毛片三级朝国网站| 久久久国产欧美日韩av| tocl精华| 国产免费男女视频| 国产又色又爽无遮挡免费看| 精品国产乱码久久久久久男人| 国产人伦9x9x在线观看| 成人国产一区最新在线观看| 最近最新免费中文字幕在线| 91九色精品人成在线观看| 国产不卡av网站在线观看| 欧美成人免费av一区二区三区 | 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 五月开心婷婷网| 欧美精品av麻豆av| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站 | 国产淫语在线视频| 波多野结衣一区麻豆| 国产在视频线精品| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 亚洲国产精品一区二区三区在线| 香蕉久久夜色| 国产免费现黄频在线看| www.熟女人妻精品国产| 午夜福利欧美成人| 国产色视频综合| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 成人精品一区二区免费| av有码第一页| 啦啦啦在线免费观看视频4| 亚洲,欧美精品.| av一本久久久久| 国产免费av片在线观看野外av| 日韩欧美在线二视频 | 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 在线看a的网站| 99久久精品国产亚洲精品| 嫩草影视91久久| 日韩人妻精品一区2区三区| 亚洲欧美一区二区三区久久| 极品教师在线免费播放| 丁香六月欧美| 亚洲精品国产精品久久久不卡| 久久人人97超碰香蕉20202| 国产精品一区二区在线观看99| 脱女人内裤的视频| 天堂√8在线中文| 久久人妻av系列| 久久天堂一区二区三区四区| 成人影院久久| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| 91在线观看av| 日韩视频一区二区在线观看| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影| 午夜激情av网站| 免费看十八禁软件| 欧美日韩精品网址| 人成视频在线观看免费观看| 欧美精品啪啪一区二区三区| 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费电影在线观看| 久久久久国内视频| av免费在线观看网站| 天天躁夜夜躁狠狠躁躁| 一区在线观看完整版| 天堂俺去俺来也www色官网| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| а√天堂www在线а√下载 | 天天添夜夜摸| 亚洲欧美一区二区三区久久| 国产成人精品在线电影| 久久 成人 亚洲| 91麻豆精品激情在线观看国产 | 91大片在线观看| 久久精品国产亚洲av香蕉五月 | 精品视频人人做人人爽| 久久草成人影院| 国产深夜福利视频在线观看| 欧美乱妇无乱码| 亚洲精品在线美女| 久久性视频一级片| 丰满饥渴人妻一区二区三| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 老熟妇乱子伦视频在线观看| 免费女性裸体啪啪无遮挡网站| 在线观看舔阴道视频| 99在线人妻在线中文字幕 | 精品国产美女av久久久久小说| 中出人妻视频一区二区| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 在线观看www视频免费| 久久久久久久午夜电影 | 美国免费a级毛片| 亚洲熟妇熟女久久| 精品久久久久久久久久免费视频 | 国产一区在线观看成人免费| 欧美成人免费av一区二区三区 | 一区二区三区精品91| 12—13女人毛片做爰片一| 免费观看a级毛片全部| 老熟妇仑乱视频hdxx| av网站免费在线观看视频| 高清欧美精品videossex| 欧美日韩亚洲综合一区二区三区_| 超碰成人久久| 69av精品久久久久久| av不卡在线播放| 成人免费观看视频高清| 精品国内亚洲2022精品成人 | 欧美日韩亚洲国产一区二区在线观看 | 精品人妻1区二区| 色婷婷av一区二区三区视频| 精品人妻1区二区| 精品熟女少妇八av免费久了| 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 亚洲avbb在线观看| av在线播放免费不卡| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 亚洲人成电影免费在线| 亚洲欧美激情在线| 国产成人影院久久av| 国产精品1区2区在线观看. | 成熟少妇高潮喷水视频| 一a级毛片在线观看| 午夜成年电影在线免费观看| 久久精品aⅴ一区二区三区四区| 久久影院123| 国产精品二区激情视频| 免费一级毛片在线播放高清视频 | 身体一侧抽搐| 成人手机av| 国产成人欧美| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| 久久国产精品男人的天堂亚洲| 中文字幕最新亚洲高清| 捣出白浆h1v1| 一级毛片高清免费大全| 一个人免费在线观看的高清视频| 欧美性长视频在线观看| 久久国产精品大桥未久av| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 欧美日韩瑟瑟在线播放| 91国产中文字幕| 每晚都被弄得嗷嗷叫到高潮| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| aaaaa片日本免费| 精品一品国产午夜福利视频| av一本久久久久| 国产精品国产av在线观看| 在线播放国产精品三级| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 亚洲av电影在线进入| 美女福利国产在线| 狠狠婷婷综合久久久久久88av| 亚洲一区中文字幕在线| 国产精品成人在线| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 久久国产乱子伦精品免费另类| 自拍欧美九色日韩亚洲蝌蚪91| 国产蜜桃级精品一区二区三区 | 18禁国产床啪视频网站| 伦理电影免费视频| 久久狼人影院| 法律面前人人平等表现在哪些方面| 午夜免费观看网址| 成人18禁在线播放| 午夜视频精品福利| 久久精品国产综合久久久| 黄频高清免费视频| 又紧又爽又黄一区二区| 69av精品久久久久久| 99国产精品一区二区三区| 久久久精品区二区三区| av片东京热男人的天堂| 亚洲片人在线观看| 欧美成人免费av一区二区三区 | 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 国产男女超爽视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 精品一品国产午夜福利视频| 欧美日韩福利视频一区二区| 日韩 欧美 亚洲 中文字幕| 成人影院久久| 欧美日韩中文字幕国产精品一区二区三区 | 黄网站色视频无遮挡免费观看| 三级毛片av免费| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 成在线人永久免费视频| 欧美日韩av久久| 别揉我奶头~嗯~啊~动态视频| 亚洲成人免费av在线播放| 丰满人妻熟妇乱又伦精品不卡| 美女高潮到喷水免费观看| 色婷婷久久久亚洲欧美|