• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ustilaginoidea virens: A Fungus Infects Rice Flower and Threats World Rice Production

    2019-07-12 12:53:12QiuJiehuaMengShuaiDengYizhenHuangShiwenKouYanjun
    Rice Science 2019年4期

    Qiu Jiehua, Meng Shuai, Deng Yizhen, Huang Shiwen, Kou Yanjun

    ?

    : A Fungus Infects Rice Flower and Threats World Rice Production

    Qiu Jiehua1, Meng Shuai1, Deng Yizhen2, Huang Shiwen1, Kou Yanjun1

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control / Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China)

    Rice false smut disease, which is caused by the fungus, is currently one of the most devastating rice fungal diseases in the world. Rice false smut disease not only causes severe yield loss and grain quality reduction, but also threatens food safety due to its production of mycotoxins. In this review, the most recent progresses regarding the life cycle, infection processes, genome and genetic diversity, pathogenic gene and disease resistance in rice were summarized in order to provide theoretical basis for the control of. We also proposed some future directions and key questions that need to be addressed for a better understanding of the molecular mechanism that leads to rice false smut disease and the prospects for sustainable control of rice false smut.

    ; rice false smut disease; life cycle; infection process; pathogenesis gene; disease resistance

    (Cook) Takahshi (teleomorph form:) is an ascomycete fungal pathogen which causes rice false smut disease. Rice false smut disease once occurred sporadically in rice planting areas. However, it is one of the most devastating rice fungal diseases due to the widespread use of high- yielding cultivars and hybrids, superfluous applications of chemical fertilizers and climate change. In China, it has been estimated to have occurred in approximately 2.4 million hectares per year between 2015 and 2017 (www.natesc.org.cn/sites/MainSite/). It is particularly prevalent in Anhui, Hunan, Hubei, Jiangsu, Jiangxi and Zhejiang provinces of China (Lu et al, 2018). In addition, this disease has also been recently reported with increasing frequency in rice growing areas worldwide (Guo et al, 2012; Ladhalakshmi et al, 2012; Jecmen and Tebeest, 2015; Nessa et al, 2015; Kumagai et al, 2016). The typical symptom of rice false smut disease is the replacement of rice grains with false smut balls, which are at first yellowish orange to green in color, and finally turn a greenish-black (Fig. 1).

    Rice false smut disease causes severe yield loss and reduces grain quality. It also contaminates rice grain and straw with mycotoxins, which raises great concerns for food and feed safety. Therefore, rice false smut disease andhave gained increased attention from researchers, breeders and farmers. In this review, the progress which has been recently made in the research ofthis unique pathological system was summarized, including the life cycle, infection processes and functional genomics of, along with the rice resistance to this disease, to highlight the molecular mechanism of the interactions of rice-.

    Life cycle of U. virens

    The life cycle ofinvolves both sexual and asexual stages (Zhang et al, 2014).exists in heterothallic form, and mating compatibility is determined by mating-type locus 1 (MAT1-1 andMAT1-2) (Yu J J et al, 2015). In the sexual cycle, sclerotia, which are induced by low temperatures, form on the surfaces of the rice false smut balls in late autumn (Fan et al, 2016). Under appropriate wetness, light and temperature conditions, the sclerotia germinate to differentiate the stroma, and then form asci with ascospores (Singh and Dubey, 1984; Yong et al, 2018a). The ascospores produce secondary conidia to contribute to primary infections of rice (Yong et al, 2018a). During the asexual cycle, thick-walled chlamydospores form on the surfaces of the false smut balls. The chlamydospores serve as important sources of inoculum between the seasons (Lu et al, 1994). As ascospores, the chlamydospores produce secondary conidia which result in rice false smut disease (Rush et al, 2000; Zhang et al, 2003). In addition to rice, alternative hosts such as weeds (,,and) may also be involved in the life cycle ofwith rare infections observed (Shetty and Shetty, 1985, 1987; Atia, 2004).

    Fig. 1. Ustilaginoidea virens causes rice false smut disease.

    Although increasing knowledge has been gained regarding the life cycle of, the debate continues as whether sclerotia or chlamydospores are the most important primary inoculum in the field, with final conclusion remaining elusive. It has been found that both the sclerotia and chlamydospores can survive over ten months in the laboratory conditions or field conditions (Lu et al, 1994; Wang, 1995). Therefore, both sclerotia and chlamydospores have the potential to be primary inoculum in the field. The results of recent studies have shown that sclerotia can be largely produced in many different geographical regions, including temperate and subtropical zones (Yong et al, 2018a). The sclerotia germinate to form ascospores under light condition after 2- to 5-month dormancy period. The ascospores are usually trapped in the rice-paddy fields before and after rice planting, which suggests that sclerotia can successfully overwinter and regularly produce ascospores (Yong et al, 2018a). Meanwhile, the chlamydospores are only trapped in the rice-paddy fields when the disease symptoms appeared. All of the aforementioned results supported the hypothesis that the sclerotia act as the primary inoculum of, rather than the chlamydospores(Yong et al, 2018a)

    Infection processes of U. virens

    Understanding the infection processes ofis critical in the study and management of rice false smut disease. The first question that must be addressed is the initial infection sites ofIt has been reported thatcan potentially infect coleoptiles during the seed germination stage, and also infect the seedling roots (Zheng et al, 2009; Andargie et al, 2015; Prakobsub and Ashizawa, 2017). However, the infections of the coleoptiles and roots may not spread to the spikelets and cause the characteristic symptom of rice false smut disease as no invasive hyphae have been observed beneath the pedicels or in the stems of naturally severely infected panicles (Tang et al, 2013; Yong et al, 2018b). Recently, some reports have suggested that the initial infections may occur in the rice pistils (Chao et al, 2014; Andargie et al, 2016). However, more studies have shown thatspecifically and initially infects the rice filaments before the rice flowers open (Tang et al, 2013; Hu et al, 2014; Zhang et al, 2014; Fan et al, 2015; Song et al, 2016). Collectively, through the natural observation (Shen, 2004), artificial inoculation assay and serial histological studies, it has been determined thattends to first infect the rice spikelets (mainly through the rice filaments) during the booting stage resulting in rice false smut disease. However, when and how the conidia enter the rice spikelets in nature remains unknown.

    According to the current understanding ofinfection processes, under proper conditions, the conidia ofgerminate and form a large number of secondary conidia and hyphae on the surfaces of rice spikelets (Fan et al, 2014). Then, the extended hyphae enter the inner spaces of the spikelets through small gaps between the lemma and palea to infect the stamen filaments, and possibly the stigma or lodicules, without haustorium or appressorium, at approximately 4 dpi (days post inoculation) (Ashizawa et al, 2012; Li et al, 2013; Tang et al, 2013; Hu et al, 2014; Fan et al, 2015; Song et al, 2016). It has been noted that the invasive hyphae ofextend along the cell gaps of the filaments without penetration of the host cell walls by transmission electron microscope observation (Tang et al, 2013). The initiation ofinfection blocks the pollination process, and mimics the fertilization of the rice ovaries to hijack the rice nutrient supply (Fan et al, 2015; Song et al, 2016). This is the characteristic of the infection process ofcompared with other rice fungal pathogens(Talbot, 2003). At approximately 10 dpi, the hyphae have covered the stamen anthers, stigmas, and styles of the pistils, and begin to grow out of the spikelets. Finally, ball-like colonies, which are caused by infection of one or multipleisolates, are formed at 15 dpi (Yu M N et al, 2013). In the rice smut balls, the rice ovaries remain alive, indicating thatdoes not kill the host cell during its infection process, and is a biotrophic parasite (Tang et al, 2013).

    Mycotoxins in U. virens

    Rice false smut pathogen produces mycotoxins, including ustiloxins and ustilaginoidins. The ustiloxins contain a 13-membered cyclic core structure with a phenol ether linkage, including ustiloxins A, B, C, D, E, F and G in(Koiso et al, 1994, 1998; Wang et al, 2017; Lin et al, 2018). The ustiloxins ofinhibit the microtubule assembly and skeleton formation of eukaryotic cells (Koiso et al, 1994, 1998; Wang et al, 2017; Lin et al, 2018). Ustilaginoidins are a class of bis-naphtho-γ-pyrones, which have cytotoxic activities on cancer cells and inhibitory effects on the radicle elongation of rice seeds (Lu et al, 2015; Meng et al, 2015; Wang et al, 2016; Sun et al, 2017). To date, 26 ustilaginodins, namely ustilaginodins A, B, C, D, E, E1, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V and W, isochaetochromin B2, and 2,3-dihydroustilaginoidin T, have been identified in(Lu et al, 2015; Meng et al, 2015; Sun et al, 2016, 2017). Furthermore, several analytical methods have been established, such as high performance liquid chromatography (HPLC), liquid chromatograph-mass spectrometry (LC-MS), enzyme linked immunosorbent assay (ELISA), and lateral flow immunoassays (LFIA) for detecting or quantifying the mycotoxins of(Shan et al, 2012; Bian et al, 2015; Fu X X et al, 2015a, b, 2017; Cao et al, 2016). Although many mycotoxins have been successfully identified in, at least five aspects still require further exploration, including the activities and toxicities of each mycotoxin in humans or animals, the functions of mycotoxins during infection of, the differences of the mycotoxins in differentisolates, the molecule mechanism of mycotoxin synthesis inand new types of mycotoxins besides ustiloxins and ustilaginoidins.

    Genome and genetics of U. virens

    The 39.4 Mb draft genome sequences of(strain), including 8 426 predicted genes and approximately 25% repetitive sequences which are affected by repeated-induced point mutation, were available from 2014 (Zhang et al, 2014). Intriguingly,is evolutionarily close to the entomopathogenicspp. Several features of thegenome may provide cues into its ability to cause disease in rice. These features include an elaborate predicted secretome of up to 628 proteins, which may be highly expressed during the early infection stage (Zhang et al, 2014). In addition, thegenome displays reduced genes related to polysaccharide degradation, G-protein receptors and transporters, and secondary metabolism comparing with the majority of the other sequenced ascomycetes which may be associated with its biotrophic lifestyle. Furthermore, a predicted protein-protein interaction network was constructed based on the availability of the genome sequences and gene expression profiles duringinfection (Zhang et al, 2017). The aforementioned protein-protein interaction network database, which provides insights into protein functions of, is available at http://sunlab.cau.edu.cn/uvpid (Zhang et al, 2017).

    shows significant genetic diversity in its isolates from different rice production areas due to geographical environments rather than rice cultivars (Pan et al, 2007; Li et al, 2013; Lu et al, 2013; Sun et al, 2013; Wang F et al, 2014; Wang W B et al, 2014b). Different geographical populations ofisolates display significant genetic differences, while isolates from different rice cultivars in the same areas, have higher genetic similarities (Sun et al, 2013). To date, the relationship between the pathogenicity and genetic diversity ofremains unclear.

    Pathogenic genes of U. virens

    Although thegenome has been sequenced, studies regarding the virulence factors and pathogenic genes are few due to the limitation of relative low frequency of the targeted gene deletion by homologous recombination, which is an important approach to study gene functions in plant pathogenic fungi, and the stability issues of artificial inoculations (Zheng et al, 2016). Five genes, namely,,,and,have been identified as the T-DNA insertion sites of the random T-DNA insertion mutants of, which are evident as defects in the sporulation, hypha growth, and/or pathogenesis (Yu J J et al, 2013; Huang et al, 2013; Yu M N et al, 2015; Wang et al, 2015; Bo et al, 2016). In addition, 17genes have been found to be up-regulated during the infection stage, which suggests that these genes may be also involved in the pathogenicity of(Yin et al, 2017). However, the functions of the aforementioned genes require further confirmation and investigation using targeted gene deletion or RNAi strategies in.

    To date, only,,andgenes have been functionally characterized by generating knockout mutants or RNAi transformants (Lv et al, 2016; Zheng et al, 2016; Liang et al, 2018). The first is theHOG1 homologwhich plays a conservative role in regulation stress responses, hyphal growth, and possibly secondary metabolism (Zheng et al, 2016). Only onedeletion mutant was identified in more than 600-resistance transformants by Zheng et al (2016), which suggests that the frequency of homologous recombination and target gene replacement is much lower inthan(Talbot, 2003). Bothandhave been identified from a random T-DNA insertion mutant, and are required for sporulation, hypha growth and pathogenesis (Lv et al, 2016; Zheng et al, 2016; Zheng et al, 2017). Recently, the functions of, which involves in stress response and conidiation, have been characterized using the CRISPR-Cas9 system. Although the insertion of thegene may disrupt other gene and complementation analysis in the mutant background is difficult, the combination of CRISPR-Cas9 system and homologous recombination is an efficient approach for targeted gene deletion into date. This methodremoves a technical limitation of the analyses of gene function in. Therefore, by using this method, more pathogenic genes and related signaling pathways can potentially be elucidated in the near future.

    In addition, effectors may play important roles in the pathogenicity of. During the infection, the plant pathogen secrets large amounts of effectors, which suppress host defense and induce the physiological changes in the host, to promote pathogen growth or spreading (Hogenhout et al, 2009). Among the 628 secreted proteins of, more than 18 predicted effectors have been observed to suppress hypersensitive response and 13 putative effectors are known to induce plant cell death in(Zhang et al, 2014; Fang et al, 2016). These findings suggest that the secreted proteins ofhave important roles in modulating plant defense mechanisms. However, the functions of theeffector genes during the pathogenic processes in rice remain unclarified.

    Rice responses to U. virens infection

    The formation of false smut balls requires specific interactions between rice and. By using transcriptional analyses, the molecular responses of rice in the compatible and incompatible interactions of rice-have been revealed. In the compatible interaction,prevents the production of pollen, ovary fertilization and flower-opening process to establish the infection (Chao et al, 2014; Fan et al, 2015; Song et al, 2016). Moreover, the infection ofdownregulates the expression levels of defense- related genes, such asand, to suppress the host defense (Fan et al, 2015). However, the infection ofactivates the expression of genes associated with grain filling, including the endosperm specific transcription factors, starch anabolism genes and seed storage protein genes, and fertilization, indicating thattakes advantage of rice nutrients supply systems by unknown mechanisms to form rice false smut balls (Fan et al, 2015; Song et al, 2016). Meanwhile, in the incompatible interaction, many pathogenesis related genes are induced to activate the rice resistance signaling pathways (Han et al, 2015). Taken together, these findings provide clues for that some factors fromcould potentially target the rice proteins or promoter regions of rice genes to regulate the expression levels of rice fertilization genes and/or pathogenesis related genes.

    The utilization of highly resistant cultivars with resistance () genes/QTLs can provide an effective, economical and environmentally safe way to control plant diseases. In the 20 years, a number of reports have shown that some rice cultivars are highly resistant to rice false smut disease (Jin et al, 2005; Yang et al, 2008; Chen et al, 2009; Huang et al, 2010; Jiang et al, 2010; Lu et al, 2012; Lan et al, 2016). However, the results of the majority of these reports are based on artificial inoculation or natural infection data in the field lacking experimental replication and control of environmental conditions. It is well known that the environmental factors, such as temperature, humidity, nitrogen and sowing time, largely affect the severity of rice false smut disease (Wang et al, 2010; Liu et al, 2013; Wang W B et al, 2014a; Fu R T et al, 2015). Thus, it is difficult to come to any final conclusions regarding whether some of the rice cultivars are in fact highly resistant to rice false smut disease, or whether some of the rice cultivars havegenes for rice false smut disease. However, it has been confirmed that the resistance levels to rice false smut disease are obviously different among the rice cultivars. The resistance of rice to rice false smut disease may be provided bygenes and/or QTL. Some QTLshave been identified using recombinant inbred lines derived from a cross of IR28 and Daguandao, and the introgression lines from a cross between Teqing and Lemont (Li et al, 2011, 2014; Zhou et al, 2013).

    Perspects

    Currently, an increasing number of studies have been attempted to identify the resistance genes in rice and uncover the resistance mechanisms for rice false smut disease. In addition, the availability of thegenome sequence, along with efficient approach for targeted gene deletion and better artificial inoculation methods, have radically altered the methods by which the biology of rice false smut disease can be explored (Hu et al, 2014; Jia et al, 2015; Liang et al, 2018). Several important questions may be answered in the near future. For example, the infection processes ofin nature and whether there are anygenes in rice for rice false smut disease resistance breeding may be revealed. Other important research areas, such as howhijacks the nutrient supply in rice, as well as the functions of the effectors and pathogenic genes duringinfection processes are being currently investigated. Moreover, identification of the key genetic determinants ofconserved among different isolates which will provide the targets for new anti-fungal drugs in the future. In addition, further research will potentially know how rice false smut disease epidemics can be predicted by rapid and early detection methods. The results of the aforementioned research regardingwill offer references for the control of false smut disease in rice.

    ACKNOWLEDGEMENTS

    This study was funded by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ19C140004 and LQ19C130007), the Chinese Academy of Agricultural Sciences under the ?Elite Youth? Program and the Agricultural Sciences and Technologies Innovation Program of China (CAAS-ASTIP-2016-CNRRI).

    Andargie M, Li L Y, Feng A Q, Zhu X Y, Li J X. 2015. Colonization of rice roots by a green fluorescent protein-tagged isolate of., 6(14): 2272–2279.

    Andargie M, Yang C, Li J X. 2016. Generation of β-glucuronidase reporter-tagged strain to monitorinfection in rice., 131: 148–155.

    Ashizawa T, Takahashi M, Arai M, Arie T. 2012. Rice false smut pathogen,, invades through small gap at the apex of a rice spikelet before heading., 78(4): 255–259.

    Atia M M M. 2004. Rice false smut () in Egypt., 111(1): 71–82.

    Bian Y F, Yu S S, Mou R X, Cao Z Y, Sun W H, Yang H, Lin X Y, Chen M X. 2015. Identification of ustiloxins in false smut balls of rice based on high performance liquid chromatography-high resolution mass spectrometry., 33(10): 1046–1050. (in Chinese with English abstract)

    Bo H W, Yu M N, Yu J J, Yin X L, Ding H, Wang Y H, Liu Y F. 2016. Molecular cloning flanking sequences of T-DNA insertion from themutant strain B1241., 49(9): 1685–1695. (in Chinese with English abstract)

    Cao Z Y, Sun L H, Mou R X, Lin X Y, Zhou R, Ma Y N, Chen M X. 2016. Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography-tandem mass spectrometry., 1476: 46–52.

    Chao J Q, Jin J, Wang D, Han R, Zhu R S, Zhu Y G, Li S Q. 2014. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-interaction., 9(3): e91391.

    Chen Z Y, Nie Y F, Liu Y F. 2009. Identification of rice resistant to rice false smut and the virulence differentiation ofin Jiangsu Province., 25(4): 737–741. (in Chinese with English abstract)

    Fan J, Guo X Y, Huang F, Li Y, Liu Y F, Li L, Xu Y J, Zhao J Q, Xiong H, Yu J J, Wang W. 2014. Epiphytic colonization ofon biotic and abiotic surfaces implies the widespread presence of primary inoculum for rice false smut disease., 63(4): 937–945.

    Fan J, Guo X Y, Li L, Huang F, Sun W X, Li Y, Huang Y Y, Xu Y J, Shi J, Lei Y, Zheng A P, Wang W M. 2015. Infection ofintercepts rice seed formation but activates grain-filling-related genes., 57(6): 577–590.

    Fan L L, Yong M L, Li D Y, Liu Y J, Lai C H, Chen H M, Cheng F M, Hu D W. 2016. Effect of temperature on the development of sclerotia in., 15(11): 2550–2555.

    Fang A F, Han Y Q, Zhang N, Zhang M, Liu L J, Li S, Lu F, Sun W X. 2016. Identification and characterization of plant cell death-inducing secreted proteins from., 29(5): 405–416.

    Fu R T, Wang J, Lu D H, Zhang H, Gong X S, Chen X J, Ren H Z, Mao J H. 2015. Resistance identification and influence factor of rice false smut., 31(18): 266–272. (in Chinese with English abstract)

    Fu X X, Wang A L, Wang X H, Lin F K, He L S, Lai D W, Liu Y, Li Q X, Zhou L G, Wang B M. 2015a. Development of a monoclonal antibody-based icELISA for the detection of ustiloxin B in rice false smut balls and rice grains., 7(9): 3481–3496.

    Fu X X, Wang X H, Cui Y L, Wang A L, Lai D W, Liu Y, Li Q X, Wang B M, Zhou L G. 2015b. A monoclonal antibody-based enzyme-linked immunosorbent assay for detection of ustiloxin A in rice false smut balls and rice samples., 181: 140–145.

    Fu X X, Xie R S, Wang J, Chen X J, Wang X H, Sun W B, Meng J J, Lai D W, Zhou L G, Wang B M. 2017. Development of colloidal gold-based lateral flow immunoassay for rapid qualitative and semiquantitative analysis of ustiloxins A and B in rice samples., 9(3): 79–90.

    Guo X Y, Li Y, Fan J, Li L, Huang F, Wang W M. 2012. Progress in the study of false smut disease in rice., 2(11): 1211–1217.

    Han Y Q, Zhang K, Yang J, Zhang N, Fang A F, Zhang Y, Liu Y F, Chen Z Y, Hsiang T, Sun W X. 2015. Differential expression profiling of the early response tobetween false smut resistant and susceptible rice varieties., 16(1): 955.

    Hogenhout S A, van der Hoorn R A L, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms., 22(2): 115–122.

    Hu M L, Luo L X, Wang S, Liu Y F, Li J Q. 2014. Infection processes ofduring artificial inoculation of rice panicles., 139(1): 67–77.

    Huang L, Yu M N, Hu J K, Yu J J, Yin X L, Nie Y F, Chen Z Y, Liu Y F. 2013. Analysis of biological phenotypes and molecular cloning of T-DNA integration flanking sequences ofmutant strain B-726., 46(16): 3344–3353. (in Chinese with English abstract)

    Huang R R, Li X M, Hua J L, Ma H G, Qiu Z H, Liang Y Y, Lan B. 2010. Studies on resistance to rice false smut in hybrid rice varieties (combinations)., 32(4): 718–722.(in Chinese with English abstract)

    Jecmen A C, Tebeest D O. 2015. First report of the occurrence of a white smut infecting rice in Arkansas., 163(2): 138–143.

    Jia Q, Lv B, Guo M Y, Luo C X, Zheng L, Hsiang T, Huang J B. 2015. Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by., 141(1): 15–25.

    Jiang S, Tang C S, Tan Z Q. 2010. Field resistance evaluation of 35 rice varieties against false smut., 31(5): 849–851. (in Chinese with English abstract)

    Jin S X, Dai G H, He R M, Qian D M, Xue H W. 2005. Resistance evaluation of 11 rice () varieties to., 23(3): 317–320. (in Chinese with English abstract)

    Koiso Y, Li Y, Iwasaki S, Hanaoka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z. 1994. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by., 47(7): 765–773.

    Koiso Y, Morisaki N, Yamashita Y, Mitsui Y, Shirai R, Hashimoto Y, Iwasaki S. 1998. Isolation and structure of an antimitotic cyclic peptide, ustiloxin F: Chemical interrelation with a homologous peptide, ustiloxin B., 51(4): 418–422.

    Kumagai T, Ishii T, Terai G, Umemura M, Machida M, Asai K. 2016. Genome sequence ofIPU010, a rice pathogenic fungus causing false smut., 4(3): e00306-16.

    Ladhalakshmi D, Laha G S, Singh R, Karthikeyan A, Mangrauthia S K, Sundaram R M, Thukkaiyannan P, Viraktamath B C. 2012. Isolation and characterization ofand survey of false smut disease of rice in India., 40(2): 171–176.

    Lan B, Yang Y Q, Sun Q, Hu J K, Huang R R, Chen Q W, Yu C H, Li X M. 2016. Resistance evaluation of late rice cultivars ofrice switched fromrice against rice false smut in Jiangxi., 38(6): 1029–1035. (in Chinese with English abstract)

    Li W L, Li L Y, Feng A Q, Zhu X Y, Li J X. 2013. Rice false smut fungus, inhibits pollen germination and degrades the integuments of rice ovule., 4(12): 2295–2304.

    Li Y S, Huang S D, Yang J, Wang C L. 2011. Analysis of quantitative trait loci for resistance to rice false smut., 37(5): 778–783. (in Chinese with English abstract)

    Li Y S, Yang J, Huang S D, Wang C L. 2014. Analysis of quantitative trait loci for pathogenic strain-of resistance to rice false smut in rice., 29(5): 1–4. (in Chinese with English abstract)

    Liang Y F, Han Y, Wang C F, Jiang C, Xu J R. 2018. Targeted deletion of theandgenes efficiently inwith the CRISPR-Cas9 system., 9: 699.

    Lin X Y, Bian Y F, Mou R X, Cao Z Y, Cao Z Z, Zhu Z W, Chen M X. 2018. Isolation, identification, and characterization offrom rice false smut balls with high ustilotoxin production potential., 58(8): 670–678.

    Liu X Z, Bai Y J, Wang S, Dong H, Yang H, Miao J K, Sun B X, Mao L. 2013. Effects of different rice cultivars and sowing time on occurrence of false smut., 52(17): 4112–4114. (in Chinese with English abstract)

    Lu D H, Chen Y P, Wang J, Wang P, Yao L, Ye H L, Hu R P, Chen Y, Mao J H. 2013. Genetic diversity offrom rice in Sichuan Province., 26(3): 994–1000. (in Chinese with English abstract)

    Lu M H, Liu W C, Zhu F. 2018. Epidemic low and control technique of rice false smut in recent years., 38(5): 44–47. (in Chinese)

    Lu R L, Zhou Q, Tu J M, Mei K H, Wang H, Jin H M. 2012. Field resistance evaluation of 66 rice varieties against false smut., 51(23): 5354–5356. (in Chinese with English abstract)

    Lu S Q, Sun W B, Meng J J, Wang A L, Wang X H, Tian J, Fu X X, Dai J G, Liu Y, Lai D W, Zhou L G. 2015. Bioactive bis-naphtho-gamma-pyrones from rice false smut pathogen., 63(13): 3501–3508.

    Lu J P, Miao Q M, Yang H, Li H Y. 1994. The role of chlamydospores in the infection course of rice false smut., 7(4): 93–97. (in Chinese with English abstract)

    Lv B, Zheng L, Liu H, Tang J T, Hsiang T, Huang J B. 2016. Use of random T-DNA mutagenesis in identification of gene, a regulator of conidiation, stress response, and virulence in., 7(100): 2086.

    Meng J J, Sun W B, Mao Z L, Xu D, Wang X H, Lu S Q, Lai D W, Liu Y, Zhou L G, Zhang G Z. 2015. Main ustilaginoidins and their distribution in rice false smut balls., 7(10): 4023–4034.

    Nessa B, Salam M U, Haque A H M M, Biswas J K, Kabir M S, Macleod W J, Antuono D M, Barman H N, Latif M A, Galloway J. 2015. Spatial pattern of natural spread of rice false smut () disease in fields., 10(2): 63–73.

    Pan Y J, Wang S, Yang H, Liu X Z, Xie X W, Zhou Y L. 2007. Effect of rice varieties on the population structure of., 32(2): 214–216. (in Chinese with English abstract)

    Prakobsub K, Ashizawa T. 2017. Intercellular invasion of rice roots at the seedling stage by the rice false smut pathogen,., 83: 358–361.

    Rush M C, Shahjahan A K M, Jones J P, Groth D E. 2000. Outbreak of false smut of rice in Louisiana., 84(1): 100.

    Shan T J, Sun W B, Liu H, Gao S, Lu S Q, Wang M G, Sun W X, Chen Z Y, Wang S, Zhou L G. 2012. Determination and analysis of ustiloxins A and B by LC-ESI-MS and HPLC in false smut balls of rice., 13(9): 11275–11287.

    Shen W X. 2004. Study on infection period and epidemic factors of rice false smut., 1(2): 137–139. (in Chinese with English abstract)

    Shetty S A, Shetty H S. 1985. An alternative host for(Cke.) Tak., 10(4): 11–15.

    Shetty S A, Shetty H S. 1987. Role ofin annual recurrence of false smut of rice., 88(3): 409–411.

    Singh R A, Dubey K S. 1984. Sclerotial germination and ascopore formation ofin India., 37: 168–170.

    Song J H, Wei W, Lv B, Lin Y, Yin W X, Peng Y L, Schnabel G, Huang J B, Jiang D H, Luo C X. 2016. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary., 18(11): 3840–3849.

    Sun W B, Dong X J, Xu D, Meng J J, Fu X X, Wang X H, Lai D W, Zhou L G, Liu Y F. 2016. Preparative separation of main ustilaginoidins from rice false smut balls by high-speed counter-current chromatography., 8(1): 20.

    Sun W B, Wang A L, Xu D, Wang W X, Meng J J, Dai J G, Liu Y F, Lai D W, Zhou L G. 2017. New ustilaginoidins from rice false smut balls caused byand their phytotoxic and cytotoxic activities., 65(25): 5151–5160.

    Sun X Y, Shu K, Zhang Y J, Tan X Q, Yu Y F, He H Y, Zhang X Y, Liu Y F, Shu W, Sun W X, Cai L, Li S J. 2013. Genetic diversity and population structure of rice pathogenin China., 8(9): e76879.

    Talbot N J. 2003. On the trail of a cereal killer: Exploring the biology of., 57: 177–202.

    Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P. 2013. Elucidation of the infection process of(teleomorph:) in rice spikelets., 62(1): 1–8.

    Wang F, Zhang S, Liu M G, Lin X S, Liu H J, Peng Y L, Lin Y, Huang J B, Luo C X. 2014. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar inpopulation selection., 80(9): 2811–2820.

    Wang G L. 1995. The sexual stage ofand the infection process of asscospores on rice., 1: 3–9. (in Chinese with English abstract)

    Wang S, Qin S, Liu M X, Li Y, Dong H, Sun B X. 2010. Effects of different cultivation modes on the occurrence degree of the rice false smut., 36(6): 165–167. (in Chinese with English abstract)

    Wang W B, Yin X L, Li Y, Chen Z Y, Lu F. 2014a. Study on main factors affecting severity of false smut., 27(3): 1067–1070. (in Chinese with English abstract)

    Wang W B, Zhang R S, Luo C P, Yin X L, Liu Y F, Lu F, Chen Z Y. 2014b. Biological characteristics and genetic diversity offrom rice regions in China., 47(14): 2762–2773. (in Chinese with English abstract)

    Wang X H, Fu X X, Lin F K, Sun W B, Meng J J, Wang A L, Lai D W, Zhou L G, Liu Y. 2016. The contents of ustiloxins A and B along with their distribution in rice false smut balls., 8(9): 262.

    Wang X H, Wang J, Lai D W, Wang W X, Dai J G, Zhou L G, Liu Y. 2017. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls., 9(2): 54.

    Wang Y H, Liu Y F, Lu F, Yu M N, Huang L, Zheng M T, Yu J J, Yin X L. 2015. Molecular characterization of T-DNA integration intomutant B1464., 29(3): 311–318. (in Chinese with English abstract)

    Yang J J, Liu X X, Ding G S. 2008. Preliminary study on resistance to rice false smut from different rice varieties., 27(9): 106–107. (in Chinese with English abstract)

    Yin W X, Cui P, Wei W, Lin Y, Luo C X. 2017. Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in., 60(12): 1051–1059.

    Yong M L, Deng Q D, Fan L L, Miao J K, Lai C H, Chen H M, Yang X J, Wang S, Chen F R, Jin L. 2018a. The role ofsclerotia in increasing incidence of rice false smut disease in the subtropical zone in China., 150(3): 669–677.

    Yong M L, Liu Y J, Chen T Q, Fan L L, Wang Z Y, Hu D W. 2018b. Cytological studies on the infection of rice root by., 81(4): 389–396.

    Yu J J, Nie Y F, Yu M N, Yin X L, Hu J K, Huang L, Chen Z Y, Liu Y F. 2013. Characterization of T-DNA insertion flanking genes of enhanced-conidiationmutant A2588., 46(24): 5132–5141. (in Chinese with English abstract)

    Yu J J, Sun W X, Yu M N, Yin X L, Meng X K, Zhao J, Huang L, Huang L, Liu Y F. 2015. Characterization of mating-type loci in rice false smut fungus., 362(9): 1–9.

    Yu M N, Chen Z Y, Yu J J, Hu J K, Yin X L, Nie Y F, Liu Y F. 2013. Genetic diversity and pathogenicity ofisolated from different rice false smut balls of a diseased spike., 43(6): 561–573. (in Chinese with English abstract)

    Yu M N, Yu J J, Hu J K, Huang L, Wang Y H, Yin X L, Nie Y F, Meng X K, Wang W D, Liu Y F. 2015. Identification of pathogenicity-related genes in the rice pathogenthrough random insertional mutagenesis., 76: 10–19.

    Zhang J C, Chen Z Y, Zhang B X, Liu Y F. 2003. Study on morphology of., 33(6): 517–523. (in Chinese with English abstract)

    Zhang K, Li Y J, Li T J, Li Z G, Hsiang T, Zhang Z D, Sun W X. 2017. Pathogenicity genes inrevealed by a predicted protein-protein interaction network., 16(3): 1193–1206.

    Zhang Y, Zhang K, Fang A F, Han Y Q, Yang J, Xue M F, Bao J D, Hu D W, Zhou B, Sun X Y, Li S J, Wen M, Yao N, Ma L J, Liu Y F, Zhang M, Huang F, Luo C X, Zhou L G, Li J Q, Chen Z Y, Miao J K, Wang S, Lai J S, Xu J R, Hsiang T, Peng Y L, Sun W Y. 2014. Specific adaptation ofin occupying host florets revealed by comparative and functional genomics., 5: 3849.

    Zheng D W, He L P, Meng C M, Hu D W. 2009. The cytological evidence on infection ofat the germination stage.: Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Beijing, China: China Agricultural Science and Technology Press: 118. (in Chinese)

    Zheng D W, Wang Y, Han Y, Xu J R, Wang C F. 2016.is important for hyphal growth and stress responses in the rice false smut fungus., 6: 24824.

    Zheng M T, Ding H, Huang L, Wang Y H, Yu M N, Zheng R, Yu J J, Liu Y F. 2017. Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus., 63(1): 131–144.

    Zhou Y L, Xie X W, Zhang F, Wang S, Liu X Z, Zhu L H, Xu J L, Gao Y M, Li Z K. 2013. Detection of quantitative resistance loci associated with resistance to rice false smut () using introgression lines., 63(2): 365–372.

    1 July 2018;

    29 October 2018

    Kou Yanjun (kouyanjun@caas.cn)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.10.007

    (Managing Editor: Li Guan)

    日韩av在线免费看完整版不卡| 欧美高清性xxxxhd video| 日韩大片免费观看网站 | 国产av码专区亚洲av| 岛国毛片在线播放| 国产熟女欧美一区二区| 亚洲精品色激情综合| 国产亚洲午夜精品一区二区久久 | 精品久久久久久久久亚洲| 国语自产精品视频在线第100页| 可以在线观看毛片的网站| 免费观看精品视频网站| 一级毛片aaaaaa免费看小| 成人一区二区视频在线观看| 黄色欧美视频在线观看| 嫩草影院入口| 99热这里只有是精品在线观看| 一级爰片在线观看| 在线a可以看的网站| 亚洲精品日韩av片在线观看| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 深爱激情五月婷婷| 国产精品蜜桃在线观看| 久久久久国产网址| 精品一区二区免费观看| 久久国内精品自在自线图片| 国产淫语在线视频| 免费无遮挡裸体视频| av免费观看日本| 一级毛片久久久久久久久女| 美女高潮的动态| 国产在线男女| 亚洲精品,欧美精品| 97在线视频观看| 中文乱码字字幕精品一区二区三区 | 国产精品久久视频播放| 直男gayav资源| 亚洲国产精品合色在线| 哪个播放器可以免费观看大片| 少妇裸体淫交视频免费看高清| 少妇熟女欧美另类| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆| 一夜夜www| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 嫩草影院入口| 高清在线视频一区二区三区 | 一级二级三级毛片免费看| 国产黄色视频一区二区在线观看 | 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 可以在线观看毛片的网站| 色尼玛亚洲综合影院| 免费看日本二区| 麻豆乱淫一区二区| 蜜桃亚洲精品一区二区三区| 能在线免费观看的黄片| 日韩强制内射视频| 69人妻影院| 插阴视频在线观看视频| 国产亚洲最大av| 成年女人永久免费观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲在线自拍视频| 国产精品乱码一区二三区的特点| 国产亚洲5aaaaa淫片| 亚洲国产欧美在线一区| 一级二级三级毛片免费看| 日韩亚洲欧美综合| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| 日韩av在线免费看完整版不卡| 亚洲精品色激情综合| 能在线免费看毛片的网站| 91精品国产九色| 91精品一卡2卡3卡4卡| 麻豆久久精品国产亚洲av| 最新中文字幕久久久久| 色吧在线观看| 亚洲最大成人av| 午夜免费激情av| 亚洲国产成人一精品久久久| 美女被艹到高潮喷水动态| 色综合色国产| 久久久久久久久久黄片| 在线免费十八禁| 国产伦精品一区二区三区四那| 欧美区成人在线视频| 精品久久久久久久久亚洲| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 91久久精品电影网| 最近视频中文字幕2019在线8| 桃色一区二区三区在线观看| 黄色配什么色好看| 亚洲综合色惰| 精品一区二区三区视频在线| 亚洲图色成人| 国产成年人精品一区二区| 日韩精品有码人妻一区| 国产伦精品一区二区三区视频9| 亚州av有码| 午夜a级毛片| 热99在线观看视频| 99热网站在线观看| 日韩强制内射视频| 亚洲精品国产av成人精品| 日本黄色片子视频| 成人综合一区亚洲| 白带黄色成豆腐渣| 久久精品人妻少妇| 亚洲精品成人久久久久久| 欧美bdsm另类| 久久婷婷人人爽人人干人人爱| 亚洲怡红院男人天堂| 久久久精品94久久精品| 一区二区三区四区激情视频| 久久久国产成人免费| 精品久久久久久久久久久久久| 麻豆一二三区av精品| 九九在线视频观看精品| 精品人妻视频免费看| 中文字幕熟女人妻在线| 免费观看在线日韩| 床上黄色一级片| 最近的中文字幕免费完整| 色5月婷婷丁香| 黄片wwwwww| 插阴视频在线观看视频| 国产又色又爽无遮挡免| 99久久精品热视频| 久久人人爽人人片av| 日本熟妇午夜| 又粗又硬又长又爽又黄的视频| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 国产精品人妻久久久影院| 久久久久网色| 精品酒店卫生间| 日韩欧美三级三区| 久久精品国产99精品国产亚洲性色| 国产精品国产高清国产av| 亚洲精品乱久久久久久| 男人狂女人下面高潮的视频| 两个人的视频大全免费| av在线播放精品| videos熟女内射| 欧美精品一区二区大全| 青青草视频在线视频观看| 高清毛片免费看| 三级国产精品欧美在线观看| 91久久精品国产一区二区成人| 国产高清三级在线| av免费观看日本| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 久久久成人免费电影| 亚洲国产精品成人久久小说| 人人妻人人澡人人爽人人夜夜 | 亚洲成人精品中文字幕电影| 国产亚洲最大av| 男人的好看免费观看在线视频| 日韩高清综合在线| 桃色一区二区三区在线观看| av黄色大香蕉| 国产精品99久久久久久久久| 成人午夜精彩视频在线观看| 伊人久久精品亚洲午夜| 久久精品91蜜桃| 国产爱豆传媒在线观看| 一级毛片aaaaaa免费看小| 国产黄片美女视频| 国产成人精品久久久久久| 国产成年人精品一区二区| 国内精品宾馆在线| 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 91精品伊人久久大香线蕉| 在线免费观看不下载黄p国产| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 91精品国产九色| 在线播放无遮挡| 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 亚洲国产精品成人综合色| 女的被弄到高潮叫床怎么办| 久久久久免费精品人妻一区二区| 亚洲精品久久久久久婷婷小说 | 97热精品久久久久久| a级一级毛片免费在线观看| 色噜噜av男人的天堂激情| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 亚洲国产成人一精品久久久| 日韩av在线免费看完整版不卡| av在线播放精品| 青春草视频在线免费观看| av免费观看日本| 国产片特级美女逼逼视频| 看免费成人av毛片| 淫秽高清视频在线观看| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 日韩亚洲欧美综合| 小说图片视频综合网站| 69人妻影院| 国产精品电影一区二区三区| av免费在线看不卡| 久久久久久久国产电影| 欧美日本亚洲视频在线播放| av女优亚洲男人天堂| 岛国毛片在线播放| 欧美一区二区亚洲| 国产色婷婷99| 搡女人真爽免费视频火全软件| 久99久视频精品免费| 国产精品.久久久| 国产精品三级大全| 国产精品麻豆人妻色哟哟久久 | 91在线精品国自产拍蜜月| 国产色婷婷99| av免费在线看不卡| 亚洲国产精品久久男人天堂| 亚洲欧美精品专区久久| 老司机影院成人| 岛国毛片在线播放| 免费观看人在逋| 国产免费又黄又爽又色| 高清日韩中文字幕在线| 能在线免费观看的黄片| 午夜久久久久精精品| 国产高清有码在线观看视频| 日本欧美国产在线视频| 精品99又大又爽又粗少妇毛片| 精品少妇黑人巨大在线播放 | 18禁在线播放成人免费| 亚洲欧美日韩高清专用| 国产又黄又爽又无遮挡在线| 亚洲成色77777| 亚洲精品乱码久久久久久按摩| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app| 亚洲经典国产精华液单| 3wmmmm亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 久久精品久久精品一区二区三区| 久久久久九九精品影院| 麻豆精品久久久久久蜜桃| 国产淫语在线视频| 日韩人妻高清精品专区| 欧美性猛交╳xxx乱大交人| 免费av不卡在线播放| 美女黄网站色视频| 国产精品久久电影中文字幕| 自拍偷自拍亚洲精品老妇| 99久国产av精品国产电影| 特级一级黄色大片| 激情 狠狠 欧美| 十八禁国产超污无遮挡网站| 3wmmmm亚洲av在线观看| 免费看日本二区| 男女啪啪激烈高潮av片| 国产老妇伦熟女老妇高清| 久久久久久久久久久免费av| 女人十人毛片免费观看3o分钟| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品日韩av在线免费观看| 亚洲不卡免费看| 只有这里有精品99| 亚洲欧美日韩高清专用| 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 成人漫画全彩无遮挡| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 色视频www国产| ponron亚洲| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看 | 1000部很黄的大片| 国产精品嫩草影院av在线观看| 老司机影院毛片| 九色成人免费人妻av| 午夜福利成人在线免费观看| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看 | videos熟女内射| 你懂的网址亚洲精品在线观看 | 嘟嘟电影网在线观看| 亚洲精华国产精华液的使用体验| 色综合色国产| 日本wwww免费看| 国产片特级美女逼逼视频| 亚洲人成网站在线观看播放| 国产 一区精品| 插阴视频在线观看视频| 赤兔流量卡办理| 色综合亚洲欧美另类图片| 如何舔出高潮| 国产一区二区在线观看日韩| 如何舔出高潮| 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕 | 嘟嘟电影网在线观看| 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 熟女电影av网| 毛片女人毛片| 国产极品精品免费视频能看的| av卡一久久| 欧美激情久久久久久爽电影| 91久久精品国产一区二区成人| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 人妻制服诱惑在线中文字幕| 69av精品久久久久久| 伦精品一区二区三区| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| АⅤ资源中文在线天堂| 日韩一区二区视频免费看| 日韩三级伦理在线观看| 啦啦啦观看免费观看视频高清| 爱豆传媒免费全集在线观看| 国产色婷婷99| 国产黄a三级三级三级人| 国产一区有黄有色的免费视频 | 中文字幕熟女人妻在线| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 日韩国内少妇激情av| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 嫩草影院入口| 午夜视频国产福利| 国产成人91sexporn| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 免费观看精品视频网站| 日本wwww免费看| 99久国产av精品| 成人毛片a级毛片在线播放| 亚洲婷婷狠狠爱综合网| 国产精品美女特级片免费视频播放器| 国产精品麻豆人妻色哟哟久久 | 小说图片视频综合网站| 九草在线视频观看| av天堂中文字幕网| 午夜老司机福利剧场| 免费av不卡在线播放| 亚洲高清免费不卡视频| 插逼视频在线观看| 在现免费观看毛片| 欧美一区二区精品小视频在线| 中文乱码字字幕精品一区二区三区 | 又爽又黄a免费视频| 午夜福利高清视频| 亚洲精品国产成人久久av| 超碰97精品在线观看| 免费av不卡在线播放| 亚洲av.av天堂| 久久久色成人| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 久久鲁丝午夜福利片| 日韩大片免费观看网站 | 内射极品少妇av片p| 国产精品,欧美在线| 男人狂女人下面高潮的视频| 蜜臀久久99精品久久宅男| 最近的中文字幕免费完整| 久久欧美精品欧美久久欧美| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 精品久久久久久久久久久久久| 国产私拍福利视频在线观看| 国产探花在线观看一区二区| or卡值多少钱| 欧美+日韩+精品| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 一级毛片我不卡| 日本免费在线观看一区| 久久久久网色| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 可以在线观看毛片的网站| 综合色av麻豆| 91狼人影院| 两个人视频免费观看高清| 日韩,欧美,国产一区二区三区 | 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 精品人妻视频免费看| 精品99又大又爽又粗少妇毛片| 亚洲怡红院男人天堂| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲网站| 久久精品91蜜桃| 久久精品久久精品一区二区三区| 秋霞伦理黄片| 91av网一区二区| 免费观看的影片在线观看| 91精品一卡2卡3卡4卡| 婷婷色综合大香蕉| 日本欧美国产在线视频| 国产探花极品一区二区| 久久久精品94久久精品| 最近最新中文字幕大全电影3| 精品久久久久久久久亚洲| 青春草国产在线视频| 日本免费一区二区三区高清不卡| 一级毛片我不卡| 成年版毛片免费区| 国产黄片视频在线免费观看| 日韩欧美在线乱码| 岛国在线免费视频观看| 你懂的网址亚洲精品在线观看 | 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 五月玫瑰六月丁香| 久久久久久久久中文| 日韩成人av中文字幕在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 22中文网久久字幕| 国产v大片淫在线免费观看| 成人国产麻豆网| 国产高清三级在线| 国产高清国产精品国产三级 | 在现免费观看毛片| 久久99精品国语久久久| 亚洲国产精品久久男人天堂| 国产av不卡久久| 国产亚洲精品av在线| 亚洲aⅴ乱码一区二区在线播放| 波野结衣二区三区在线| 国产真实乱freesex| 久久99蜜桃精品久久| 久热久热在线精品观看| 日韩欧美三级三区| 69av精品久久久久久| 黄色日韩在线| 日本一二三区视频观看| 久久久午夜欧美精品| 免费看日本二区| 黄片wwwwww| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 18禁在线无遮挡免费观看视频| 欧美+日韩+精品| 最近视频中文字幕2019在线8| 欧美97在线视频| 久久久成人免费电影| 中文字幕制服av| 汤姆久久久久久久影院中文字幕 | 国产精品日韩av在线免费观看| 欧美97在线视频| 亚洲精品色激情综合| 男女那种视频在线观看| 天天躁夜夜躁狠狠久久av| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 激情 狠狠 欧美| 亚洲人成网站在线观看播放| 欧美一区二区亚洲| 岛国毛片在线播放| 岛国在线免费视频观看| 亚洲av成人精品一区久久| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 精品久久久久久久久亚洲| 成年av动漫网址| 最新中文字幕久久久久| 亚洲欧美清纯卡通| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 欧美潮喷喷水| 最新中文字幕久久久久| 亚洲图色成人| 五月玫瑰六月丁香| 麻豆一二三区av精品| 久久综合国产亚洲精品| 搞女人的毛片| 免费大片18禁| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 亚洲av中文字字幕乱码综合| 国产高清国产精品国产三级 | 成人亚洲精品av一区二区| 亚洲美女搞黄在线观看| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 久久久久久九九精品二区国产| 日韩欧美 国产精品| 丝袜美腿在线中文| 亚洲国产精品合色在线| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 日韩av在线大香蕉| 欧美最新免费一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 三级经典国产精品| 国产精品一区www在线观看| 欧美bdsm另类| 国产免费又黄又爽又色| 色综合站精品国产| 少妇的逼水好多| 淫秽高清视频在线观看| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 成人欧美大片| 精品久久久久久久久av| 国产探花在线观看一区二区| 日本午夜av视频| 婷婷色av中文字幕| 亚洲精品日韩在线中文字幕| 午夜爱爱视频在线播放| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 国产三级中文精品| 18禁动态无遮挡网站| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合 | 三级国产精品欧美在线观看| 久久精品久久久久久久性| 亚洲怡红院男人天堂| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 男女那种视频在线观看| 69人妻影院| 男的添女的下面高潮视频| 高清毛片免费看| 激情 狠狠 欧美| 国产黄片美女视频| 99热6这里只有精品| 久久久久久伊人网av| 麻豆成人av视频| 1024手机看黄色片| 久久精品久久久久久噜噜老黄 | 卡戴珊不雅视频在线播放| 22中文网久久字幕| 尤物成人国产欧美一区二区三区| 偷拍熟女少妇极品色| 日本黄大片高清| 中文字幕亚洲精品专区| 丰满乱子伦码专区| 中文亚洲av片在线观看爽| 一级av片app| 国产成人福利小说| 国产高清不卡午夜福利| a级毛色黄片| 色综合亚洲欧美另类图片| 黄色欧美视频在线观看| or卡值多少钱| 精品不卡国产一区二区三区| 日本黄色片子视频| 色吧在线观看| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看电影| 日本免费在线观看一区| 18禁动态无遮挡网站| 91久久精品国产一区二区三区| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 国产成人福利小说| 美女脱内裤让男人舔精品视频| 免费看日本二区| 欧美一区二区国产精品久久精品| 国产av码专区亚洲av| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| av天堂中文字幕网| 成人二区视频| 97在线视频观看| 亚洲电影在线观看av| 国产91av在线免费观看| 嫩草影院精品99| 日本-黄色视频高清免费观看| 午夜福利成人在线免费观看| 国产高清国产精品国产三级 | 午夜激情福利司机影院| 黑人高潮一二区| 国产成人freesex在线| 免费黄色在线免费观看| 亚洲av免费在线观看| 网址你懂的国产日韩在线| 美女高潮的动态| 色哟哟·www|