• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ustilaginoidea virens: A Fungus Infects Rice Flower and Threats World Rice Production

    2019-07-12 12:53:12QiuJiehuaMengShuaiDengYizhenHuangShiwenKouYanjun
    Rice Science 2019年4期

    Qiu Jiehua, Meng Shuai, Deng Yizhen, Huang Shiwen, Kou Yanjun

    ?

    : A Fungus Infects Rice Flower and Threats World Rice Production

    Qiu Jiehua1, Meng Shuai1, Deng Yizhen2, Huang Shiwen1, Kou Yanjun1

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Guangdong Province Key Laboratory of Microbial Signals and Disease Control / Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China)

    Rice false smut disease, which is caused by the fungus, is currently one of the most devastating rice fungal diseases in the world. Rice false smut disease not only causes severe yield loss and grain quality reduction, but also threatens food safety due to its production of mycotoxins. In this review, the most recent progresses regarding the life cycle, infection processes, genome and genetic diversity, pathogenic gene and disease resistance in rice were summarized in order to provide theoretical basis for the control of. We also proposed some future directions and key questions that need to be addressed for a better understanding of the molecular mechanism that leads to rice false smut disease and the prospects for sustainable control of rice false smut.

    ; rice false smut disease; life cycle; infection process; pathogenesis gene; disease resistance

    (Cook) Takahshi (teleomorph form:) is an ascomycete fungal pathogen which causes rice false smut disease. Rice false smut disease once occurred sporadically in rice planting areas. However, it is one of the most devastating rice fungal diseases due to the widespread use of high- yielding cultivars and hybrids, superfluous applications of chemical fertilizers and climate change. In China, it has been estimated to have occurred in approximately 2.4 million hectares per year between 2015 and 2017 (www.natesc.org.cn/sites/MainSite/). It is particularly prevalent in Anhui, Hunan, Hubei, Jiangsu, Jiangxi and Zhejiang provinces of China (Lu et al, 2018). In addition, this disease has also been recently reported with increasing frequency in rice growing areas worldwide (Guo et al, 2012; Ladhalakshmi et al, 2012; Jecmen and Tebeest, 2015; Nessa et al, 2015; Kumagai et al, 2016). The typical symptom of rice false smut disease is the replacement of rice grains with false smut balls, which are at first yellowish orange to green in color, and finally turn a greenish-black (Fig. 1).

    Rice false smut disease causes severe yield loss and reduces grain quality. It also contaminates rice grain and straw with mycotoxins, which raises great concerns for food and feed safety. Therefore, rice false smut disease andhave gained increased attention from researchers, breeders and farmers. In this review, the progress which has been recently made in the research ofthis unique pathological system was summarized, including the life cycle, infection processes and functional genomics of, along with the rice resistance to this disease, to highlight the molecular mechanism of the interactions of rice-.

    Life cycle of U. virens

    The life cycle ofinvolves both sexual and asexual stages (Zhang et al, 2014).exists in heterothallic form, and mating compatibility is determined by mating-type locus 1 (MAT1-1 andMAT1-2) (Yu J J et al, 2015). In the sexual cycle, sclerotia, which are induced by low temperatures, form on the surfaces of the rice false smut balls in late autumn (Fan et al, 2016). Under appropriate wetness, light and temperature conditions, the sclerotia germinate to differentiate the stroma, and then form asci with ascospores (Singh and Dubey, 1984; Yong et al, 2018a). The ascospores produce secondary conidia to contribute to primary infections of rice (Yong et al, 2018a). During the asexual cycle, thick-walled chlamydospores form on the surfaces of the false smut balls. The chlamydospores serve as important sources of inoculum between the seasons (Lu et al, 1994). As ascospores, the chlamydospores produce secondary conidia which result in rice false smut disease (Rush et al, 2000; Zhang et al, 2003). In addition to rice, alternative hosts such as weeds (,,and) may also be involved in the life cycle ofwith rare infections observed (Shetty and Shetty, 1985, 1987; Atia, 2004).

    Fig. 1. Ustilaginoidea virens causes rice false smut disease.

    Although increasing knowledge has been gained regarding the life cycle of, the debate continues as whether sclerotia or chlamydospores are the most important primary inoculum in the field, with final conclusion remaining elusive. It has been found that both the sclerotia and chlamydospores can survive over ten months in the laboratory conditions or field conditions (Lu et al, 1994; Wang, 1995). Therefore, both sclerotia and chlamydospores have the potential to be primary inoculum in the field. The results of recent studies have shown that sclerotia can be largely produced in many different geographical regions, including temperate and subtropical zones (Yong et al, 2018a). The sclerotia germinate to form ascospores under light condition after 2- to 5-month dormancy period. The ascospores are usually trapped in the rice-paddy fields before and after rice planting, which suggests that sclerotia can successfully overwinter and regularly produce ascospores (Yong et al, 2018a). Meanwhile, the chlamydospores are only trapped in the rice-paddy fields when the disease symptoms appeared. All of the aforementioned results supported the hypothesis that the sclerotia act as the primary inoculum of, rather than the chlamydospores(Yong et al, 2018a)

    Infection processes of U. virens

    Understanding the infection processes ofis critical in the study and management of rice false smut disease. The first question that must be addressed is the initial infection sites ofIt has been reported thatcan potentially infect coleoptiles during the seed germination stage, and also infect the seedling roots (Zheng et al, 2009; Andargie et al, 2015; Prakobsub and Ashizawa, 2017). However, the infections of the coleoptiles and roots may not spread to the spikelets and cause the characteristic symptom of rice false smut disease as no invasive hyphae have been observed beneath the pedicels or in the stems of naturally severely infected panicles (Tang et al, 2013; Yong et al, 2018b). Recently, some reports have suggested that the initial infections may occur in the rice pistils (Chao et al, 2014; Andargie et al, 2016). However, more studies have shown thatspecifically and initially infects the rice filaments before the rice flowers open (Tang et al, 2013; Hu et al, 2014; Zhang et al, 2014; Fan et al, 2015; Song et al, 2016). Collectively, through the natural observation (Shen, 2004), artificial inoculation assay and serial histological studies, it has been determined thattends to first infect the rice spikelets (mainly through the rice filaments) during the booting stage resulting in rice false smut disease. However, when and how the conidia enter the rice spikelets in nature remains unknown.

    According to the current understanding ofinfection processes, under proper conditions, the conidia ofgerminate and form a large number of secondary conidia and hyphae on the surfaces of rice spikelets (Fan et al, 2014). Then, the extended hyphae enter the inner spaces of the spikelets through small gaps between the lemma and palea to infect the stamen filaments, and possibly the stigma or lodicules, without haustorium or appressorium, at approximately 4 dpi (days post inoculation) (Ashizawa et al, 2012; Li et al, 2013; Tang et al, 2013; Hu et al, 2014; Fan et al, 2015; Song et al, 2016). It has been noted that the invasive hyphae ofextend along the cell gaps of the filaments without penetration of the host cell walls by transmission electron microscope observation (Tang et al, 2013). The initiation ofinfection blocks the pollination process, and mimics the fertilization of the rice ovaries to hijack the rice nutrient supply (Fan et al, 2015; Song et al, 2016). This is the characteristic of the infection process ofcompared with other rice fungal pathogens(Talbot, 2003). At approximately 10 dpi, the hyphae have covered the stamen anthers, stigmas, and styles of the pistils, and begin to grow out of the spikelets. Finally, ball-like colonies, which are caused by infection of one or multipleisolates, are formed at 15 dpi (Yu M N et al, 2013). In the rice smut balls, the rice ovaries remain alive, indicating thatdoes not kill the host cell during its infection process, and is a biotrophic parasite (Tang et al, 2013).

    Mycotoxins in U. virens

    Rice false smut pathogen produces mycotoxins, including ustiloxins and ustilaginoidins. The ustiloxins contain a 13-membered cyclic core structure with a phenol ether linkage, including ustiloxins A, B, C, D, E, F and G in(Koiso et al, 1994, 1998; Wang et al, 2017; Lin et al, 2018). The ustiloxins ofinhibit the microtubule assembly and skeleton formation of eukaryotic cells (Koiso et al, 1994, 1998; Wang et al, 2017; Lin et al, 2018). Ustilaginoidins are a class of bis-naphtho-γ-pyrones, which have cytotoxic activities on cancer cells and inhibitory effects on the radicle elongation of rice seeds (Lu et al, 2015; Meng et al, 2015; Wang et al, 2016; Sun et al, 2017). To date, 26 ustilaginodins, namely ustilaginodins A, B, C, D, E, E1, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V and W, isochaetochromin B2, and 2,3-dihydroustilaginoidin T, have been identified in(Lu et al, 2015; Meng et al, 2015; Sun et al, 2016, 2017). Furthermore, several analytical methods have been established, such as high performance liquid chromatography (HPLC), liquid chromatograph-mass spectrometry (LC-MS), enzyme linked immunosorbent assay (ELISA), and lateral flow immunoassays (LFIA) for detecting or quantifying the mycotoxins of(Shan et al, 2012; Bian et al, 2015; Fu X X et al, 2015a, b, 2017; Cao et al, 2016). Although many mycotoxins have been successfully identified in, at least five aspects still require further exploration, including the activities and toxicities of each mycotoxin in humans or animals, the functions of mycotoxins during infection of, the differences of the mycotoxins in differentisolates, the molecule mechanism of mycotoxin synthesis inand new types of mycotoxins besides ustiloxins and ustilaginoidins.

    Genome and genetics of U. virens

    The 39.4 Mb draft genome sequences of(strain), including 8 426 predicted genes and approximately 25% repetitive sequences which are affected by repeated-induced point mutation, were available from 2014 (Zhang et al, 2014). Intriguingly,is evolutionarily close to the entomopathogenicspp. Several features of thegenome may provide cues into its ability to cause disease in rice. These features include an elaborate predicted secretome of up to 628 proteins, which may be highly expressed during the early infection stage (Zhang et al, 2014). In addition, thegenome displays reduced genes related to polysaccharide degradation, G-protein receptors and transporters, and secondary metabolism comparing with the majority of the other sequenced ascomycetes which may be associated with its biotrophic lifestyle. Furthermore, a predicted protein-protein interaction network was constructed based on the availability of the genome sequences and gene expression profiles duringinfection (Zhang et al, 2017). The aforementioned protein-protein interaction network database, which provides insights into protein functions of, is available at http://sunlab.cau.edu.cn/uvpid (Zhang et al, 2017).

    shows significant genetic diversity in its isolates from different rice production areas due to geographical environments rather than rice cultivars (Pan et al, 2007; Li et al, 2013; Lu et al, 2013; Sun et al, 2013; Wang F et al, 2014; Wang W B et al, 2014b). Different geographical populations ofisolates display significant genetic differences, while isolates from different rice cultivars in the same areas, have higher genetic similarities (Sun et al, 2013). To date, the relationship between the pathogenicity and genetic diversity ofremains unclear.

    Pathogenic genes of U. virens

    Although thegenome has been sequenced, studies regarding the virulence factors and pathogenic genes are few due to the limitation of relative low frequency of the targeted gene deletion by homologous recombination, which is an important approach to study gene functions in plant pathogenic fungi, and the stability issues of artificial inoculations (Zheng et al, 2016). Five genes, namely,,,and,have been identified as the T-DNA insertion sites of the random T-DNA insertion mutants of, which are evident as defects in the sporulation, hypha growth, and/or pathogenesis (Yu J J et al, 2013; Huang et al, 2013; Yu M N et al, 2015; Wang et al, 2015; Bo et al, 2016). In addition, 17genes have been found to be up-regulated during the infection stage, which suggests that these genes may be also involved in the pathogenicity of(Yin et al, 2017). However, the functions of the aforementioned genes require further confirmation and investigation using targeted gene deletion or RNAi strategies in.

    To date, only,,andgenes have been functionally characterized by generating knockout mutants or RNAi transformants (Lv et al, 2016; Zheng et al, 2016; Liang et al, 2018). The first is theHOG1 homologwhich plays a conservative role in regulation stress responses, hyphal growth, and possibly secondary metabolism (Zheng et al, 2016). Only onedeletion mutant was identified in more than 600-resistance transformants by Zheng et al (2016), which suggests that the frequency of homologous recombination and target gene replacement is much lower inthan(Talbot, 2003). Bothandhave been identified from a random T-DNA insertion mutant, and are required for sporulation, hypha growth and pathogenesis (Lv et al, 2016; Zheng et al, 2016; Zheng et al, 2017). Recently, the functions of, which involves in stress response and conidiation, have been characterized using the CRISPR-Cas9 system. Although the insertion of thegene may disrupt other gene and complementation analysis in the mutant background is difficult, the combination of CRISPR-Cas9 system and homologous recombination is an efficient approach for targeted gene deletion into date. This methodremoves a technical limitation of the analyses of gene function in. Therefore, by using this method, more pathogenic genes and related signaling pathways can potentially be elucidated in the near future.

    In addition, effectors may play important roles in the pathogenicity of. During the infection, the plant pathogen secrets large amounts of effectors, which suppress host defense and induce the physiological changes in the host, to promote pathogen growth or spreading (Hogenhout et al, 2009). Among the 628 secreted proteins of, more than 18 predicted effectors have been observed to suppress hypersensitive response and 13 putative effectors are known to induce plant cell death in(Zhang et al, 2014; Fang et al, 2016). These findings suggest that the secreted proteins ofhave important roles in modulating plant defense mechanisms. However, the functions of theeffector genes during the pathogenic processes in rice remain unclarified.

    Rice responses to U. virens infection

    The formation of false smut balls requires specific interactions between rice and. By using transcriptional analyses, the molecular responses of rice in the compatible and incompatible interactions of rice-have been revealed. In the compatible interaction,prevents the production of pollen, ovary fertilization and flower-opening process to establish the infection (Chao et al, 2014; Fan et al, 2015; Song et al, 2016). Moreover, the infection ofdownregulates the expression levels of defense- related genes, such asand, to suppress the host defense (Fan et al, 2015). However, the infection ofactivates the expression of genes associated with grain filling, including the endosperm specific transcription factors, starch anabolism genes and seed storage protein genes, and fertilization, indicating thattakes advantage of rice nutrients supply systems by unknown mechanisms to form rice false smut balls (Fan et al, 2015; Song et al, 2016). Meanwhile, in the incompatible interaction, many pathogenesis related genes are induced to activate the rice resistance signaling pathways (Han et al, 2015). Taken together, these findings provide clues for that some factors fromcould potentially target the rice proteins or promoter regions of rice genes to regulate the expression levels of rice fertilization genes and/or pathogenesis related genes.

    The utilization of highly resistant cultivars with resistance () genes/QTLs can provide an effective, economical and environmentally safe way to control plant diseases. In the 20 years, a number of reports have shown that some rice cultivars are highly resistant to rice false smut disease (Jin et al, 2005; Yang et al, 2008; Chen et al, 2009; Huang et al, 2010; Jiang et al, 2010; Lu et al, 2012; Lan et al, 2016). However, the results of the majority of these reports are based on artificial inoculation or natural infection data in the field lacking experimental replication and control of environmental conditions. It is well known that the environmental factors, such as temperature, humidity, nitrogen and sowing time, largely affect the severity of rice false smut disease (Wang et al, 2010; Liu et al, 2013; Wang W B et al, 2014a; Fu R T et al, 2015). Thus, it is difficult to come to any final conclusions regarding whether some of the rice cultivars are in fact highly resistant to rice false smut disease, or whether some of the rice cultivars havegenes for rice false smut disease. However, it has been confirmed that the resistance levels to rice false smut disease are obviously different among the rice cultivars. The resistance of rice to rice false smut disease may be provided bygenes and/or QTL. Some QTLshave been identified using recombinant inbred lines derived from a cross of IR28 and Daguandao, and the introgression lines from a cross between Teqing and Lemont (Li et al, 2011, 2014; Zhou et al, 2013).

    Perspects

    Currently, an increasing number of studies have been attempted to identify the resistance genes in rice and uncover the resistance mechanisms for rice false smut disease. In addition, the availability of thegenome sequence, along with efficient approach for targeted gene deletion and better artificial inoculation methods, have radically altered the methods by which the biology of rice false smut disease can be explored (Hu et al, 2014; Jia et al, 2015; Liang et al, 2018). Several important questions may be answered in the near future. For example, the infection processes ofin nature and whether there are anygenes in rice for rice false smut disease resistance breeding may be revealed. Other important research areas, such as howhijacks the nutrient supply in rice, as well as the functions of the effectors and pathogenic genes duringinfection processes are being currently investigated. Moreover, identification of the key genetic determinants ofconserved among different isolates which will provide the targets for new anti-fungal drugs in the future. In addition, further research will potentially know how rice false smut disease epidemics can be predicted by rapid and early detection methods. The results of the aforementioned research regardingwill offer references for the control of false smut disease in rice.

    ACKNOWLEDGEMENTS

    This study was funded by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ19C140004 and LQ19C130007), the Chinese Academy of Agricultural Sciences under the ?Elite Youth? Program and the Agricultural Sciences and Technologies Innovation Program of China (CAAS-ASTIP-2016-CNRRI).

    Andargie M, Li L Y, Feng A Q, Zhu X Y, Li J X. 2015. Colonization of rice roots by a green fluorescent protein-tagged isolate of., 6(14): 2272–2279.

    Andargie M, Yang C, Li J X. 2016. Generation of β-glucuronidase reporter-tagged strain to monitorinfection in rice., 131: 148–155.

    Ashizawa T, Takahashi M, Arai M, Arie T. 2012. Rice false smut pathogen,, invades through small gap at the apex of a rice spikelet before heading., 78(4): 255–259.

    Atia M M M. 2004. Rice false smut () in Egypt., 111(1): 71–82.

    Bian Y F, Yu S S, Mou R X, Cao Z Y, Sun W H, Yang H, Lin X Y, Chen M X. 2015. Identification of ustiloxins in false smut balls of rice based on high performance liquid chromatography-high resolution mass spectrometry., 33(10): 1046–1050. (in Chinese with English abstract)

    Bo H W, Yu M N, Yu J J, Yin X L, Ding H, Wang Y H, Liu Y F. 2016. Molecular cloning flanking sequences of T-DNA insertion from themutant strain B1241., 49(9): 1685–1695. (in Chinese with English abstract)

    Cao Z Y, Sun L H, Mou R X, Lin X Y, Zhou R, Ma Y N, Chen M X. 2016. Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography-tandem mass spectrometry., 1476: 46–52.

    Chao J Q, Jin J, Wang D, Han R, Zhu R S, Zhu Y G, Li S Q. 2014. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-interaction., 9(3): e91391.

    Chen Z Y, Nie Y F, Liu Y F. 2009. Identification of rice resistant to rice false smut and the virulence differentiation ofin Jiangsu Province., 25(4): 737–741. (in Chinese with English abstract)

    Fan J, Guo X Y, Huang F, Li Y, Liu Y F, Li L, Xu Y J, Zhao J Q, Xiong H, Yu J J, Wang W. 2014. Epiphytic colonization ofon biotic and abiotic surfaces implies the widespread presence of primary inoculum for rice false smut disease., 63(4): 937–945.

    Fan J, Guo X Y, Li L, Huang F, Sun W X, Li Y, Huang Y Y, Xu Y J, Shi J, Lei Y, Zheng A P, Wang W M. 2015. Infection ofintercepts rice seed formation but activates grain-filling-related genes., 57(6): 577–590.

    Fan L L, Yong M L, Li D Y, Liu Y J, Lai C H, Chen H M, Cheng F M, Hu D W. 2016. Effect of temperature on the development of sclerotia in., 15(11): 2550–2555.

    Fang A F, Han Y Q, Zhang N, Zhang M, Liu L J, Li S, Lu F, Sun W X. 2016. Identification and characterization of plant cell death-inducing secreted proteins from., 29(5): 405–416.

    Fu R T, Wang J, Lu D H, Zhang H, Gong X S, Chen X J, Ren H Z, Mao J H. 2015. Resistance identification and influence factor of rice false smut., 31(18): 266–272. (in Chinese with English abstract)

    Fu X X, Wang A L, Wang X H, Lin F K, He L S, Lai D W, Liu Y, Li Q X, Zhou L G, Wang B M. 2015a. Development of a monoclonal antibody-based icELISA for the detection of ustiloxin B in rice false smut balls and rice grains., 7(9): 3481–3496.

    Fu X X, Wang X H, Cui Y L, Wang A L, Lai D W, Liu Y, Li Q X, Wang B M, Zhou L G. 2015b. A monoclonal antibody-based enzyme-linked immunosorbent assay for detection of ustiloxin A in rice false smut balls and rice samples., 181: 140–145.

    Fu X X, Xie R S, Wang J, Chen X J, Wang X H, Sun W B, Meng J J, Lai D W, Zhou L G, Wang B M. 2017. Development of colloidal gold-based lateral flow immunoassay for rapid qualitative and semiquantitative analysis of ustiloxins A and B in rice samples., 9(3): 79–90.

    Guo X Y, Li Y, Fan J, Li L, Huang F, Wang W M. 2012. Progress in the study of false smut disease in rice., 2(11): 1211–1217.

    Han Y Q, Zhang K, Yang J, Zhang N, Fang A F, Zhang Y, Liu Y F, Chen Z Y, Hsiang T, Sun W X. 2015. Differential expression profiling of the early response tobetween false smut resistant and susceptible rice varieties., 16(1): 955.

    Hogenhout S A, van der Hoorn R A L, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms., 22(2): 115–122.

    Hu M L, Luo L X, Wang S, Liu Y F, Li J Q. 2014. Infection processes ofduring artificial inoculation of rice panicles., 139(1): 67–77.

    Huang L, Yu M N, Hu J K, Yu J J, Yin X L, Nie Y F, Chen Z Y, Liu Y F. 2013. Analysis of biological phenotypes and molecular cloning of T-DNA integration flanking sequences ofmutant strain B-726., 46(16): 3344–3353. (in Chinese with English abstract)

    Huang R R, Li X M, Hua J L, Ma H G, Qiu Z H, Liang Y Y, Lan B. 2010. Studies on resistance to rice false smut in hybrid rice varieties (combinations)., 32(4): 718–722.(in Chinese with English abstract)

    Jecmen A C, Tebeest D O. 2015. First report of the occurrence of a white smut infecting rice in Arkansas., 163(2): 138–143.

    Jia Q, Lv B, Guo M Y, Luo C X, Zheng L, Hsiang T, Huang J B. 2015. Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by., 141(1): 15–25.

    Jiang S, Tang C S, Tan Z Q. 2010. Field resistance evaluation of 35 rice varieties against false smut., 31(5): 849–851. (in Chinese with English abstract)

    Jin S X, Dai G H, He R M, Qian D M, Xue H W. 2005. Resistance evaluation of 11 rice () varieties to., 23(3): 317–320. (in Chinese with English abstract)

    Koiso Y, Li Y, Iwasaki S, Hanaoka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z. 1994. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by., 47(7): 765–773.

    Koiso Y, Morisaki N, Yamashita Y, Mitsui Y, Shirai R, Hashimoto Y, Iwasaki S. 1998. Isolation and structure of an antimitotic cyclic peptide, ustiloxin F: Chemical interrelation with a homologous peptide, ustiloxin B., 51(4): 418–422.

    Kumagai T, Ishii T, Terai G, Umemura M, Machida M, Asai K. 2016. Genome sequence ofIPU010, a rice pathogenic fungus causing false smut., 4(3): e00306-16.

    Ladhalakshmi D, Laha G S, Singh R, Karthikeyan A, Mangrauthia S K, Sundaram R M, Thukkaiyannan P, Viraktamath B C. 2012. Isolation and characterization ofand survey of false smut disease of rice in India., 40(2): 171–176.

    Lan B, Yang Y Q, Sun Q, Hu J K, Huang R R, Chen Q W, Yu C H, Li X M. 2016. Resistance evaluation of late rice cultivars ofrice switched fromrice against rice false smut in Jiangxi., 38(6): 1029–1035. (in Chinese with English abstract)

    Li W L, Li L Y, Feng A Q, Zhu X Y, Li J X. 2013. Rice false smut fungus, inhibits pollen germination and degrades the integuments of rice ovule., 4(12): 2295–2304.

    Li Y S, Huang S D, Yang J, Wang C L. 2011. Analysis of quantitative trait loci for resistance to rice false smut., 37(5): 778–783. (in Chinese with English abstract)

    Li Y S, Yang J, Huang S D, Wang C L. 2014. Analysis of quantitative trait loci for pathogenic strain-of resistance to rice false smut in rice., 29(5): 1–4. (in Chinese with English abstract)

    Liang Y F, Han Y, Wang C F, Jiang C, Xu J R. 2018. Targeted deletion of theandgenes efficiently inwith the CRISPR-Cas9 system., 9: 699.

    Lin X Y, Bian Y F, Mou R X, Cao Z Y, Cao Z Z, Zhu Z W, Chen M X. 2018. Isolation, identification, and characterization offrom rice false smut balls with high ustilotoxin production potential., 58(8): 670–678.

    Liu X Z, Bai Y J, Wang S, Dong H, Yang H, Miao J K, Sun B X, Mao L. 2013. Effects of different rice cultivars and sowing time on occurrence of false smut., 52(17): 4112–4114. (in Chinese with English abstract)

    Lu D H, Chen Y P, Wang J, Wang P, Yao L, Ye H L, Hu R P, Chen Y, Mao J H. 2013. Genetic diversity offrom rice in Sichuan Province., 26(3): 994–1000. (in Chinese with English abstract)

    Lu M H, Liu W C, Zhu F. 2018. Epidemic low and control technique of rice false smut in recent years., 38(5): 44–47. (in Chinese)

    Lu R L, Zhou Q, Tu J M, Mei K H, Wang H, Jin H M. 2012. Field resistance evaluation of 66 rice varieties against false smut., 51(23): 5354–5356. (in Chinese with English abstract)

    Lu S Q, Sun W B, Meng J J, Wang A L, Wang X H, Tian J, Fu X X, Dai J G, Liu Y, Lai D W, Zhou L G. 2015. Bioactive bis-naphtho-gamma-pyrones from rice false smut pathogen., 63(13): 3501–3508.

    Lu J P, Miao Q M, Yang H, Li H Y. 1994. The role of chlamydospores in the infection course of rice false smut., 7(4): 93–97. (in Chinese with English abstract)

    Lv B, Zheng L, Liu H, Tang J T, Hsiang T, Huang J B. 2016. Use of random T-DNA mutagenesis in identification of gene, a regulator of conidiation, stress response, and virulence in., 7(100): 2086.

    Meng J J, Sun W B, Mao Z L, Xu D, Wang X H, Lu S Q, Lai D W, Liu Y, Zhou L G, Zhang G Z. 2015. Main ustilaginoidins and their distribution in rice false smut balls., 7(10): 4023–4034.

    Nessa B, Salam M U, Haque A H M M, Biswas J K, Kabir M S, Macleod W J, Antuono D M, Barman H N, Latif M A, Galloway J. 2015. Spatial pattern of natural spread of rice false smut () disease in fields., 10(2): 63–73.

    Pan Y J, Wang S, Yang H, Liu X Z, Xie X W, Zhou Y L. 2007. Effect of rice varieties on the population structure of., 32(2): 214–216. (in Chinese with English abstract)

    Prakobsub K, Ashizawa T. 2017. Intercellular invasion of rice roots at the seedling stage by the rice false smut pathogen,., 83: 358–361.

    Rush M C, Shahjahan A K M, Jones J P, Groth D E. 2000. Outbreak of false smut of rice in Louisiana., 84(1): 100.

    Shan T J, Sun W B, Liu H, Gao S, Lu S Q, Wang M G, Sun W X, Chen Z Y, Wang S, Zhou L G. 2012. Determination and analysis of ustiloxins A and B by LC-ESI-MS and HPLC in false smut balls of rice., 13(9): 11275–11287.

    Shen W X. 2004. Study on infection period and epidemic factors of rice false smut., 1(2): 137–139. (in Chinese with English abstract)

    Shetty S A, Shetty H S. 1985. An alternative host for(Cke.) Tak., 10(4): 11–15.

    Shetty S A, Shetty H S. 1987. Role ofin annual recurrence of false smut of rice., 88(3): 409–411.

    Singh R A, Dubey K S. 1984. Sclerotial germination and ascopore formation ofin India., 37: 168–170.

    Song J H, Wei W, Lv B, Lin Y, Yin W X, Peng Y L, Schnabel G, Huang J B, Jiang D H, Luo C X. 2016. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary., 18(11): 3840–3849.

    Sun W B, Dong X J, Xu D, Meng J J, Fu X X, Wang X H, Lai D W, Zhou L G, Liu Y F. 2016. Preparative separation of main ustilaginoidins from rice false smut balls by high-speed counter-current chromatography., 8(1): 20.

    Sun W B, Wang A L, Xu D, Wang W X, Meng J J, Dai J G, Liu Y F, Lai D W, Zhou L G. 2017. New ustilaginoidins from rice false smut balls caused byand their phytotoxic and cytotoxic activities., 65(25): 5151–5160.

    Sun X Y, Shu K, Zhang Y J, Tan X Q, Yu Y F, He H Y, Zhang X Y, Liu Y F, Shu W, Sun W X, Cai L, Li S J. 2013. Genetic diversity and population structure of rice pathogenin China., 8(9): e76879.

    Talbot N J. 2003. On the trail of a cereal killer: Exploring the biology of., 57: 177–202.

    Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P. 2013. Elucidation of the infection process of(teleomorph:) in rice spikelets., 62(1): 1–8.

    Wang F, Zhang S, Liu M G, Lin X S, Liu H J, Peng Y L, Lin Y, Huang J B, Luo C X. 2014. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar inpopulation selection., 80(9): 2811–2820.

    Wang G L. 1995. The sexual stage ofand the infection process of asscospores on rice., 1: 3–9. (in Chinese with English abstract)

    Wang S, Qin S, Liu M X, Li Y, Dong H, Sun B X. 2010. Effects of different cultivation modes on the occurrence degree of the rice false smut., 36(6): 165–167. (in Chinese with English abstract)

    Wang W B, Yin X L, Li Y, Chen Z Y, Lu F. 2014a. Study on main factors affecting severity of false smut., 27(3): 1067–1070. (in Chinese with English abstract)

    Wang W B, Zhang R S, Luo C P, Yin X L, Liu Y F, Lu F, Chen Z Y. 2014b. Biological characteristics and genetic diversity offrom rice regions in China., 47(14): 2762–2773. (in Chinese with English abstract)

    Wang X H, Fu X X, Lin F K, Sun W B, Meng J J, Wang A L, Lai D W, Zhou L G, Liu Y. 2016. The contents of ustiloxins A and B along with their distribution in rice false smut balls., 8(9): 262.

    Wang X H, Wang J, Lai D W, Wang W X, Dai J G, Zhou L G, Liu Y. 2017. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls., 9(2): 54.

    Wang Y H, Liu Y F, Lu F, Yu M N, Huang L, Zheng M T, Yu J J, Yin X L. 2015. Molecular characterization of T-DNA integration intomutant B1464., 29(3): 311–318. (in Chinese with English abstract)

    Yang J J, Liu X X, Ding G S. 2008. Preliminary study on resistance to rice false smut from different rice varieties., 27(9): 106–107. (in Chinese with English abstract)

    Yin W X, Cui P, Wei W, Lin Y, Luo C X. 2017. Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in., 60(12): 1051–1059.

    Yong M L, Deng Q D, Fan L L, Miao J K, Lai C H, Chen H M, Yang X J, Wang S, Chen F R, Jin L. 2018a. The role ofsclerotia in increasing incidence of rice false smut disease in the subtropical zone in China., 150(3): 669–677.

    Yong M L, Liu Y J, Chen T Q, Fan L L, Wang Z Y, Hu D W. 2018b. Cytological studies on the infection of rice root by., 81(4): 389–396.

    Yu J J, Nie Y F, Yu M N, Yin X L, Hu J K, Huang L, Chen Z Y, Liu Y F. 2013. Characterization of T-DNA insertion flanking genes of enhanced-conidiationmutant A2588., 46(24): 5132–5141. (in Chinese with English abstract)

    Yu J J, Sun W X, Yu M N, Yin X L, Meng X K, Zhao J, Huang L, Huang L, Liu Y F. 2015. Characterization of mating-type loci in rice false smut fungus., 362(9): 1–9.

    Yu M N, Chen Z Y, Yu J J, Hu J K, Yin X L, Nie Y F, Liu Y F. 2013. Genetic diversity and pathogenicity ofisolated from different rice false smut balls of a diseased spike., 43(6): 561–573. (in Chinese with English abstract)

    Yu M N, Yu J J, Hu J K, Huang L, Wang Y H, Yin X L, Nie Y F, Meng X K, Wang W D, Liu Y F. 2015. Identification of pathogenicity-related genes in the rice pathogenthrough random insertional mutagenesis., 76: 10–19.

    Zhang J C, Chen Z Y, Zhang B X, Liu Y F. 2003. Study on morphology of., 33(6): 517–523. (in Chinese with English abstract)

    Zhang K, Li Y J, Li T J, Li Z G, Hsiang T, Zhang Z D, Sun W X. 2017. Pathogenicity genes inrevealed by a predicted protein-protein interaction network., 16(3): 1193–1206.

    Zhang Y, Zhang K, Fang A F, Han Y Q, Yang J, Xue M F, Bao J D, Hu D W, Zhou B, Sun X Y, Li S J, Wen M, Yao N, Ma L J, Liu Y F, Zhang M, Huang F, Luo C X, Zhou L G, Li J Q, Chen Z Y, Miao J K, Wang S, Lai J S, Xu J R, Hsiang T, Peng Y L, Sun W Y. 2014. Specific adaptation ofin occupying host florets revealed by comparative and functional genomics., 5: 3849.

    Zheng D W, He L P, Meng C M, Hu D W. 2009. The cytological evidence on infection ofat the germination stage.: Proceedings of the Annual Meeting of Chinese Society for Plant Pathology. Beijing, China: China Agricultural Science and Technology Press: 118. (in Chinese)

    Zheng D W, Wang Y, Han Y, Xu J R, Wang C F. 2016.is important for hyphal growth and stress responses in the rice false smut fungus., 6: 24824.

    Zheng M T, Ding H, Huang L, Wang Y H, Yu M N, Zheng R, Yu J J, Liu Y F. 2017. Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus., 63(1): 131–144.

    Zhou Y L, Xie X W, Zhang F, Wang S, Liu X Z, Zhu L H, Xu J L, Gao Y M, Li Z K. 2013. Detection of quantitative resistance loci associated with resistance to rice false smut () using introgression lines., 63(2): 365–372.

    1 July 2018;

    29 October 2018

    Kou Yanjun (kouyanjun@caas.cn)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.10.007

    (Managing Editor: Li Guan)

    草草在线视频免费看| 国产av国产精品国产| 精品卡一卡二卡四卡免费| 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 插逼视频在线观看| 精品一区二区免费观看| 精品久久久精品久久久| 久久久久久人妻| 亚洲精品一二三| 国产成人精品无人区| 七月丁香在线播放| 一级毛片我不卡| 午夜精品国产一区二区电影| 国产精品一区二区在线观看99| 成人黄色视频免费在线看| 搡老乐熟女国产| 亚洲精品日本国产第一区| 91成人精品电影| 亚洲av二区三区四区| 久久99蜜桃精品久久| 国产片内射在线| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡 | 五月开心婷婷网| 成人手机av| 在线观看国产h片| 少妇人妻精品综合一区二区| 日日摸夜夜添夜夜添av毛片| 在线观看免费日韩欧美大片 | 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 国产精品一二三区在线看| 人妻 亚洲 视频| 91久久精品电影网| 久久影院123| 午夜激情福利司机影院| 在线播放无遮挡| 亚洲av国产av综合av卡| 久久久久人妻精品一区果冻| 婷婷成人精品国产| 久久精品人人爽人人爽视色| 最近最新中文字幕免费大全7| videossex国产| 高清毛片免费看| 成人亚洲精品一区在线观看| 99热网站在线观看| 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 午夜福利视频精品| 丝袜在线中文字幕| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 简卡轻食公司| 国产av一区二区精品久久| 久久99一区二区三区| 久久久久视频综合| 少妇被粗大猛烈的视频| 国产成人av激情在线播放 | 免费av不卡在线播放| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 亚洲图色成人| 三级国产精品欧美在线观看| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 一个人看视频在线观看www免费| 国产精品成人在线| 久久 成人 亚洲| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 色婷婷av一区二区三区视频| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 免费看av在线观看网站| 性高湖久久久久久久久免费观看| 日韩三级伦理在线观看| 国产精品一区www在线观看| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 大码成人一级视频| 亚洲人与动物交配视频| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 99久久综合免费| 99久久人妻综合| 久久精品人人爽人人爽视色| 一级片'在线观看视频| 简卡轻食公司| 亚洲在久久综合| 免费观看a级毛片全部| 啦啦啦视频在线资源免费观看| 亚洲国产欧美日韩在线播放| 全区人妻精品视频| 国国产精品蜜臀av免费| 国产精品久久久久久精品古装| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 大又大粗又爽又黄少妇毛片口| 男的添女的下面高潮视频| 国产精品欧美亚洲77777| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看| av福利片在线| 热99国产精品久久久久久7| 亚洲第一av免费看| 国产极品天堂在线| 在线观看免费高清a一片| 久久久久久久久久久丰满| 插逼视频在线观看| 亚洲精品国产色婷婷电影| 国产 精品1| 在线播放无遮挡| 国产 一区精品| 免费观看性生交大片5| 国产一级毛片在线| 国产男女超爽视频在线观看| 777米奇影视久久| 女性被躁到高潮视频| 秋霞伦理黄片| 国产精品无大码| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 18在线观看网站| 久久久久人妻精品一区果冻| 亚洲国产成人一精品久久久| 欧美三级亚洲精品| 日韩强制内射视频| 中文字幕免费在线视频6| 久久久久久久久久人人人人人人| √禁漫天堂资源中文www| 久久精品久久久久久久性| 欧美日本中文国产一区发布| 久久久久视频综合| 亚洲精品456在线播放app| av有码第一页| 午夜激情久久久久久久| 久久精品夜色国产| 99国产精品免费福利视频| 日韩不卡一区二区三区视频在线| a级毛片黄视频| 午夜免费观看性视频| 成人手机av| 免费观看性生交大片5| 乱人伦中国视频| 在线天堂最新版资源| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线| 十八禁网站网址无遮挡| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av成人精品| 久久国产精品男人的天堂亚洲 | 亚洲内射少妇av| 99热全是精品| videosex国产| 黑人高潮一二区| 国产精品99久久99久久久不卡 | 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 免费播放大片免费观看视频在线观看| 女性被躁到高潮视频| 日韩在线高清观看一区二区三区| 国产一区二区在线观看av| av不卡在线播放| 午夜免费男女啪啪视频观看| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 亚洲av二区三区四区| 一级片'在线观看视频| 99热6这里只有精品| 在线精品无人区一区二区三| 色吧在线观看| 99热这里只有是精品在线观看| 国产成人精品福利久久| 亚洲欧洲日产国产| 久久久久久久国产电影| 伊人亚洲综合成人网| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 80岁老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 免费高清在线观看日韩| 美女xxoo啪啪120秒动态图| 久久久久久人妻| 制服丝袜香蕉在线| 天美传媒精品一区二区| 免费少妇av软件| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 中文字幕久久专区| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 国产av精品麻豆| 18禁在线无遮挡免费观看视频| 91成人精品电影| 日韩av在线免费看完整版不卡| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 日本av免费视频播放| 能在线免费看毛片的网站| 考比视频在线观看| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 日本欧美视频一区| 亚洲精品自拍成人| 99九九在线精品视频| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 999精品在线视频| 老司机影院毛片| 啦啦啦在线观看免费高清www| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲少妇的诱惑av| 大香蕉久久成人网| 国产精品熟女久久久久浪| 亚洲精华国产精华液的使用体验| 日日撸夜夜添| 91精品国产九色| 插逼视频在线观看| 91久久精品国产一区二区成人| 一区二区日韩欧美中文字幕 | 精品久久久久久久久av| 高清在线视频一区二区三区| 一区二区三区精品91| 亚洲高清免费不卡视频| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美视频二区| 九九在线视频观看精品| 高清不卡的av网站| 亚洲性久久影院| 五月玫瑰六月丁香| 如何舔出高潮| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 人妻一区二区av| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 中文天堂在线官网| 丰满少妇做爰视频| 人妻制服诱惑在线中文字幕| 国产精品三级大全| 精品久久久噜噜| 免费播放大片免费观看视频在线观看| 国产无遮挡羞羞视频在线观看| 欧美三级亚洲精品| 亚洲国产最新在线播放| 女人久久www免费人成看片| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 亚洲色图 男人天堂 中文字幕 | 欧美亚洲日本最大视频资源| 成人毛片a级毛片在线播放| 嫩草影院入口| 人妻一区二区av| 精品久久蜜臀av无| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| a 毛片基地| 美女脱内裤让男人舔精品视频| 黄色怎么调成土黄色| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 91精品国产九色| 日韩av不卡免费在线播放| 一本久久精品| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕 | 欧美另类一区| 亚洲三级黄色毛片| 成人国语在线视频| 亚洲av在线观看美女高潮| 一区二区三区精品91| 五月天丁香电影| 日韩熟女老妇一区二区性免费视频| 制服人妻中文乱码| 欧美激情 高清一区二区三区| 亚洲综合色网址| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 国产熟女午夜一区二区三区 | 精品国产乱码久久久久久小说| 亚洲五月色婷婷综合| 欧美三级亚洲精品| 亚洲四区av| 老司机影院毛片| 免费观看无遮挡的男女| 亚洲国产日韩一区二区| 午夜免费鲁丝| 亚洲精品美女久久av网站| 国产片内射在线| 国产淫语在线视频| 国产精品人妻久久久影院| av黄色大香蕉| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 国产一区二区三区av在线| 51国产日韩欧美| 亚洲av日韩在线播放| 久久 成人 亚洲| 高清视频免费观看一区二区| 国产日韩一区二区三区精品不卡 | 美女国产视频在线观看| 精品亚洲乱码少妇综合久久| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| av免费观看日本| 99热6这里只有精品| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 看十八女毛片水多多多| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 欧美+日韩+精品| 男女高潮啪啪啪动态图| 欧美老熟妇乱子伦牲交| 在线观看国产h片| 热99久久久久精品小说推荐| 国产视频首页在线观看| 少妇的逼水好多| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 老女人水多毛片| 美女国产视频在线观看| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 久久久久视频综合| 大又大粗又爽又黄少妇毛片口| 久久久久视频综合| 精品久久久噜噜| 各种免费的搞黄视频| 久久久久久久久久久丰满| 最新中文字幕久久久久| 黑人巨大精品欧美一区二区蜜桃 | 99久久综合免费| 亚洲精品美女久久av网站| 亚洲国产精品一区三区| 中国美白少妇内射xxxbb| 一级a做视频免费观看| 一个人免费看片子| 97超视频在线观看视频| 少妇精品久久久久久久| 久久久久久伊人网av| 中文字幕制服av| 亚洲精品日韩av片在线观看| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 女的被弄到高潮叫床怎么办| 国产高清三级在线| 亚州av有码| 国产爽快片一区二区三区| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 国产精品 国内视频| 亚洲av免费高清在线观看| 熟女电影av网| 插阴视频在线观看视频| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 午夜福利影视在线免费观看| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 99国产精品免费福利视频| 天美传媒精品一区二区| 五月开心婷婷网| 男男h啪啪无遮挡| 黄色一级大片看看| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡| 国产成人a∨麻豆精品| 国产成人精品在线电影| 18禁在线无遮挡免费观看视频| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 国产av精品麻豆| 最后的刺客免费高清国语| 国产av精品麻豆| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 人妻系列 视频| 大香蕉久久成人网| 国产精品久久久久久久久免| 一区二区av电影网| 国产乱人偷精品视频| 成人国产av品久久久| 各种免费的搞黄视频| 免费少妇av软件| 国产男女内射视频| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡 | 免费不卡的大黄色大毛片视频在线观看| 亚洲av成人精品一区久久| 国产一区亚洲一区在线观看| 久久婷婷青草| 在线观看国产h片| 国产成人一区二区在线| 久久久久久久精品精品| 五月开心婷婷网| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 女性被躁到高潮视频| 久久久亚洲精品成人影院| a级毛色黄片| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 99热网站在线观看| 日本欧美视频一区| 日本猛色少妇xxxxx猛交久久| av视频免费观看在线观看| 在线观看免费日韩欧美大片 | 欧美日韩精品成人综合77777| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久成人aⅴ小说 | 国产免费又黄又爽又色| 激情五月婷婷亚洲| 亚洲国产日韩一区二区| 性色avwww在线观看| 午夜福利网站1000一区二区三区| 久久精品国产亚洲网站| 国产欧美日韩综合在线一区二区| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 国产成人一区二区在线| 18禁在线无遮挡免费观看视频| 三级国产精品欧美在线观看| 国产视频内射| 视频区图区小说| 亚洲国产毛片av蜜桃av| 国产片内射在线| 黄色配什么色好看| 免费观看的影片在线观看| 国产精品 国内视频| 欧美亚洲日本最大视频资源| 少妇人妻久久综合中文| 久久这里有精品视频免费| 亚洲情色 制服丝袜| 精品酒店卫生间| 欧美 亚洲 国产 日韩一| 久久热精品热| 亚洲国产成人一精品久久久| 97超视频在线观看视频| 国产精品人妻久久久久久| 啦啦啦视频在线资源免费观看| 国产有黄有色有爽视频| 亚洲欧美一区二区三区国产| 五月伊人婷婷丁香| 黄色欧美视频在线观看| 9色porny在线观看| 亚洲成色77777| 老司机影院成人| 91国产中文字幕| 欧美成人午夜免费资源| 国产国拍精品亚洲av在线观看| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 久久99一区二区三区| 亚洲成人一二三区av| 精品国产一区二区久久| 日韩视频在线欧美| 久久久久人妻精品一区果冻| 国产精品一区二区三区四区免费观看| av电影中文网址| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 最近最新中文字幕免费大全7| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 女性被躁到高潮视频| 亚洲av国产av综合av卡| 内地一区二区视频在线| 少妇的逼好多水| 久久精品国产亚洲av涩爱| 亚洲成人手机| 22中文网久久字幕| 在线亚洲精品国产二区图片欧美 | 人人妻人人爽人人添夜夜欢视频| 嫩草影院入口| 亚洲精品自拍成人| 中文字幕免费在线视频6| 欧美精品国产亚洲| 免费看光身美女| 国产精品久久久久成人av| 免费高清在线观看视频在线观看| 乱人伦中国视频| 日韩av免费高清视频| 国产成人一区二区在线| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 亚洲精品乱码久久久v下载方式| 九色成人免费人妻av| 国产毛片在线视频| av国产久精品久网站免费入址| 日本黄大片高清| 国产无遮挡羞羞视频在线观看| 各种免费的搞黄视频| 亚洲无线观看免费| 亚洲精品国产av成人精品| 免费高清在线观看视频在线观看| 丝瓜视频免费看黄片| 国产男人的电影天堂91| 国产一区二区三区综合在线观看 | 国产精品麻豆人妻色哟哟久久| 搡老乐熟女国产| 成人亚洲精品一区在线观看| 五月天丁香电影| 69精品国产乱码久久久| 亚洲丝袜综合中文字幕| 久久国产亚洲av麻豆专区| 国产成人精品久久久久久| 99热6这里只有精品| 视频区图区小说| 夜夜爽夜夜爽视频| av在线播放精品| 22中文网久久字幕| 亚洲不卡免费看| 色哟哟·www| 99国产精品免费福利视频| 欧美 亚洲 国产 日韩一| 91aial.com中文字幕在线观看| 丝袜喷水一区| 精品少妇久久久久久888优播| 欧美三级亚洲精品| 建设人人有责人人尽责人人享有的| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 波野结衣二区三区在线| 日韩一区二区三区影片| 我的女老师完整版在线观看| 人人妻人人爽人人添夜夜欢视频| 2021少妇久久久久久久久久久| 国产 一区精品| 久久精品久久久久久久性| 大码成人一级视频| 女人久久www免费人成看片| 亚洲五月色婷婷综合| 日日撸夜夜添| 国产午夜精品一二区理论片| 99久久综合免费| 91国产中文字幕| 免费少妇av软件| 日本爱情动作片www.在线观看| 一级毛片黄色毛片免费观看视频| 欧美丝袜亚洲另类| 欧美精品国产亚洲| 国产成人精品在线电影| 久久精品夜色国产| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区| 下体分泌物呈黄色| 日本色播在线视频| 日韩欧美一区视频在线观看| 久久 成人 亚洲| 亚洲av中文av极速乱| 亚洲av成人精品一区久久| 国产av国产精品国产| 久久免费观看电影| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 母亲3免费完整高清在线观看 | 99九九在线精品视频| 91国产中文字幕| 日韩视频在线欧美| 精品国产国语对白av| 国产午夜精品久久久久久一区二区三区| 久久精品熟女亚洲av麻豆精品| 大片免费播放器 马上看| 国产一区二区三区av在线| 日韩精品免费视频一区二区三区 |