• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MODISobserved snow cover variations in theAksu River Basin,Northwest China

    2019-07-10 09:53:20JingLiShiYinLiuQiaoLiu
    Sciences in Cold and Arid Regions 2019年3期

    Jing Li,ShiYin Liu,Qiao Liu

    1.State Key Laboratory ofCryospheric Sciences,Northwest Institute ofEco-Environment and Resources,Chinese Academy of Sciences(CAS),Lanzhou,Gansu 730000,China

    2.Institute of InternationalRiversand Eco-security,Yunnan University,Kunming,Yunnan 650500,China

    3.Key Laboratory ofMountain Surface Processesand Ecological Regulation,Institute ofMountain Hazards and Environment,Chinese Academy of Sciences,Chengdu,Sichuan 610041,China

    ABSTRACT Amajor proportion of discharge in the Aksu River is contributed from snow-and glacier-meltwater.It is therefore essential to understand the cryospheric dynam ics in this area forwater resourcemanagement.The MODISMOD10A2 remotesensing database from March 2000 to December 2012 was selected to analyze snow cover changes.Snow cover varied significantly on a temporal and spatial scale for the basin.The difference of themaximum andm inimum Snow Cover Fraction(SCF)in w inter exceeded 70%.On average for annual cycle,the characteristic of SCF is that it reached the highest value of 53.2%in January and lowest value of 14.7%in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000m below and 3,000m above.The fluctuation of annual average snow cover is strong which shows that the spring snow coverwas on the trend of increasing because of decreasing temperatures for the period of 2000-2012.However,temperature in April increased significantly which lead tomore snowmeltand a decrease of snow cover.Thus,more attention isneeded for flooding in this region due to strongmelting of snow.

    Keywords:MODISsnow data;Aksu River;snow cover fraction;climate change

    1 Introduction

    Snow cover area of the Northern Hem isphere is up to 50%during the w inter,considerably in f luencing Earth's energy balance(Barry,2008).Mountain snowpack and spring runoff are key components of surface water resources,and serve as important,regionally integrated indicators of climate variability and change(Stewart,2009).Snow cover in the Tianshan M ountains is an important predictor of regional climate change,aswell as a crucialwater source for its surrounding arid regions,and greatly influences the hydrological and biological processes(Tang et al.,2017).M eanwhile,snow cover area is an important parameter of hydrologicalmodels to predict the seasonalwater supply,runoff and f looding risk in watersheds dom inated by snowmelt(Hall et al.,1998;Jain and Lall,2000;Yang et al.,2003;Tong et al.,2009).It has been realized thatmeltwater from seasonal snow is onemain component of river runoff in the Tianshan(Aizen et al.,1995;Hagg et al.,2007;Krysanova et al.,2015).Both temperature and precipitation increases to date have impacted mountain snowpack simultaneously on a global scale,but the nature of the impact is strongly dependent on geographic location,latitude,and elevation(Stewart,2009).While human-induced warm ing has produced detectable and consistent hydroclimatic consequences on a global scale in many compartments of the cryosphere(Lemke et al.,2007),mountain snow cover remains lesswellunderstood.

    Climate change is has been reported in Central Aisa and particularly for the Tianshan Mountains.An increase in mean annual air temperatures(MAAT)since the 1970s for the entire Central Asia with pronounced rise in w intertime has been presented(Sorg etal.,2012).Precipitation trends are heterogeneous throughout Central Asia and,equally important,statistically not significant(Unger-Shayesteh et al.,2013;Aizen et al.,1997).Using ground observation data and remote sensing data,snow cover of Central Asia has been observed a general decrease,in extent(Unger-Shayesteh et al.,2013),depth(e.g.,Unger-Shayesteh etal.(2013)and Aizen etal.(1997)for the period 1940-1991)and also duration(e.g.,Unger-Shayesteh et al.(2013)and Zhou et al.(2013)for the period 1986-2000,Aizen etal.(1997)for the period 1940-1991).For Central Asia,an increase of 1.0-1.2°C formean surface tem perature is predicted compared with 0.3-0.7°C for global temperature(IPCC,2013).Annual river discharge is generally expected to rise formost catchmentswithin the nextdecades due to amore pronounced warm-season(Kundzew icz etal.,2015).The shiftof the peak discharge from summer to spring may,in the future,result in reduced water availability in the dry season(Barnett etal.,2005).

    The Aksu River originates from the Tianshan Mountains which are the source of major rivers in Central Asia.The snowmeltwater from the Tianshan M ountains is the lifeblood of agriculture and animal husbandry in its downstream arid regions(Hu,2004).M apping the duration and variability of snow cover can help to identify regions with stable snow-cover conditions as well as areas in which snow is highly variable between different years.The spatiotemporal variation of the snow cover is likely to be affected substantially by climate change,but to what extent is yet unclear(Li et al.,2018).Traditional sources of snow observationswere usually obtained from in situ station observation.However,due to the scarcity and lim itation of in situ observations,it is difficult to adequately quantify the spatiotemporal variability of snow cover inmountainous regions(Woo and Thorne,2006;Pu etal.,2007).Recently,as the benefitof spatial and temporal resolution,MODIS snow map has been extensively used to monitor snow cover dynamics in amore integrated scale(Pu etal.,2007;Immerzeel etal.,2009;Gao etal.,2012;Zhang etal.,2012;Dietz et al.,2013;Ke and Liu,2014;Li and Ke,2014),which is very difficultwhen using in situ observation data.High accuracy of MODIS snow product has been suggested by many evaluation studies when compared with in situ observations and other remote sensing data at both regional and global scales(Archer et al.,2004;Parajka and Bl?schl,2006;Pu et al.,2007).A detailed accuracy assessmentof the MODIS snow producthas been given by Hall and Riggs(2007).In general,the accuracy of MODIS snow products is satisfactory in the global scalewith the value of 93%.For example,K lein and Bernett(2003)showed an overall accuracy of 94%by comparing MODIS snow product with in-situ Snow pack Telemetry(SNOTEL)measurements at 15 locations in the Upper Rio Grande Basin during the snow season of 2000 and 2001.It is also found that in the majority of days MODIS fails to map snow at depths of less than 4 cm.Parajka and Bloeschl(2006)presented an extensive validation using daily in-situ observations of snow depths from 754 climatic stations over Austria from 2000 to 2005.The accuracy of MODIS snow products is very high with an average of 95%on cloud free days.Sim ilarly,Wang et al.(2008)evaluated the accuracy of MODIS snow products using ground observed snow depth data at20 climatic stations in Northern China from 2001 to 2005.They also show 94%accuracy of MODIS snow product on cloud free days at snow depth of more than 4 cm.

    In this study,MODIS snow data was used to acquire the Snow Cover Fraction(SCF)information for a Tianshan Mountain watershed.The temporal and spatial snow cover characteristic of thewatershed has been analyzed using snow cover fraction information.Finally,the change trend of snow cover and possible climate causeshave also been exam ined.

    2 Study area

    The Tarim River Basin(TRB)is the biggest inland river basin in China and most water supplies originate from the surrounding mountainous areas,such as Tianshan,eastern Parim,Karakoram and Kunlun mountains.The total snow and ice-melt contribution to the Tarim River is estimated atabout 48%(Xu et al.,2009).The Aksu River Basin(ARB)is one of themain tributaries to the Tarim River Basin(Figure 1).The ARB is an international river,originating in Tianshan in Kyrgyzstan and draining into the Xinjiang Uyghur Autonomous Region of China.Although the area of the ARB is only less than 5%of the area of the entire TRB,the average annual flow of the ARB accounts for 70%-80%of the average annual flow of the Tarim River(Duethmann etal.,2015).The precipitation to the ARB ismainly supplied by westerly flows,with thewesterly jet location and intensity determ ining the seasonal variation in the moisture route(Bothe etal.,2012).

    In the ARB,there are few meteorological and hydrological data available for research.The situation of measure stations are presented in Figure 1,and basic information in Figure 2.

    Figure 1 Location of the Aksu River Basin,SRTM DEM of the basin and gauging station situationwithin the basin

    Figure 2 Distribution ofmonthly precipitation and temperature from Akusu and Akqimeteorologicalstations in the ARB(1957-2012)

    3 Data and method

    3.1 MODSI snow data and processing

    Considering that the MODIS 8-day composite snow data elim inates cloud obscuration and thereby provides more consistent and cloud-free coverage than daily resolution data products,we have chosen to rely on analyses of the 8-day composite snow data product in this work.There are two types of 8-day com posite snow data products available(MOD10A 2 and MOD10C2).Specifically,MOD10A2 data are the 8-day composite snow cover observations at 500 m resolution and in this study we use MOD10A2 products.In the MOD10A2,the MODIS snow cover algorithm labels each 500 m pixel as clear land,snow,cloud obscured,and water.MOD10A2 data used in this study were obtained from the National Snow and Ice Data Center in America.The availableMODIS images,from 2000-2012 on an 8-day classif ication basis,were mosaicked and projected with the WGS 1984 projection system.Then the ARB area was extracted from themosaicked scene to assess the snow and ice cover percentage in the study area over a 13-year period.When the percentage of cloud cover exceeded 15%on a specific date,the record was eliminated and the average snow cover on this datewas estimated by interpolating linearly between the previous and nextavailable cloud-free images.The snow cover area was also calculated for the different elevation zones to investigate snow cover dynam ics in these zonesovera period from 2000 to 2012.

    However,about 13%cloud coverage remains during w inter for the 8-day maximum snow cover map(Figure 3).In order to remove the clouds,a Spatial Filter(SF)method used by Tong etal.(2009)was applied in this study.In the SFmethod,the snow maps are reclassif ied as snow,no snow,and cloud.A cloudcovered pixel is replaced by the majority of noncloud pixels in the eight closestneighborhood pixels.If the number of pixelswith snow equals the number withoutsnow,the center pixel is def ined as snow.However,if all of the eight closest neighborhood pixels are cloud-covered,the center pixel is still classified as cloudy.The SF decreases the cloud coverage to lower than 10%in theARB inw inter(Figure 3).

    The snow cover area on cloud-free Landsat TM images were compared with MODIS snow cover images on the same date to validate the MODIS snow cover productas given in Table 1.The validation was done for the totalaswell as for band-w ise snow cover area of the images.The results obtained for the validation of MODIS imageswith TM images suggests that MODIS snow products are reliable in estimating the snow cover area in the ARB.

    Figure 3 The change of cloud coverage before and after cloud removalusing spatial filtermethod forMODIS 8-day composite snow data

    3.2 DEM data

    The elevation data used in this study were obtained from the Shuttle Radar Topography M ission(SRTM).The high-quality SRTM DEM version 4 with a resolution of 90m are freely available from the U.S.Geological Survey(USGS)(http://seam less.usgs.gov/).The SRTM DEM was further treated using standard GIS techniques to delim it the ARB.Four different altitudinal zones were extracted from the DEM study area for detailed analysisof snow cover distribution.The characteristics of each elevation zone are given in Table 2.Glacier cover data in the ARB is acquired from the second China glacier inventory with a value of 2,395 km2(Guo etal.,2015).

    Table 1 Comparison of snow cover fraction derived from MODISand TM

    Tab le 2 Characteristicsof four elevation zonesextracted from SRTM of the ARB

    4 Results

    4.1 Temporal variation of snow cover

    On average,the intra-annual cycle of snow cover has been presented monthly and seasonally(Figure 4).Highest snow cover fraction(SCF)appears in January with a value of 53.4%monthly,and after that SCF starts to decrease until it reached the lowest value of 18.4%in July(Figure 4a),and then SCF begins to increase.On seasonality,the temporal distribution of snow is conventional.Winter SCF(%)is larger than in summer(Figure 4b).SCF reaches its highest value in w inter which exceeds 50%and reaches the lowestvalue of 16.4%in summer.

    Figure 4 The ARB annualsnow cover distribution onmonthly(a)and seasonally(b)acquired from MODIS 8-day composite snow data over the period of 2000-2012

    The strong variation of snow cover in ARB is clearly shown in Figure 5 which presents themaximum and m inimum SCF over the period of 2000-2012.By plotting the pointof 8-day composite SCF(%)over the period,a strong variation is clearly evident(Figure 5).Themaximum value of SCF appears in w inter with a value of 87.8%which is also the highest value for the period.Them inimum SCF value in w inter is 12.6%.

    The difference between the maximum and m inimum SCF in w inter can exceed 70%.SCF differences in summer aremuch smaller than in w interwith value of 45%,but this value is relatively large compared to the m inimum SCF of 5%in summer.The highestvalue of SCF in summer is near 50%which is smaller than its value in w inter.The lowestvalue of SCF can decrease to around 5%in summer.

    Figure 5 The average,maximum andm inimum cycle of 8-day composite snow cover fraction(%)in the ARB over the period of 2000-2012

    4.2 Spatial distribution of snow cover

    Figure 6 shows the annual cycle of SCF averaged over the areas in differentelevation zones as calculated from MODIS snow data over the period from February of 2000 to December of 2012.The value difference of SCF between the elevation zones below and beyond 3,000m is distinct.The averaged SCFmostly exceed 50%for elevation zones beyond 3,000m(Figures 6b,6c,6d),and exceeded 60%for the elevation zone beyond 4,000m,but for the elevation zones below 3,000m,the SCF never exceeded 40%(Figure 6a).It is clear that the elevation zones beyond 3,000m feature larger snow cover.The process of snow accumulation and ablation in the ARB is also affected by the elevation.In the elevation zones below 3,000 m(Figure 6a),snow decreases sharply and fast,and is essentially depleted by the end of March,but in the elevation zone of 3,000-4,000m,snow starts tomeltsignificantly in April,with most of the snow gone by the end of May.In the elevation zone of 4,000-5,000m,because of its high elevation(above 4,000 m),themelting of snow starts in May,and snow begins to accumulate in August.

    According to the area distribution of elevation zones(Table 2),zone A(below 3,000m)and zone B(3,000-4,000m)occupy more than 80%of the basin area.Considering the short duration of snow in zone A(Figure 6a),zone B is the primary snow cover zone in the ARB.

    Figure 6 The annual cycle of snow cover fraction(%)averaged over the period of 2000-2012 based on the 8-day MODIS snow covermap for fourelevation zones.(a)Below 2,000m;(b)3,000-4,000m;(c)4,000-5,000m;(d)beyond 5,000m

    4.3 Inter-annual variation of snow cover

    Inter-annual variation of snow cover is from the direct impactof climate change.Spring snow cover in the ARB is affected by the accumulated w inter snow cover and snowmelt due to warmer spring temperatures.Mean spring SCF varied between 24.8%and 47.2%over 2000-2012(Figure 7).W inter snow cover can effectively affect the spring snow cover.In 2005 and 2007,the high and low mean spring SCFwas the result of high and low meanw inter SCF in 2004 and 2007,respectively(Figure 7).In summer,most snow cover has disappeared because ofmelting,butcan exist in high elevation areas of the ARB.Mean summer SCF in the ARB exceeds 10%over 2000-2012 and it reached the highest value of 26.8%in 2005.When the season shifts to autumn,snow cover starts to accumulate.Allmean autumn SCF over 2000-2012 are above 30%except in 2002 with a value of 28.1%.The highest value ofmean autumn SCF is53.9%which appeared in 2009.

    Figure 7 Variation and changing trend of seasonalmean SCFover the period of 2000-2012

    Snow cover can reflect the impact of climate change on mountainous area.Analysis shows the increasing trend of snow cover in the ARB during 2000-2012.The increasing trend of autumn and spring snow cover is more significant.Winter snow cover show a low increasing trend and no clear changing trend for summer snow cover.

    5 Discussion

    Then increasing trend of spring snow cover needs to be analyzed considering its great impact on spring runoff,flood and water resources.Firstly,it is necessary to figure out the relationship of snow cover with temperature and precipitation.Figure 8 shows the close correlation between temperature and snow cover.The correlation coefficient is as high as-0.72.There is no clear relationship between precipitation and spring snow cover.This phenomenon suggests that spring snow cover ismostly under the control of temperature in spring.This is quite reasonable because the form of precipitation and snowmelt are greatly controlled by temperature,where low temperature benefits the snow cover formation and high temperature leads tomelting.

    Figure 8 The relationship between SCFand temperature(a),precipitation(b)in the spring time of 2000-2012

    Snowmelt runoff is a very preciouswater resource in the ARB.Thus,it is important to analyze the monthly variation of snow cover in spring.The increasing trend of snow cover is obvious in spring and March for the period of 2000-2012(Figure 9).Nevertheless,snow cover in April and May had an inverse tendency with spring,presenting a decreasing trend(Figure 9).The increasing trend of spring snow cover is controlled by the increasing trend of March snow cover.

    Figure 9 The changing trend of snow cover for spring(March,Apriland May)in ARB during 2000-2012

    In order to analyze the reason of snow cover change,the change trend of temperature and precipitation in each month of spring over the period of 2000-2012 is presented in Figure 10.In spring the temperature decreased,causing an increase of snow cover,which is sim ilar for March snow cover.The increasing M arch snow cover is caused by significant decreasing of temperature(Figure 10),but in April snow cover decreases significantly due to increasing temperatures.For the basin,April is the date that snow cover began to melt.Increasing temperatures in April could strongly cause more snowmelt and the decrease of snow cover.In May,snow cover show s a very low increasing trend and the temperature in that time presents a slight decreasing trend.

    6 Conclusions

    The MODIS snow data has be successfully used for monitoring snow cover extent in the ARB.The variation of SCF is very large in the basin.Between the periods of 2000-2012,the difference of themaximum andm inimum SCF in w inter exceeded 50%.On average for annual cycle,the SCF reaches its highest value of 53.2%in January,and lowest value of 14.7%in July.Elevation affects the obvious difference of values for Snow Cover Fraction between the range of 3,000m below and 3,000m above.The fluctuation of yearly average snow cover is also strong,where snow cover has a good relationship with spring runoff.The spring snow cover shows an increasing trend because of decreasing temperatures for the period of 2000-2012.Temperatures in April increased significantly which led to more snowmelt and decreasing of snow cover.Thus,increased attention is needed for flooding in this region due to strong snow melt.

    Acknow ledgments:

    This research was supported by the National Natural Science Foundation(Grant Nos.41301067,41671057,41671075).

    a级毛色黄片| 男的添女的下面高潮视频| 国产精品成人在线| 91久久精品国产一区二区三区| 一二三四中文在线观看免费高清| 一级av片app| 两个人免费观看高清视频 | 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| 久久毛片免费看一区二区三区| 亚洲第一区二区三区不卡| 久久精品国产自在天天线| av一本久久久久| 99久国产av精品国产电影| 免费黄网站久久成人精品| kizo精华| 国产精品无大码| 一级毛片电影观看| 99热6这里只有精品| 中文字幕久久专区| 寂寞人妻少妇视频99o| 亚洲av.av天堂| 国产成人免费无遮挡视频| 在线观看www视频免费| 精品一品国产午夜福利视频| 午夜福利在线观看免费完整高清在| 国产极品粉嫩免费观看在线 | 六月丁香七月| 蜜桃久久精品国产亚洲av| 人妻一区二区av| 国产永久视频网站| av一本久久久久| 色吧在线观看| 免费观看的影片在线观看| 国产深夜福利视频在线观看| 黄色配什么色好看| 观看av在线不卡| 18禁在线播放成人免费| 亚洲av综合色区一区| 午夜免费男女啪啪视频观看| 蜜臀久久99精品久久宅男| 亚洲精品国产色婷婷电影| 麻豆成人午夜福利视频| 国产精品麻豆人妻色哟哟久久| 伦理电影大哥的女人| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 边亲边吃奶的免费视频| 国产高清国产精品国产三级| 97精品久久久久久久久久精品| 久久狼人影院| 亚洲一区二区三区欧美精品| 18禁在线播放成人免费| 中文字幕制服av| 国产探花极品一区二区| 欧美bdsm另类| 久久 成人 亚洲| 国产精品蜜桃在线观看| .国产精品久久| 欧美bdsm另类| 一本久久精品| 自线自在国产av| 久久鲁丝午夜福利片| 亚洲熟女精品中文字幕| 综合色丁香网| 自线自在国产av| 老司机影院毛片| 人人妻人人澡人人看| 最近中文字幕高清免费大全6| 欧美丝袜亚洲另类| 九草在线视频观看| 精品一区二区免费观看| 丰满少妇做爰视频| 精品久久久噜噜| 永久网站在线| 欧美国产精品一级二级三级 | 国产 一区精品| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 免费观看av网站的网址| 精品午夜福利在线看| 我要看黄色一级片免费的| 日本91视频免费播放| 中文字幕人妻丝袜制服| 国国产精品蜜臀av免费| 啦啦啦啦在线视频资源| 老司机影院毛片| 桃花免费在线播放| 久久久久精品性色| 99久久精品一区二区三区| 伊人亚洲综合成人网| 日韩av免费高清视频| 国产精品久久久久久精品电影小说| 欧美一级a爱片免费观看看| 亚洲精品aⅴ在线观看| 多毛熟女@视频| 亚洲四区av| 最近2019中文字幕mv第一页| 国产在线男女| 插逼视频在线观看| 99久久中文字幕三级久久日本| 六月丁香七月| 久久国产精品男人的天堂亚洲 | 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 人妻人人澡人人爽人人| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线| 一级毛片 在线播放| 高清欧美精品videossex| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| 观看美女的网站| 美女视频免费永久观看网站| 大陆偷拍与自拍| 在线观看三级黄色| 在线免费观看不下载黄p国产| 18+在线观看网站| 免费高清在线观看视频在线观看| 天堂8中文在线网| 免费看日本二区| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 性色avwww在线观看| 国产一区有黄有色的免费视频| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 国产欧美日韩综合在线一区二区 | 国产又色又爽无遮挡免| 观看av在线不卡| 精品少妇内射三级| 亚洲三级黄色毛片| 欧美日韩在线观看h| 久久久久久久精品精品| 老女人水多毛片| 人妻夜夜爽99麻豆av| 夫妻午夜视频| 久久久久久久国产电影| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 人人妻人人爽人人添夜夜欢视频 | 三级国产精品片| 久久久久久久久久成人| 亚洲国产精品专区欧美| 亚洲人与动物交配视频| 三级经典国产精品| 精品久久国产蜜桃| 亚洲国产成人一精品久久久| 国产成人精品无人区| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 亚洲国产日韩一区二区| 亚洲自偷自拍三级| 最近的中文字幕免费完整| 欧美+日韩+精品| 精品国产一区二区久久| 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 大片电影免费在线观看免费| 熟妇人妻不卡中文字幕| 日韩欧美 国产精品| 一级二级三级毛片免费看| 久久久久久久大尺度免费视频| 免费观看在线日韩| 视频中文字幕在线观看| 亚洲国产精品国产精品| 男女边摸边吃奶| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区成人| 一级爰片在线观看| 亚洲美女黄色视频免费看| 校园人妻丝袜中文字幕| 日韩电影二区| 亚洲欧洲国产日韩| 简卡轻食公司| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 中文字幕制服av| 天堂中文最新版在线下载| 亚洲精品国产色婷婷电影| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 日韩在线高清观看一区二区三区| 精品国产露脸久久av麻豆| 黑丝袜美女国产一区| 欧美成人午夜免费资源| 欧美精品高潮呻吟av久久| 国产在线男女| 少妇高潮的动态图| 天天躁夜夜躁狠狠久久av| 自拍偷自拍亚洲精品老妇| 看非洲黑人一级黄片| 一区二区av电影网| 亚洲成人手机| 国产精品久久久久久久久免| a级一级毛片免费在线观看| 两个人的视频大全免费| 国产精品人妻久久久影院| 午夜福利影视在线免费观看| 亚洲第一av免费看| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 久久久久精品性色| 18+在线观看网站| 婷婷色麻豆天堂久久| av一本久久久久| 欧美日韩亚洲高清精品| 国产男女超爽视频在线观看| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 国产av一区二区精品久久| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线观看99| 亚洲天堂av无毛| 久久午夜福利片| 精品久久久噜噜| 亚洲精品亚洲一区二区| 欧美性感艳星| 丝袜脚勾引网站| 亚洲国产精品国产精品| 国产av一区二区精品久久| 伊人亚洲综合成人网| 国产一区亚洲一区在线观看| 亚洲婷婷狠狠爱综合网| 国产91av在线免费观看| 日韩成人伦理影院| 亚洲精品视频女| 九色成人免费人妻av| 春色校园在线视频观看| 亚洲国产精品国产精品| 亚洲无线观看免费| 亚洲精品自拍成人| 自拍欧美九色日韩亚洲蝌蚪91 | 九九在线视频观看精品| 日本wwww免费看| 我要看黄色一级片免费的| 伦精品一区二区三区| 亚洲自偷自拍三级| 久久久久久久久久久丰满| 亚洲精品自拍成人| 女性被躁到高潮视频| 国产探花极品一区二区| 国产精品三级大全| av在线app专区| 国产午夜精品久久久久久一区二区三区| 一本久久精品| 亚洲经典国产精华液单| 国产综合精华液| 久久久久久久亚洲中文字幕| 国产极品粉嫩免费观看在线 | 国产爽快片一区二区三区| 男的添女的下面高潮视频| 精品少妇内射三级| 亚洲国产日韩一区二区| 成人漫画全彩无遮挡| 一个人免费看片子| 日韩伦理黄色片| 亚洲人与动物交配视频| 中文字幕人妻丝袜制服| 一区二区三区乱码不卡18| 久久av网站| 亚洲自偷自拍三级| 久久久久久久国产电影| 国产精品无大码| 亚洲国产色片| 全区人妻精品视频| 在线观看免费高清a一片| 午夜福利,免费看| xxx大片免费视频| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 人妻制服诱惑在线中文字幕| av天堂久久9| 在线观看一区二区三区激情| 欧美日韩精品成人综合77777| 国产美女午夜福利| 久久人妻熟女aⅴ| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频 | 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 欧美老熟妇乱子伦牲交| 精品久久久久久久久av| 亚洲图色成人| 婷婷色综合大香蕉| 国产亚洲一区二区精品| freevideosex欧美| 在线 av 中文字幕| 国产精品久久久久久久电影| 嫩草影院入口| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 中文字幕人妻熟人妻熟丝袜美| 午夜av观看不卡| 一级毛片aaaaaa免费看小| 欧美bdsm另类| 午夜精品国产一区二区电影| 日本黄大片高清| 日韩强制内射视频| 国产一区亚洲一区在线观看| 有码 亚洲区| 亚洲国产色片| 国产精品不卡视频一区二区| 在线观看免费日韩欧美大片 | 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| 丰满少妇做爰视频| 亚洲精品国产av蜜桃| 国产av精品麻豆| 欧美bdsm另类| 成人无遮挡网站| 一个人免费看片子| 两个人的视频大全免费| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 亚洲精品国产成人久久av| 青春草国产在线视频| 国产黄片美女视频| 少妇人妻一区二区三区视频| 亚洲高清免费不卡视频| 九九爱精品视频在线观看| 国产在线免费精品| 欧美日韩精品成人综合77777| 高清不卡的av网站| 免费黄网站久久成人精品| 九九在线视频观看精品| 午夜久久久在线观看| 免费黄色在线免费观看| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 亚洲综合精品二区| 观看免费一级毛片| 亚洲欧美精品自产自拍| 黑人猛操日本美女一级片| 天堂俺去俺来也www色官网| 国产伦在线观看视频一区| 欧美日韩视频精品一区| 免费观看性生交大片5| 中文字幕人妻熟人妻熟丝袜美| 色94色欧美一区二区| 亚洲欧洲日产国产| 香蕉精品网在线| 看十八女毛片水多多多| av免费在线看不卡| 国产在视频线精品| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频| 美女视频免费永久观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲天堂av无毛| 99久国产av精品国产电影| 人妻 亚洲 视频| 街头女战士在线观看网站| 六月丁香七月| 日韩视频在线欧美| av在线观看视频网站免费| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 日本av免费视频播放| 亚洲精品第二区| 中文天堂在线官网| 乱系列少妇在线播放| 两个人的视频大全免费| 下体分泌物呈黄色| 亚洲av欧美aⅴ国产| 在线 av 中文字幕| 两个人的视频大全免费| 老司机亚洲免费影院| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 国产av码专区亚洲av| 美女福利国产在线| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 国产av码专区亚洲av| 能在线免费看毛片的网站| 精品国产一区二区三区久久久樱花| 国产免费一区二区三区四区乱码| 欧美日韩综合久久久久久| av卡一久久| 黄色日韩在线| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 99久久精品国产国产毛片| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 九九在线视频观看精品| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 大香蕉97超碰在线| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 国产精品偷伦视频观看了| 性色av一级| 国产一区二区三区av在线| 欧美丝袜亚洲另类| 看非洲黑人一级黄片| 久久久久久人妻| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 色吧在线观看| 中文字幕久久专区| 精品一区在线观看国产| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 看免费成人av毛片| 成人无遮挡网站| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 日本黄大片高清| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 三级国产精品片| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影| 亚洲国产精品专区欧美| 免费少妇av软件| 有码 亚洲区| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| 久久6这里有精品| av有码第一页| 一本久久精品| 91久久精品电影网| 人妻系列 视频| 自拍偷自拍亚洲精品老妇| 亚洲成人一二三区av| 日本色播在线视频| 国产爽快片一区二区三区| 国内揄拍国产精品人妻在线| 中文在线观看免费www的网站| 亚洲精品色激情综合| 日韩视频在线欧美| 久久影院123| 免费看光身美女| 91精品伊人久久大香线蕉| 人体艺术视频欧美日本| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 一级爰片在线观看| 99久久精品热视频| 啦啦啦啦在线视频资源| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 乱系列少妇在线播放| 黄色日韩在线| 国产精品女同一区二区软件| 精品亚洲乱码少妇综合久久| 22中文网久久字幕| 少妇精品久久久久久久| 91久久精品电影网| 精品卡一卡二卡四卡免费| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 免费高清在线观看视频在线观看| 中文字幕制服av| 久久久久久伊人网av| 欧美精品高潮呻吟av久久| 一级毛片电影观看| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 桃花免费在线播放| 国产午夜精品一二区理论片| 国精品久久久久久国模美| 高清午夜精品一区二区三区| 国产 精品1| 如日韩欧美国产精品一区二区三区 | 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 国产视频内射| 极品人妻少妇av视频| 亚洲三级黄色毛片| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 精华霜和精华液先用哪个| 极品少妇高潮喷水抽搐| 丰满乱子伦码专区| 五月开心婷婷网| 老司机影院成人| 久久国产乱子免费精品| 97在线人人人人妻| 夫妻午夜视频| 国产欧美亚洲国产| 简卡轻食公司| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 啦啦啦视频在线资源免费观看| 高清黄色对白视频在线免费看 | 亚洲av.av天堂| 欧美高清成人免费视频www| 午夜福利视频精品| 一级,二级,三级黄色视频| 内地一区二区视频在线| 一级毛片电影观看| 免费av不卡在线播放| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 两个人免费观看高清视频 | 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 国产精品免费大片| www.av在线官网国产| 国产精品久久久久久精品电影小说| 精品久久久久久久久亚洲| 丁香六月天网| 18禁在线播放成人免费| 亚洲第一区二区三区不卡| 亚洲av综合色区一区| 日韩三级伦理在线观看| 色5月婷婷丁香| 99久久精品国产国产毛片| 日本av免费视频播放| 国产成人精品一,二区| 天美传媒精品一区二区| 亚洲av日韩在线播放| 女的被弄到高潮叫床怎么办| 高清av免费在线| 国产精品.久久久| 欧美精品亚洲一区二区| 精品一区二区免费观看| 国产伦理片在线播放av一区| 中文字幕精品免费在线观看视频 | 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频 | 欧美最新免费一区二区三区| 51国产日韩欧美| 色婷婷av一区二区三区视频| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 国产一区二区三区av在线| 欧美一级a爱片免费观看看| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版| 内地一区二区视频在线| av天堂久久9| 日本-黄色视频高清免费观看| 香蕉精品网在线| 夫妻午夜视频| 欧美区成人在线视频| 免费看av在线观看网站| 日韩av免费高清视频| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| av又黄又爽大尺度在线免费看| www.av在线官网国产| 狂野欧美白嫩少妇大欣赏| 桃花免费在线播放| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 亚洲欧美成人综合另类久久久| 午夜免费男女啪啪视频观看| 亚洲国产最新在线播放| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区 | 99久久中文字幕三级久久日本| 在线精品无人区一区二区三| 丝袜脚勾引网站| 亚洲综合色惰| 国产成人一区二区在线| av女优亚洲男人天堂| 国产一区二区在线观看av| 亚洲性久久影院| 亚洲国产精品成人久久小说| 极品人妻少妇av视频| 在线精品无人区一区二区三| 乱系列少妇在线播放| 桃花免费在线播放| 久久鲁丝午夜福利片| 亚洲人与动物交配视频| 最近最新中文字幕免费大全7| 久久鲁丝午夜福利片| 亚洲精品第二区| 国产成人91sexporn| 亚洲精品一二三| 国产精品熟女久久久久浪| 国产亚洲5aaaaa淫片| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| av专区在线播放| 少妇人妻 视频| 丝袜喷水一区| 久久韩国三级中文字幕| 国产精品成人在线| 三级国产精品片|