• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation and relationship between soilm oisture and environm ental factors in the source region of the Yangtze River from 2005 to 2016

    2019-07-10 09:53:16LingLingSongZongJieLiQingTianLieFuWangJingHeRuiFengYuanJuanGuiBaiJuanZhangYueMinLv
    Sciences in Cold and Arid Regions 2019年3期

    LingLing Song,ZongJie Li,Qing Tian*,LieFuWang,Jing He,RuiFeng Yuan,Juan Gui,BaiJuan Zhang,YueM in Lv

    1.College ofForestry,Gansu AgriculturalUniversity,Lanzhou,Gansu 730070,China

    2.Key Laboratory ofWestern China's Environmental Systems(Ministry of Education),College of Earth Environmental Science,Lanzhou University,Lanzhou,Gansu 730000,China

    3.Key Laboratory ofEcohydrology of Inland River Basin Gansu/Hydrology and Water Resources Engineering Research Center,Cold and Arid Region Environmentand Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    4.Tuotuohe Meteorological Station,Geermu,Qinghai816099,China

    ABSTRACT This study analyzed soilmoisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soilmoisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.The surface soilmoisturewas severely affected by seasonal changes in the source region of the Yangtze River,especially in the soil from 0 to 40 cm.However,seasonal variation of soilmoisture deeper than 40 cm was different from that in the upper layer.Soilmoisture below 40 cm wasn'taffected by the seasonal variation.Soilmoisture from 0 to 50 cm and the average thicknessofw ind deposition showed a positive correlation in the study area from 2005 to 2016.Forenvironmental protection in the source region of the Yangtze River,w ind deposition played a role in water retention.Sim ilarly,a positive correlation also existed between the average thickness ofw ind erosion and soilmoisture.Deep-soilmoisturewas the key factor for vegetation structure on the Qinghai-Tibet Plateau.The results are also helpful for further understanding the variation of soilmoisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecologicalenvironment in the future.

    Keywords:soilmoisture;soilerosion;vegetation;source region of the Yangtze River

    1 Introduction

    Climate change hasmade a significant impact on ecosystems throughout theworld.Glaciers,frozen soil,and alpine-grassland ecosystems closely related to frozen soil,have changed significantly(Bubier et al.,1999;M cGuire etal.,2002;Walker etal.,2003;Wang et al.,2005;Zeng et al.,2015).These weak environmental components are very sensitive to global change and also accelerate the change(Wen and Su,2003).Soilmoisture is one of the important parameters of hydrology and ecology.Soilmoisture influences the exchange of energy and water in the earth-atmosphere system through the influence of the infiltration of rainwater and sub-evaporation(Chen etal.,2013;Li etal.,2013;Su etal.,2013).Additionally,soilmoisture is an important component of the globalwater cycle.And it is also necessary to understand and research the global water cycle(Yang etal.,2011;Liu etal.,2013).

    Grassland on the Qinghai-Tibet Plateau is one of the largest grassland systems in the world(Fu et al.,2012).Soilmoisture is one of the key factors that affect the ecological process,the ecological carrying capacity for alpine grassland,and the restoration and reconstruction of degraded grassland on the Qinghai-Tibet Plateau(Fu et al.,2012;Hu et al.,2015;Li etal.,2015).In the alpine-meadow region of the Qinghai-Tibet Plateau,soilmoisture is notonly themain lim iting factor for plant grow th and vegetation restoration but also one of themain factors affecting the stability of the ecological environment and the engineering of frozen soil(Yu etal.,2014;Zhao et al.,2014;Hayashi et al.,2015).At the same time,soil moisture is closely related to the freeze-thaw erosion process.In the alpine-meadow region of the Qinghai-Tibet Plateau,a specialecologicalhydrological structure different from that of other regions has formed due to the intense,long-term freeze-thaw action and the existence of ground ice(Cheng and Zhao,2000;Wu et al.,2003).Soil moisture is an important water resource in frozen-soil regions,and it is of great significance in the evolution and reconstruction of frozensoil ecosystems.Due to the increase of soil-water loss caused by climate warm ing and the expansion of human activities,the grassland ecosystem has shown a trend of accelerated degradation since the 1980s.Therefore,the problem of soilmoisture and itsecological effects to the Tibetan Plateau has become one of the hot spots in current research(Cheng and Zhao,2000;M cGuire et al.,2002;Cui et al.,2016;Sun et al.,2016;Zhu etal.,2016).

    This study analyzed the variation of soilmoisture,the relationship between soilmoisture and w ind erosion,and the relationship between soilmoisture and vegetation in the source region of the Yangtze River from 2005 to 2016.The main purposes of this paper are(1)to analyze the variation of soilmoisture in the source area of the Yangtze River from 2005 to 2016;(2)to investigate the change rules for annual and seasonal variation of soil moisture against the background of global environmental change in the source region of the Yangtze River;and(3)to evaluate the relationship between soil moisture and w ind erosion and vegetation in the study area.The results are also helpful for providing further reference data for analyzing the change rule of soilmoisture and providing a scientific basis for ecological environment protection for the whole Sanjiang-source protection area and the whole Qinghai-Tibet Plateau,as well as providing a scientific basis for further research.

    2 M aterials and m ethods

    2.1 Study area

    The source region of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau at 90°43′E-96°45′E,32°30′N-35°35′N(Figure 1).The region—which includes Zhiduo County,Qumalai County,the town of Tanggula in the city of Geermu,Yushu County,and Chenduo County—controls a drainage area of about 1.38×105km2(Fang et al.,2011).The basin has fivemajor rivers:the Chumaer,Tuotuo,Gaerqu,Buqu,and Dangqu(Yu et al.,2014;Hayashi et al.,2015).The source region of the Yangtze River is one of themain distribution areas of the plateau wetland on the Qinghai-Tibet Plateau and is also themost concentrated area of glacier distribution in the study region.The glacier area accounted for more than 89%of the entire Sanjiang-source region(Li et al.,2012;Qi et al.,2015).The climate in the source region of the Yangtze River is that of a typical plateau of a cold climate.The climate are characterized by low heat and strong radiation(Hayashi et al.,2015).From the southeast to the northwest,the difference in the temperature and precipitation gradientwas significant.The annual average temperature was only 3.0-5.5°C.Thewarmestmonth was July,with an average temperature of 3.0-17.3°C.Some areas did not even reach an accumulated temperature higher than 10°C.Therewas no absolute frost-free period;the annual precipitation was 221.5-515.0 mm(Fang et al.,2011;Li et al.,2012;Yu et al.,2014;Hayashi et al.,2015;Qi etal.,2015).

    2.2 Observation

    With the Tuotuohe Meteorological Station as the observation point,soil moisture,w ind erosion,and vegetation situations in the study areawere systematically observed from 2005 to 2016.The altitude of the observation site(92.26°N,34.13°E)was4,533.1m.Four sample sites(20m×5m)were selected random ly in the observation field at themeteorological station.The sampling time was from April to October each year.During the samp ling month,samp ling happened at day 10,day 20,and the end of themonth.The depth of soil sampling was 0-10 cm,>10-20 cm,>20-30 cm,>30-40 cm,and>40-50 cm.Soilmoisturewasmeasuredmainly by a soil tube profilemoisture meter,an instrument that can directly measure soilmoisture.It can simultaneously measure soil parametersatdifferentdepthsand upload them to the data center through the GPRS(GSM)network.The sampling method was used to investigate vegetation status,including forage height,vegetation coverage,and grassland yield.This study selected a natural observation field(20m×5m),and five plots(1m×1m)were observed.Vegetation coverage wasmainly measured by the vegetation-coverage observation system.The surface vegetation-coverage photogrammetry system included a portable vegetation-coverage photogrammeter and an automatic calculation system of surfacevegetation coverage.Hardware is one part of the system.Even with the portable vegetation-coverage photogrammeter,its function is to take vertical photographs to obtain vegetation-coverage images.Another part of the system is the PCOVER software.Its function is to process the acquired image and calculate the vegetation coverage automatically.The height of a plant was measured by a steel tape.Desertification wasmainly monitored by the w ind-erosion observation system.The sampling period of each collection pointwas 15 or 30 seconds.Usually,the sampling period was from 15 seconds to 2 hours.Observations weremade once a day from September to May of the nextyear,and once amonth from June to August.

    Figure 1 Map show ing the source region of the Yangtze River

    3 Results

    3.1 Annual variation of soil moisture

    As shown in Figure 2,the annual variation showed a significant change from 2005 to 2016 in the source region of the Yangtze River.Soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.From the trend of the line in Figure 2a,it can be seen that the soil moisture in 2009 was the highest of any year from 2005 to 2016;the lowest was in 2016.This change may be related to climate factors in the study area.For soil layers from 0 to 10 cm,the average soil moisturewas 11.58%.The highest value appeared in 2009 and the lowest in 2006.As with the 0-10 cm layer,the highest value of soilmoisture for layers at 10-20 cm,20-30 cm,30-40 cm,and 40-50 cm all happened in 2009.However,the lowest values of soilmoisture for 10-20 cm,20-30 cm,30-40 cm,and 40-50 cm allappeared in 2016.The order of soilmoisture for the layers 0-10 cm,10-20 cm,20-30 cm,30-40 cm,and 40-50 cm was 40-50 cm>30-40 cm>20-30 cm>10-20 cm>0-10 cm,with the means being 13.26%,12.90%,12.78%,12.06%,and 11.58%,respectively(Figure 2b).Soilmoisture increased with increasing soil depth.The average soilmoisturewas 12.86%in 2005,10.78%in 2006,11.75%in 2007,13.35%in 2008,17.40%in 2009,13.02%in 2010,12.89%in 2011,12.76%in 2012,11.63%in 2013,13.23%in 2014,10.76%in 2015,and 9.74%in 2016,which indicated therewas a new low in 2016.The new low in soilmoisture suggested that the vegetation grow th in the study area faced unprecedented challenges.At the same time,protection of the ecological environment in the study area w ill face new challenges.

    Figure 2 Annualvariation of soilmoisture in the study area

    3.2 Seasonal variation of soil moisture

    The seasonal variation of soilmoisture is shown in Figure 3.The order of soilmoisture for the layer from 0 to 10 cm in the source region of the Yangtze River was summer>autumn>spring,with themean values being 12.89%,11.92%,and 8.97%,respectively(Figure 3a).Aswith the layer from 0 to 10 cm,the order of soilmoisture from 10 to 20 cm(Figure 3b),from 20 to 30 cm(Figure 3c),and from 30 to 40 cm(Figure 3d)in study area was summer>autumn>spring.This pattern indicates that the surface soilmoisturewas severely affected by seasonal changes in the source region of the Yangtze River,especially the soil from 0 to 40 cm.The soil moisture from 0 to 40 cm in summer was higher than in spring and autumn,as summer was the season in the study area.Spring was the start time for the ablation period,and autumn was the end of the ablation period(Li etal.,2006;Zhang etal.,2016).However,the order of soilmoisture from 40 to 50 cm in the source region of the Yangtze River was summer>spring>autumn,with themean values being 13.78%,13.47%,and 12.52%,respectively(Figure 3e).It showed that the soilmoisture from 0 to 40 cm had the same seasonal variation,but the seasonal variation of soilmoisture below 40 cm was different from that in the upper layer.This finding indicated that the soil moisture below 40 cm wasn'taffected by seasonalvariation.The soilmoisture from 40 to 50 cm in summer was greater than in spring and autumn aswell.But the soil moisture in spring was greater than in autumn,which suggests that the seasonal frozen soil began to melt,and the forage grasswas justbeginning to sprout in spring(Gao et al.,2016).Forage grass grow th required less water.Under the action of gravity,soil moisture concentrated in the deep soil;so the deep soil contained a lotofwater in spring.However,the transpiration of forage grass took part of the soil moisture;and evaporation from the land consumed part of the soilmoisture in the autumn;so soilmoisture in autumn was less than in spring.

    4 Discussions

    4.1 The relationship between soil moisture and wind erosion

    In order to discuss the relationship between soil moisture and w ind deposition in the source region of the Yangtze River,this study analyzed the correlation between soil moisture and the average thickness of w ind deposition.As shown in Figure 4,there was a positive correlation between the average thickness of w ind deposition and soilmoisture from 0 to 10 cm(R2=0.040).The higher the average thickness of w ind deposition was,the greater the soil moisture from 0 to 10 cm(Figure 4a).This pattern suggests that a greater average thickness of w ind deposition should prevent the evaporation of soilmoisture.As with soilmoisture from 0 to 10 cm,there was also a positive correlation between the average thickness of w ind deposition and soilmoisture from 10 to 20 cm(Figure 4b),from 20 to 30 cm(Figure 4c),from 30 to 40 cm(Figure 4d),and from 40 to 50 cm(Figure 4e).These findings further support the above analysis and indicate that the average thickness of w ind deposition could protect soilmoisture in the source region of the Yangtze River.However,the saliency of the positive correlation for soilmoisture from 40 to 50 cm(R2=0.10)was higher than for soilmoisture in the other soil horizons.The saliency of the positive correlation for soil moisture from 0 to 10 cm came second;third was the soilmoisture from 20 to 30 cm(R2=0.036).This pattern suggests that the protective effect of the average thickness of w ind deposition on soil moisture from 40 to 50 cm was the greatest,and the influence of soilmoisture from 0 to 10 cm came next.In aword,soilmoisture and the average thickness of w ind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,w ind deposition played a role in water retention.

    Figure 3 Seasonal variation of soilmoisture in the study area

    Figure 4 The relationship between soilmoisture and the average thicknessofw ind deposition

    Figure 5 shows the relationship between soilmoisture and the average thickness of w ind erosion.As with the average thickness ofw ind deposition,a positive correlation also existed between the average thickness of w ind erosion and soilmoisture.But the increasing trend of soilmoisturewith the increase for the average thickness of w ind erosion showed amore significant trend than that for w ind deposition.As shown in Figure 5a,there is a positive correlation between the average thickness of w ind erosion and soil moisture from 0 to 10 cm(R2=0.13),which indicates that the average thicknessofw ind erosion notonly reduced soilmoisture but also increased soilmoisture.The average thickness of w ind erosion and soilmoisture from 10 cm to 20 cm shows a positive correlation(R2=0.12),too.And there is a positive correlation between the average thickness of w ind erosion and soil moisture from 20 to 30 cm(R2=0.13),from 30 to 40 cm(R2=0.084),and from 40 to 50 cm(R2=0.18).This relationship further suggests that soil erosion also protected soil moisture in the study area.In general,the evaporation of soilmoisture increased with the increase of w ind-erosion thickness(Ma et al.,2014).However,soilmoisture in the study area increased with the increase of w ind-erosion thickness.To resolve this question,we can continue to research the subject.

    Figure 5 The relationship between soilmoisture and the average thicknessofw ind erosion

    4.2 The relationship between soil moisture and vegetation

    The relationship between soilmoisture and forage grass height is shown in Figure 6.Whether in soilmoisture from 0 to 10 cm(Figure 6a),from 10 to 20 cm(Figure 6b),from 20 to 30 cm(Figure 6c),from 30 to 40 cm(Figure 6d),or from 40 to 50 cm(Figure 6e),there was a significantly negative correlation between soilmoisture and forage grass height in the source region of the Yangtze River from 2005 to 2016.This pattern suggests that the height of forage grass decreased with the increase of soilmoisture from 0 to 50 cm.This finding may indicate that forage grass heightwasmainly controlled by deeper soilmoisture.As shown in Figure 7,the relationship between soilmoisture from 0 to 50 cm and vegetation coverage was not significant in the study area from 2005 to 2016.It shows that the vegetation in this area had adapted to the habitat through a long evolution.And the vegetation had special physiological and ecological characteristics to deal with the changes of soil-moisture content.The relationship between soilmoisture and the yield of forage grass is show n in Figure 8.The relationship between soil moisture from 0 to 30 cm(Figures 8a,8b)and the yield of forage grasswas not significant in the study area from 2005 to 2016.However,there was a positive correlation between soilmoisture from 30 to 50 cm(Figures 8c,8d,8e)and the yield of forage grass in the source region of the Yangtze River.Soilmoisture from 30 cm to 50 cm and maybe from the deeper soil layer could increase the yield of forage grass in the study area.

    Figure 6 The relationship between soilmoisture and forage grassheight

    Figure 7 The relationship between soilmoisture and vegetation coverage

    Based on analysisof the relationship between vegetation and soilmoisture,therewas a significantly negative correlation between soilmoisture from 0 to 50 cm and forage grass height in the source region of the Yangtze River from 2005 to 2016.The relationship between soilmoisture from 0 to 50 cm and vegetation coveragewas not significant in the study area.And the relationship between soilmoisture from 0 to 30 cm and the yield of forage grasswas not significant.But there was a positive correlation between soilmoisture from 30 to 50 cm and the yield of forage grass in the source region of the Yangtze River.On the one hand,deep soil moisture was the key factor for vegetation structure;and this results related to the specialhabitatand vegetation composition.On the other hand,alpine-meadow vegetation on the Qinghai Tibet-Plateau wasmainly dominated by deeply rooted plants.The area of highest water-use efficiency was the distribution area of the rootsystem(Walker etal.,2003).As the observation of soil moisture in this paper was lim ited to soil layers from 0 to 50 cm,the study of deep soilmoisture should be pursued in the future.

    Figure 8 The relationship between soilmoisture and the yield of forage grass

    5 Conclusions

    Soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.Meanwhile,the surface soil moisture severely was affected by seasonal changes in the source region of the Yangtze River,especially the soil from 0 to 40 cm.Soilmoisture from 0 to 40 cm had the same seasonal variation;but the seasonal variation of soil moisture below 40 cm was different from that in the upper layer.Soilmoisture below 40 cm wasn'taffected by seasonal variation.Soilmoisture from 0 to 50 cm and the average thickness of w ind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,w ind deposition played a role in water retention.As with the average thickness ofw ind deposition,a positive correlation also existed between the average thickness of w ind erosion and soilmoisture;but the increasing trend of soil moisture with the increase in the average thickness of w ind erosion showed amore significant trend than for w ind deposition.There was a significantly negative correlation between soilmoisture from 0 to 50 cm and forage grass height.The relationship between soil moisture from 0 to 50 cm and vegetation coverage was not significant in the study area;and the relationship between soilmoisture from 0 to 30 cm and the yield of forage grass was not significant.But therewas a positive correlation between soilmoisture from 30 to 50 cm and the yield of forage grass in the study area.Deep-soilmoisturewas the key factor for vegetation structure.Due to lim iting the observation of soil moisture to soil layers from 0 to 50 cm in this study,the study of deep soilmoisture should be pursued in the future.

    Acknow ledgments:

    This study was supported b y the Discipline Construction Fund Project of Gansu Agricultural University(GSAU-XKJS-2018-109),the Open Foundation of MOE Key Laboratory of Western China's Environmental System,Lanzhou University and the Fundamental Research Funds for the Central Universities(lzujbky-2018-kb01),National"Plan of Ten Thousand People"Youth Top Talent Project,the Youth Innovation Promotion Association,CAS(2013274),Open funding from the Key Laboratory of Mountain Hazards and Earth Surface Process the open funding from State Key Laboratory of Loess and Quaternary Geology(SKLLQG1814),National Key R&D Program of China(2017YFC0404305).

    人妻久久中文字幕网| 久久香蕉精品热| 国产野战对白在线观看| 久久久久久久午夜电影 | 成年女人毛片免费观看观看9 | 久久狼人影院| 欧美日韩乱码在线| 美女 人体艺术 gogo| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 交换朋友夫妻互换小说| 国产精品亚洲av一区麻豆| 国产激情欧美一区二区| 久久久久久免费高清国产稀缺| 一区福利在线观看| 久久精品91无色码中文字幕| 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 精品亚洲成国产av| 久久中文字幕一级| 亚洲免费av在线视频| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看影片大全网站| 亚洲中文av在线| 香蕉国产在线看| 欧美大码av| 亚洲专区国产一区二区| a级片在线免费高清观看视频| 啪啪无遮挡十八禁网站| 欧美国产精品一级二级三级| 亚洲熟女毛片儿| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 熟女少妇亚洲综合色aaa.| 欧美乱色亚洲激情| 午夜福利欧美成人| 母亲3免费完整高清在线观看| 老司机午夜福利在线观看视频| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 黄色视频不卡| 亚洲欧美激情综合另类| 国产精品久久久久成人av| 精品人妻1区二区| 99精品欧美一区二区三区四区| 高清毛片免费观看视频网站 | 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 久久这里只有精品19| 中文字幕av电影在线播放| 国产成人欧美| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 91老司机精品| 亚洲专区中文字幕在线| 国产av精品麻豆| 免费不卡黄色视频| www日本在线高清视频| 18禁观看日本| 天天添夜夜摸| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 中文字幕人妻丝袜一区二区| 国产麻豆69| 丝袜美足系列| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 99热只有精品国产| 一级作爱视频免费观看| 一本综合久久免费| 少妇被粗大的猛进出69影院| 免费观看a级毛片全部| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线 | 国产精品免费视频内射| 一二三四社区在线视频社区8| 极品少妇高潮喷水抽搐| 黄色视频,在线免费观看| 精品国产一区二区久久| 9191精品国产免费久久| 精品视频人人做人人爽| a级毛片在线看网站| 国产精品 欧美亚洲| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 亚洲五月天丁香| 国产高清videossex| 国产精品亚洲一级av第二区| 黄色视频不卡| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 在线观看日韩欧美| netflix在线观看网站| 免费看a级黄色片| 免费女性裸体啪啪无遮挡网站| 亚洲第一欧美日韩一区二区三区| 亚洲欧美激情在线| 国产精品.久久久| 日本vs欧美在线观看视频| 国产免费男女视频| 国产一卡二卡三卡精品| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 亚洲精品一二三| 超色免费av| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 国产男女超爽视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 三上悠亚av全集在线观看| 国产免费现黄频在线看| 亚洲精品国产一区二区精华液| 女同久久另类99精品国产91| videosex国产| 久久久国产成人精品二区 | 欧美av亚洲av综合av国产av| 亚洲av熟女| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 精品久久久久久久毛片微露脸| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 国产一区二区三区综合在线观看| 亚洲免费av在线视频| 老熟妇乱子伦视频在线观看| 亚洲精品一二三| 99香蕉大伊视频| 王馨瑶露胸无遮挡在线观看| av视频免费观看在线观看| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 悠悠久久av| 国产男女超爽视频在线观看| 欧美精品av麻豆av| 免费在线观看影片大全网站| 男女下面插进去视频免费观看| 国产精品一区二区在线不卡| 极品少妇高潮喷水抽搐| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 日本精品一区二区三区蜜桃| 久久草成人影院| 侵犯人妻中文字幕一二三四区| 99国产精品免费福利视频| 国产成人一区二区三区免费视频网站| 国产精品98久久久久久宅男小说| 女人久久www免费人成看片| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 亚洲情色 制服丝袜| 午夜精品国产一区二区电影| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 一a级毛片在线观看| 91国产中文字幕| 亚洲av片天天在线观看| 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 亚洲中文字幕日韩| 香蕉丝袜av| 国产精品 欧美亚洲| 午夜视频精品福利| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| av欧美777| 香蕉国产在线看| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 少妇 在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久久毛片 | 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 大片电影免费在线观看免费| 99久久人妻综合| 精品福利永久在线观看| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 精品午夜福利视频在线观看一区| 三上悠亚av全集在线观看| 久久99一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲国产看品久久| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜制服| 一级毛片精品| 80岁老熟妇乱子伦牲交| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼 | 亚洲avbb在线观看| 亚洲少妇的诱惑av| 男人操女人黄网站| 国产免费男女视频| 久久久国产精品麻豆| 校园春色视频在线观看| 国产精品影院久久| 嫁个100分男人电影在线观看| 久久精品国产综合久久久| 一区福利在线观看| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 亚洲av日韩在线播放| 我的亚洲天堂| 在线视频色国产色| 久久久国产成人免费| 欧美 亚洲 国产 日韩一| 久久中文看片网| 极品人妻少妇av视频| 国产精品免费视频内射| 成在线人永久免费视频| 成人国语在线视频| 午夜两性在线视频| 久久中文字幕一级| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 一级作爱视频免费观看| 国产乱人伦免费视频| 90打野战视频偷拍视频| 人妻丰满熟妇av一区二区三区 | 免费在线观看黄色视频的| 757午夜福利合集在线观看| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx| 国产99白浆流出| 天堂中文最新版在线下载| 怎么达到女性高潮| 久久中文看片网| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 中亚洲国语对白在线视频| 中文字幕av电影在线播放| 国产精品香港三级国产av潘金莲| 99热网站在线观看| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 757午夜福利合集在线观看| 久久香蕉国产精品| 亚洲在线自拍视频| 宅男免费午夜| 一级片'在线观看视频| 天天躁夜夜躁狠狠躁躁| 香蕉国产在线看| 成年版毛片免费区| 狠狠狠狠99中文字幕| 国精品久久久久久国模美| 久久久精品免费免费高清| 老司机午夜十八禁免费视频| 女人被躁到高潮嗷嗷叫费观| 18禁裸乳无遮挡免费网站照片 | 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 久久精品国产a三级三级三级| 久久精品91无色码中文字幕| 欧美日韩av久久| videosex国产| 一级毛片精品| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3 | 久久久久国产精品人妻aⅴ院 | 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 国产精品久久视频播放| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 国产蜜桃级精品一区二区三区 | 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老熟妇仑乱视频hdxx| 18在线观看网站| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 夫妻午夜视频| 悠悠久久av| 美女高潮喷水抽搐中文字幕| 国产熟女午夜一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 很黄的视频免费| 999精品在线视频| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影 | 亚洲第一青青草原| 在线播放国产精品三级| 午夜福利欧美成人| av网站在线播放免费| av中文乱码字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满饥渴人妻一区二区三| 男女下面插进去视频免费观看| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 男人操女人黄网站| 不卡一级毛片| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 欧美在线一区亚洲| 亚洲国产精品合色在线| 国产亚洲精品久久久久5区| 亚洲成人手机| 一个人免费在线观看的高清视频| 一区二区三区国产精品乱码| 日韩熟女老妇一区二区性免费视频| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 男女高潮啪啪啪动态图| 午夜福利乱码中文字幕| 亚洲第一欧美日韩一区二区三区| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色 | av福利片在线| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 999久久久精品免费观看国产| 视频在线观看一区二区三区| 久热爱精品视频在线9| 国产成人精品无人区| 国产成+人综合+亚洲专区| 亚洲性夜色夜夜综合| 看片在线看免费视频| 亚洲精品美女久久av网站| 黄片播放在线免费| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 美女高潮喷水抽搐中文字幕| 免费观看精品视频网站| 亚洲中文av在线| 窝窝影院91人妻| 亚洲熟妇中文字幕五十中出 | 热re99久久精品国产66热6| 99riav亚洲国产免费| 一级a爱视频在线免费观看| cao死你这个sao货| 欧美精品亚洲一区二区| 午夜福利在线观看吧| 国产精品1区2区在线观看. | 免费日韩欧美在线观看| 人成视频在线观看免费观看| 一级a爱视频在线免费观看| a级毛片在线看网站| 欧美日韩精品网址| 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址 | 99国产极品粉嫩在线观看| 精品国产一区二区久久| 国产野战对白在线观看| 99久久综合精品五月天人人| av欧美777| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 久久久国产一区二区| 欧美在线黄色| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 国产片内射在线| 国产蜜桃级精品一区二区三区 | 国产免费现黄频在线看| 天天躁日日躁夜夜躁夜夜| 极品教师在线免费播放| 一本综合久久免费| 亚洲一码二码三码区别大吗| 丰满饥渴人妻一区二区三| 嫁个100分男人电影在线观看| 亚洲三区欧美一区| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 午夜老司机福利片| 免费黄频网站在线观看国产| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 久久午夜综合久久蜜桃| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 午夜福利,免费看| 黄色怎么调成土黄色| 在线天堂中文资源库| 国产成人免费无遮挡视频| 色94色欧美一区二区| 在线国产一区二区在线| 天堂中文最新版在线下载| 岛国在线观看网站| 亚洲精华国产精华精| 久久国产精品影院| 午夜精品在线福利| 12—13女人毛片做爰片一| 操出白浆在线播放| 免费看a级黄色片| 亚洲成国产人片在线观看| 国产一区在线观看成人免费| 正在播放国产对白刺激| 一二三四社区在线视频社区8| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 不卡av一区二区三区| 99国产精品一区二区蜜桃av | 亚洲人成电影免费在线| 极品少妇高潮喷水抽搐| 美女扒开内裤让男人捅视频| 国产精品久久久人人做人人爽| 亚洲精品中文字幕一二三四区| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 一二三四在线观看免费中文在| 99riav亚洲国产免费| 超碰97精品在线观看| 在线观看日韩欧美| 新久久久久国产一级毛片| 少妇的丰满在线观看| 亚洲片人在线观看| xxx96com| 国产精品九九99| 国产1区2区3区精品| 一个人免费在线观看的高清视频| 老司机亚洲免费影院| 亚洲黑人精品在线| 国产一区二区三区视频了| 日本一区二区免费在线视频| 国产野战对白在线观看| 午夜成年电影在线免费观看| 久久精品国产清高在天天线| 一级毛片精品| 久久人妻熟女aⅴ| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区蜜桃| 国产成人欧美在线观看 | 日韩欧美在线二视频 | 色综合婷婷激情| 黑丝袜美女国产一区| 亚洲国产精品合色在线| 国产精品成人在线| 乱人伦中国视频| 最新在线观看一区二区三区| videos熟女内射| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 看免费av毛片| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 久久精品91无色码中文字幕| 老熟妇仑乱视频hdxx| 99久久精品国产亚洲精品| 一a级毛片在线观看| 最近最新中文字幕大全电影3 | www.精华液| 日韩欧美三级三区| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 国产精品国产高清国产av | 精品电影一区二区在线| 亚洲精品乱久久久久久| 亚洲精品一二三| 在线观看免费高清a一片| 精品国产乱码久久久久久男人| 亚洲午夜精品一区,二区,三区| 丝袜人妻中文字幕| 久久香蕉精品热| 一区二区三区精品91| 丝瓜视频免费看黄片| 国产区一区二久久| 国产xxxxx性猛交| 久久国产精品人妻蜜桃| 亚洲人成77777在线视频| 亚洲国产精品合色在线| 如日韩欧美国产精品一区二区三区| ponron亚洲| 精品久久蜜臀av无| 人人妻人人爽人人添夜夜欢视频| 咕卡用的链子| 亚洲精华国产精华精| 国产精品久久久久久精品古装| av片东京热男人的天堂| 热99久久久久精品小说推荐| 中文字幕高清在线视频| 一级片免费观看大全| 变态另类成人亚洲欧美熟女 | 国产精品久久视频播放| 国产高清视频在线播放一区| 色综合欧美亚洲国产小说| 国产精品免费一区二区三区在线 | 日本精品一区二区三区蜜桃| 91在线观看av| 久久久久国内视频| 中文字幕制服av| 99久久综合精品五月天人人| 国产精品二区激情视频| 好看av亚洲va欧美ⅴa在| 一边摸一边抽搐一进一小说 | 亚洲综合色网址| 人妻 亚洲 视频| 欧美大码av| 成人亚洲精品一区在线观看| 曰老女人黄片| 操出白浆在线播放| 精品一品国产午夜福利视频| 国产成人免费无遮挡视频| 99国产精品一区二区蜜桃av | 久久久久久亚洲精品国产蜜桃av| 两个人免费观看高清视频| 精品国内亚洲2022精品成人 | 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 亚洲专区中文字幕在线| 多毛熟女@视频| videosex国产| 变态另类成人亚洲欧美熟女 | 欧美乱妇无乱码| 日韩制服丝袜自拍偷拍| 欧洲精品卡2卡3卡4卡5卡区| 日韩熟女老妇一区二区性免费视频| 又黄又爽又免费观看的视频| 如日韩欧美国产精品一区二区三区| 涩涩av久久男人的天堂| 亚洲欧洲精品一区二区精品久久久| 黄色视频不卡| 一边摸一边抽搐一进一出视频| 久久性视频一级片| 午夜视频精品福利| 久久久精品国产亚洲av高清涩受| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| 欧美精品人与动牲交sv欧美| 三上悠亚av全集在线观看| 国产精品免费大片| 美女高潮到喷水免费观看| a级毛片黄视频| 久久香蕉激情| 久久狼人影院| 久久人人爽av亚洲精品天堂| 久久中文字幕人妻熟女| 日韩中文字幕欧美一区二区| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 真人做人爱边吃奶动态| 电影成人av| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 免费在线观看视频国产中文字幕亚洲| 十八禁人妻一区二区| 国产在线一区二区三区精| 伦理电影免费视频| 91成年电影在线观看| 在线观看66精品国产| 国产亚洲欧美98| 亚洲第一青青草原| 国产在视频线精品| 欧美色视频一区免费| 在线观看一区二区三区激情| 一级毛片女人18水好多| 日本a在线网址| 国产成人欧美| 久久久国产一区二区| 女性生殖器流出的白浆| 国产三级黄色录像| 国产精品99久久99久久久不卡| 日韩一卡2卡3卡4卡2021年| 午夜免费观看网址| av电影中文网址| 欧美成狂野欧美在线观看| 亚洲欧美色中文字幕在线| 精品久久久久久久久久免费视频 | 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 国产精品一区二区在线不卡| 午夜福利在线免费观看网站| 久热爱精品视频在线9| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精| 久久精品国产综合久久久| 午夜福利在线观看吧| 亚洲伊人色综图| av天堂久久9| 中文字幕另类日韩欧美亚洲嫩草| 精品国产超薄肉色丝袜足j| 亚洲一区高清亚洲精品| 亚洲av成人av| 欧美激情久久久久久爽电影 | 男女免费视频国产| 每晚都被弄得嗷嗷叫到高潮| 色综合欧美亚洲国产小说| 岛国毛片在线播放| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| 亚洲熟妇中文字幕五十中出 | 精品一品国产午夜福利视频| 色播在线永久视频| 大香蕉久久成人网| 欧美精品高潮呻吟av久久| 一级毛片精品| 欧美精品人与动牲交sv欧美| 丝瓜视频免费看黄片|