• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/Epoxy Composite Thermoelectric Films

    2019-07-09 00:23:52LIPengNIEXiaoLeiTIANYeFANGWenBingWEIPingZHUWanTingSUNZhiGangZHANGQingJieZHAOWenYu
    無機(jī)材料學(xué)報(bào) 2019年6期
    關(guān)鍵詞:厚膜武漢理工大學(xué)絲網(wǎng)

    LI Peng, NIE Xiao-Lei, TIAN Ye, FANG Wen-Bing, WEI Ping, ZHU Wan-Ting, SUN Zhi-Gang, ZHANG Qing-Jie, ZHAO Wen-Yu

    ?

    Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/Epoxy Composite Thermoelectric Films

    LI Peng, NIE Xiao-Lei, TIAN Ye, FANG Wen-Bing, WEI Ping, ZHU Wan-Ting, SUN Zhi-Gang, ZHANG Qing-Jie, ZHAO Wen-Yu

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China)

    Flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric films were prepared on polyimide substrates by screen printing. Its electrical transport properties are enhanced by optimizing the content of Bi0.5Sb1.5Te3powder. The highest power factor of the optimized Bi0.5Sb1.5Te3/epoxy films reached 1.12 mW·m–1·K–2at 300 K, increased by 33% as compared with previous value. The anti-bending test results show that resistance of the thick films remains unchanged when the bending radius is over 20 mm and slightly increases within 3000 bending cycles when the bending radius is 20 mm, implying that the as-prepared films have potential application in flexible TE devices. The flexible thermoelectric leg could establish a temperature difference from 4.2 ℃to 7.8 ℃under working current from 0.01 A to 0.05 A, showing potential application in planar cooling field.

    flexible thermoelectric films; screen printing; Bi0.5Sb1.5Te3/epoxy composite films; electrical property; planar cooling field

    Development of microelectronic integrated technology resulted in increase in the heat flux density, which seriously affects the performance and service life of the electronic devices[1-2]. Therefore, how to effectively take away the harmful waste heat poses great challenges. Among various heat dissipation techniques[3], thermoelectric (TE) cooling based on Peltier effect of TE materials has attracted increasing attention due to a series of unique advantages such as no noise, no pollution, no moving parts, rapid cooling, simple operation, high reliability, and lightweight, which is expected to solve the problem of heat dissipation of electronic devices with high heat flux[4-6]. However, most of the commercial TE cooling devices adopt a vertical design, in which the heat flows along the longitudinal direction[7-9]. These TE cooling devices are composed of bulk P and N type thermoelectric legs connected electrically in series through metallic electrodes and then sandwiched between two electrically insulated and thermally conductive ceramic plates. Thus this structure has poor flexibility and is very difficult to realize dimensionally match between TE devices and electronic components[10]. However, the cooling performance deteriorated seriously when the device is downscaled to micro level. While for another type of TE cooling devices using planar design, in which the heat flow is parallel to the substrate, their relatively long TE legs can be fabricated from TE films which are beneficial to flexibility, miniaturization and relatively large temperature difference.

    Bi2Te3–based alloys (BiSb2–xTe3and Bi2Te3–xSe) are customarily regarded as the representative of V2VI3TE materials, and have been commercialized and widely used for refrigeration and energy conversion applications in the low-temperature range[11-12]. Although great progress was made in developing bulk Bi2Te3materials with high performance, performance of Bi2Te3–based films is still unsatisfactory. As a simple and efficient process to prepare TE films[13-16], the bottleneck of printing lies in the deterioration of electrical transport properties which results from low density and various structural defects such as holes and cracks[17]. Several strategies were employed to enhance the electrical transport properties of the printed TE films, such as cold isostatic pressing[18-19], addition of sintering aids[20], and high-temperature sintering to remove the insulating binders[21]. However, realization of high-performance flexible TE cooling devices is still frustrated by the poor electrical transport properties.

    In previous work[22], Bi0.5Sb1.5Te3/epoxy flexible thick films with (000) preferential orientation were prepared on polyimide substrates by combination of brush-printing and hot-pressing curing processes, which greatly improved the electrical transport properties of the composite thick films. However, brush-printing process is difficult to realize mass production due to its poor controllability. In this work, a series of Bi0.5Sb1.5Te3/epoxy composite flexible thermoelectric thick films were successfully prepared on polyimide substrates by screen printing, and the electrical transport properties of the thick films were further improved by optimizing the content of Bi0.5Sb1.5Te3powder.

    1 Experimental

    The preparation of thermoelectric slurries refers to the method reported in former work[22]. Thermoelectric slurry was prepared by using diglycidyl ether of bisphenol-F epoxy resin as adhesives, methylhexahydrophthalic anhydride as hardener, 2-ethyl-4-methylimidazole (2E4MI) as anhydride accelerator and Bi0.5Sb1.5Te3as thermoelectric component. Firstly, Bi0.5Sb1.5Te3ingots were crushed and pulverized with a planetary ball mill at a speed of 200 r/min for 24 h under the protection of argon, then dried in vacuum oven at 60 ℃ for 2 h to get thermoelectric powder. Secondly, epoxy resin, hardener, catalyst and diluent were mixed to form the epoxy system mixture.

    The obtained thermoelectric slurries were printed on the pre-cleaned polyimide (PI) substrates by screen printing to form thick films. The films were dried in vacuum at 100 ℃ for 60 min, and then cured at 300 ℃ for 4 h in hot-pressing apparatus. To further reveal the impact of the content of Bi0.5Sb1.5Te3on the electrical properties of the composite films, the slurries were prepared with different content of Bi0.5Sb1.5Te3powder (=6.5,=7,=8,=9 and=10) whererepresents the mass ratio of Bi0.5Sb1.5Te3to epoxy system (epoxy resin, hardener and catalyst).

    The phase constituents of all thick films were determined by X-ray diffraction (XRD, PANalyticalc’ Pert PRO) using Cu Kαradiation (=0.15418 nm). Microstructures were examined by a field emission scanning electron microscope (FESEM, Zeiss ULTRA-PLUS-43-13). The density of the thick films was measured with the Archimedes method. The Hall coefficient (H), carrier concentration (), mobility (H) and electrical conductivity () of the thick films were tested by the HL5500 Hall effect test system at room temperature. The in-plane electrical conductivity () and Seebeck coefficient () were measured with the standard four-probe method (Sinkuriko, ZEM-3) in He atmosphere. The measurement error forandis ±5%. The bending tests of the thick films were performed using a homemade bending test apparatus. The temperature distribution of the TE leg was measured under different applied currents () by visual infrared thermometer (FLUKE, TI 400).

    2 Results and discussion

    XRD patterns of these composite films are displayed in Fig. 1. All diffraction peaks can be indexed to the standard diffraction data of Bi0.5Sb1.5Te3(JCPDS 49- 1713), indicating that these films are composed of single- phase Bi0.5Sb1.5Te3.

    Fig. 2 shows the cross-sectional FESEM images of these composite films. The thicknesses of these films are approximate 20 μm. It is apparent that there are organic residues and pores in all the films. As the content of Bi0.5Sb1.5Te3powder increased from=6.5 to=8, the organic residues were reduced. However, withfurther increasing, the pores were obviously increased. Thus the film prepared with=8 has the most compact microstructure, which could be also identified from the variation of film densities (Table 1).

    The room-temperature electrical transport properties of these composite films are listed in Table 1. The positive Hall coefficientHindicated that most of carriers were holes. The p-type conduction character was consistent with the corresponding bulk materials[23]. Variation of carrier concentrationwithcan be explained by the difference of film density induced by evolution of microstructure. It is noteworthy that the Hall mobilityHof thick films increased by 30% from 45.15 cm2·V–1·s–1for=6.5 to 58.85 cm2·V–1·s–1for=8. The enhancement ofHis attributed to the improved electrical contact between Bi0.5Sb1.5Te3powders. However, withfurther increasing, the Hall mobility decreased. This is due to the loose microstructure caused by relatively low content of epoxy resin. The variation trend of electrical conductivityis consistent withH.

    Fig. 1 XRD patterns of the composite films prepared with different contents of Bi0.5Sb1.5Te3 powder

    Fig. 2 Cross-sectional FESEM images of the composite thick films prepared with different contents of Bi0.5Sb1.5Te3 powder

    (a, f)= 6.5; (b, g)= 7; (c, h)= 8; (d, i)= 9; (e, j)= 10

    Table 1 Densities and electrical properties of the composite films at room temperature

    Fig. 3 shows the temperature dependence of electrical conductivity, Seebeck coefficientand power factorασ of these composite films.decreased as the test temperature increases, similar with the metallic transport behavior of the bulk Bi0.5Sb1.5Te3materials[24]. It is worth noting thatincreased significantly with the content of Bi0.5Sb1.5Te3powder,increasing from 6.5 to 8 and then decreased as thewas further increased. The improvedcan be explained by the reduced organics and improved grain contact as shown in Fig. 2, which led to greater mobility. Whenfurther increases, the amount of epoxy resin is not enough to effectively adhere the grains, which leads to loose microstructure. Obviously, the deteriorated microstructure must cause decreasedHand. As shown in Fig. 3(b),almost remains constant withincreasing. Thus, the power factorασincreased significantly with the content of Bi0.5Sb1.5Te3powder,increasing from 6.5 to 8 and then decreased as thewas further increased. When=8, the optimized power factor of thick films reached 1.12 mW·m–1·K–2. Table 2 summarizes the electrical conductivityand power factor2of Bi2Te3-based composite films in this work and literature[10,14,17,20,22,25]. As shown in Table 2, the optimized electrical conductivity and power factor of the as-prepared composite films are much higher than all of the reported composite films, showing increments of 33% and 331% as compared with the power factor of our previous work[22]and Bi2Te3+1%Se/epoxy composite films[20], respectively.

    Fig. 3 Temperature dependence of (a) electrical conductivity σ, (b) Seebeck coefficient α and (c) power factor α2σ of the composite thick films prepared with different content of Bi0.5Sb1.5Te3 powder

    Table 2 Comparison of σ and α2σ of Bi2Te3-based composite films reported by different groups

    Fig. 4 shows the variation rates of resistance (?/0) for the TE leg prepared by the optimal content of Bi0.5Sb1.5Te3powder before and after anti-bending tests with different bending radius and bending cycles. As shown in Fig. 4(a), the resistance variation rates are almost 0 when the bending radius gradually decreases from 90 mm to 20 mm, and rapidly increases when the bending radius is less than 10 mm. As shown in Fig. 4(b), the resistance variation rates are less than 5% within 3000 bending cycles when the bending radius is 20 mm. The anti-bending test results indicate the as-prepared films have potential application in flexible TE devices.

    Fig. 5 shows the temperature distribution of the TE leg prepared by the optimal content of Bi0.5Sb1.5Te3powder. As shown in Fig. 5, the TE leg could establish a hot end and a cold end when applied different currents. The temperature difference (D) between the hot end (h) and cold end (c) increases from 4.2 ℃ to 7.8 ℃ with the current increasing from 0.01 A to 0.05 A, showing potential application in planar cooling field. However, both the temperatures of hot end and cold end gradually increases with the current increasing due to Joule heat effect induced by the internal resistance of the TE leg. According to the thermodynamic analysis of TE cooling device[26-27], there are several different effects for the thermal energy in the device, such as thermal energy from Peltier effect, thermal conduction energy from Fourier effect, and Joule thermal energy from the internal resistance of the device. When the thermal energy from Peltier effect is greater than those from Fourier effect and Joule heat effect,cdecreases. Thus, the research in next step will focus on decrease of the internal resistance of TE legs and the device structure design.

    Fig. 4 Anti-bending tests of flexible films: (a) bending radius and (b) bending cycles

    Fig. 5 Visual infrared images of the composite thick films measured with different currents (I)

    (a)=0.01 A; (b)=0.02 A; (c)=0.03 A; (d)=0.04 A; (e)=0.05 A

    3 Conclusions

    A series of flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric thick films were successfully prepared on polyimide substrates by screen printing. It is discovered that the content of Bi0.5Sb1.5Te3powder plays a vital role in improving the microstructure and electrical transport properties. The results indicate that as the content of Bi0.5Sb1.5Te3powder increases, the electrical conductivity firstly increases and then decreases with the Seebeck coefficient remaining almost constant, and the power factor follows the same trend as the electrical conductivity. The optimized power factor reaches 1.12 mW·K–2·m–1, increased by 33% as compared with our previous work. The anti-bending test indicates that the resistance of the thick films remains unchanged when the bending radius is over 20 mm and slightly increases within 3000 bending cycles when the bending radius is 20 mm, implying that the as-prepared films have potential application in flexible thermoelectric devices. The cooling performance of a single TE leg was evaluated by applying different current. A temperature difference from 4.2 to 7.8 ℃was observed under working current from 0.01 A to 0.05 A, showing potential application in planar cooling field.

    Acknowledgments

    XRD and FESEM experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The transport properties measurements were performed at State Key Lab of Advanced Technology for Materials Synthesis and Processing of Wuhan University of Technology.

    [1] SIMONS R E, EllSWORTH M J, CHU R C. An assessment of module cooling enhancement with thermoelectric coolers.., 2005, 127(1): 76–84.

    [2] ZHANG H Y, MUI Y C, TARIN M. Analysis of thermoelectric cooler performance for high power electronic package.., 2010, 30(6/7): 561–568.

    [3] AVRAM B C, IYENGAR M, KRAUS A D. Design of optimum plate-fin natural convective heat sinks., 2003, 125(2): 208–216.

    [4] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems., 2008, 321(5895): 1457–1461.

    [5] HARMAN T C, TAYLOR P J, WALSH M P,. Quantum dot superlattice thermoelectric materials and devices., 2002, 297(5590): 2229–2232.

    [6] CHOWDHURY I, PRASHER R, LOFGREE K,. On-chip cooling by superlattice-based thin-film thermoelectrics., 2009, 4(4): 235–238.

    [7] HAO F, QIU P F, TANG Y S,. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃., 2016, 9(10): 3120–3127.

    [8] DISALVO F J. Thermoelectric cooling and power generation., 1999, 285(5428): 703–706.

    [9] YANG J, STABLER F R. Automotive applications of thermoelectric materials., 2009, 38(7): 1245–1251.

    [10] LU Z, LAYANI M, ZHAO X,. Fabrication of flexible thermoelectric thin film devices by inkjet printing., 2014, 10(17): 3551–3554.

    [11] XU B, AGNE M T, FENG T L,. Nanocomposites from solution- synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K)., 2017, 29(10): 1605140–1–9.

    [12] ZHU T J, HU L P, ZHAO X B,. New insight into intrinsic point defects in V2VI3thermoelectric materials., 2016, 3(7): 1600004–1–16.

    [13] MADAN D, CHEN A, WRIGHT P K,. Dispenser printed composite thermoelectric thick films for thermoelectric generator application., 2011, 109(3): 034904–1–6.

    [14] MADAN D, WANG Z Q, CHEN A,. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3., 2014, 104(1): 013902–1–4.

    [15] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric., 2014, 7(6): 1959–1965.

    [16] VARGHESE T, HOLLAR C, RICHARDSON J,. High- performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals., 2016, 6(1): 33135–1–6.

    [17] WU H, LIU X, WEI P,. Fabrication and characterization of brush-printed p-type Bi0.5Sb1.5Te3thick films for thermoelectric cooling devices., 2016, 46(5): 2950–2957.

    [18] SHI J X, CHEN H L, JIA S H,. Rapid and low-cost fabrication of thermoelectric composite using low-pressure cold pressing and thermocuring methods., 2018, 212: 299–302.

    [19] CAO Z, KOUKHARENKO E, TUDOR M J,. Flexible screen printed thermoelectric generator with enhanced processes and materials., 2016, 238: 196–206.

    [20] MADAN D, WANG Z Q, CHEN A,. Enhanced performance of dispenser printed MA n-type Bi2Te3composite thermoelectric generator., 2012, 4(11): 6117–6124.

    [21] MADAN D, WANG Z Q, CHEN A,. High-performance dispenser printed MA p-type Bi0.5Sb1.5Te3flexible thermoelectric generators for powering wireless sensor networks., 2013, 5(22): 11872–11876.

    [22] HOU W K, NIE X L, ZHAO W Y,. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices., 2018, 50: 766–776.

    [23] GUO X, JIA X, QIN J,. Fast preparation and high thermoelectric performance of the stable Bi0.5Sb1.5Te3bulk materials for different synthesis pressures., 2014, 610: 204–208.

    [24] SUH D, LEE S, MUN H,. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded grapheme composites by simultaneous modulation of electronic and thermal carrier transport., 2015, 13: 67–76.

    [25] MADAN D, WANG Z Q, WRIGHT P K,. Printed flexible thermoelectric generators for use on low levels of waste heat., 2015, 156: 587–592.

    [26] CHEN J C, YAN Z J, WU L Q. Nonequilibrium thermodynamic analysis of a thermoelectric device., 1997, 22(10): 979–985.

    [27] CHEN L G, WU C, SUN F R. Heat transfer effect on the specific cooling load of refrigerators.., 1996, 16(12): 989–997.

    Bi0.5Sb1.5Te3/環(huán)氧樹脂柔性復(fù)合熱電厚膜的制備及其面內(nèi)制冷性能

    李鵬, 聶曉蕾, 田燁, 方文兵, 魏平, 朱婉婷, 孫志剛, 張清杰, 趙文俞

    (武漢理工大學(xué) 材料復(fù)合新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室, 武漢 430070)

    利用絲網(wǎng)印刷法在聚酰亞胺基板上制備了Bi0.5Sb1.5Te3/環(huán)氧樹脂柔性復(fù)合熱電厚膜, 通過優(yōu)化Bi0.5Sb1.5Te3粉末含量提高了其電輸運(yùn)性能。復(fù)合厚膜在300 K時(shí)的最優(yōu)功率因子達(dá)到1.12 mW·m-1·K-2, 較前期報(bào)道的數(shù)值提高了33%。抗彎測試表明復(fù)合厚膜的電阻在彎曲半徑大于20 mm時(shí)基本不變, 在彎曲半徑為20 mm, 彎曲次數(shù)小于3000次時(shí), 僅有輕微增大, 說明其在柔性熱電器件領(lǐng)域具有應(yīng)用潛力。紅外熱成像技術(shù)顯示, 在工作電流為0.01 A到0.05 A時(shí), 復(fù)合厚膜熱電臂兩端可以形成4.2 ℃到7.8 ℃的溫差, 表明了其在面內(nèi)制冷領(lǐng)域應(yīng)用的可能性。

    柔性熱電厚膜; 絲網(wǎng)印刷法; Bi0.5Sb1.5Te3/環(huán)氧樹脂復(fù)合厚膜; 電輸運(yùn)性能; 面內(nèi)制冷領(lǐng)域

    TQ174

    A

    2018-11-09;

    2019-01-24

    National Natural Science Foundation of China (11834012, 51620105014, 51572210, 51521001); National Key Research and Development Plan of China (2018YFB0703600)

    LI Peng (1995-), male, candidate of Master degree. E-mail: penglee@whut.edu.cn

    NIE Xiao-Lei, laboratory technician. E-mail: xiaoleinie@whut.edu.cn; ZHAO Wen-Yu, professor. E-mail: wyzhao@whut.edu.cn

    1000-324X(2019)06-0679-06

    10.15541/jim20180528

    猜你喜歡
    厚膜武漢理工大學(xué)絲網(wǎng)
    《最后一抹紅》
    《見證·壹》
    流行色(2019年8期)2019-11-04 07:17:12
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    星載厚膜混合集成SSPC故障分析與研究
    PZT厚膜的電霧化沉積與溶膠滲透研究*
    在這樣的地方使用絲網(wǎng)印刷——走進(jìn)日常生活的村上
    基于PLC的絲網(wǎng)印刷機(jī)控制系統(tǒng)的研究
    電子制作(2017年7期)2017-06-05 09:36:13
    厚膜電源助焊劑清洗工藝研究
    電子制作(2017年7期)2017-06-05 09:36:13
    厚膜導(dǎo)電細(xì)線印制的研究
    国产又色又爽无遮挡免费看| 亚洲人成77777在线视频| 国产亚洲欧美在线一区二区| 男女床上黄色一级片免费看| 亚洲成人国产一区在线观看| 免费电影在线观看免费观看| 天堂√8在线中文| 啦啦啦观看免费观看视频高清| 91在线观看av| 亚洲av成人一区二区三| 国产精品乱码一区二三区的特点| 一级毛片精品| 国产成+人综合+亚洲专区| 曰老女人黄片| 在线观看www视频免费| 在线观看66精品国产| 亚洲午夜精品一区,二区,三区| 亚洲国产高清在线一区二区三 | 视频区欧美日本亚洲| 中文字幕另类日韩欧美亚洲嫩草| 免费看美女性在线毛片视频| 在线观看午夜福利视频| 性欧美人与动物交配| 日本一本二区三区精品| 国产单亲对白刺激| 国产日本99.免费观看| 久久久久久久久免费视频了| 免费观看精品视频网站| 免费无遮挡裸体视频| 搡老岳熟女国产| 一级a爱片免费观看的视频| 亚洲国产欧洲综合997久久, | 久久九九热精品免费| 国产成年人精品一区二区| 久久久国产精品麻豆| 亚洲男人天堂网一区| 久久久久久国产a免费观看| 色精品久久人妻99蜜桃| 精品欧美国产一区二区三| 国产视频内射| 国内精品久久久久精免费| 欧美性长视频在线观看| 麻豆成人av在线观看| 老司机深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲av高清不卡| 又紧又爽又黄一区二区| 999久久久精品免费观看国产| 嫩草影视91久久| 亚洲自拍偷在线| 成人av一区二区三区在线看| 亚洲三区欧美一区| 老汉色∧v一级毛片| 久久久国产欧美日韩av| 午夜日韩欧美国产| 老司机深夜福利视频在线观看| 欧美不卡视频在线免费观看 | 欧美成人免费av一区二区三区| 1024手机看黄色片| 很黄的视频免费| 国产97色在线日韩免费| 国产区一区二久久| 久久久久久亚洲精品国产蜜桃av| 俺也久久电影网| 嫁个100分男人电影在线观看| 午夜福利视频1000在线观看| 女警被强在线播放| 国产真实乱freesex| 美女 人体艺术 gogo| 久久香蕉激情| 国产区一区二久久| √禁漫天堂资源中文www| 亚洲在线自拍视频| 欧美性长视频在线观看| 2021天堂中文幕一二区在线观 | 亚洲av中文字字幕乱码综合 | 无人区码免费观看不卡| 午夜免费鲁丝| 国产一级毛片七仙女欲春2 | 免费在线观看日本一区| 欧美成人午夜精品| 日本 av在线| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 国产亚洲精品av在线| 大型黄色视频在线免费观看| 老汉色av国产亚洲站长工具| 久久精品国产亚洲av高清一级| 麻豆成人午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 欧美精品亚洲一区二区| 国产不卡一卡二| 欧美日韩乱码在线| 免费在线观看成人毛片| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 99热只有精品国产| 一边摸一边抽搐一进一小说| 成年女人毛片免费观看观看9| 国产激情欧美一区二区| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 又大又爽又粗| 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 日本 av在线| 夜夜爽天天搞| 99热这里只有精品一区 | 欧美在线一区亚洲| 国产精品亚洲av一区麻豆| 久久精品国产综合久久久| 亚洲国产高清在线一区二区三 | 美女高潮到喷水免费观看| 国产一区二区三区视频了| 高清在线国产一区| 一级毛片女人18水好多| 国产伦在线观看视频一区| 国产精品野战在线观看| 亚洲精品美女久久av网站| 琪琪午夜伦伦电影理论片6080| 久久亚洲真实| 成人午夜高清在线视频 | 一级毛片女人18水好多| 美国免费a级毛片| 亚洲专区国产一区二区| 国产一区在线观看成人免费| 精品国产美女av久久久久小说| 亚洲av美国av| 亚洲精华国产精华精| 99久久精品国产亚洲精品| 热99re8久久精品国产| 亚洲男人的天堂狠狠| 久久精品国产综合久久久| 又紧又爽又黄一区二区| 9191精品国产免费久久| 亚洲男人的天堂狠狠| 淫妇啪啪啪对白视频| 50天的宝宝边吃奶边哭怎么回事| 色综合婷婷激情| 国产精品免费视频内射| 身体一侧抽搐| 亚洲国产精品sss在线观看| 久久精品国产亚洲av香蕉五月| av欧美777| 变态另类丝袜制服| 免费女性裸体啪啪无遮挡网站| 中亚洲国语对白在线视频| 国内精品久久久久久久电影| 高潮久久久久久久久久久不卡| 精品高清国产在线一区| 日韩免费av在线播放| 亚洲中文av在线| 免费在线观看成人毛片| 看免费av毛片| 国产一级毛片七仙女欲春2 | 免费在线观看日本一区| 成人国产一区最新在线观看| 欧美性猛交黑人性爽| 中文字幕人妻熟女乱码| 男男h啪啪无遮挡| av天堂在线播放| 免费观看人在逋| 特大巨黑吊av在线直播 | 国产高清激情床上av| 在线观看午夜福利视频| 亚洲在线自拍视频| 亚洲全国av大片| av在线天堂中文字幕| 在线av久久热| 色老头精品视频在线观看| 草草在线视频免费看| 18禁裸乳无遮挡免费网站照片 | 日韩一卡2卡3卡4卡2021年| 香蕉久久夜色| 欧美在线黄色| 中亚洲国语对白在线视频| 午夜久久久久精精品| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 好男人在线观看高清免费视频 | 久久狼人影院| 99国产精品一区二区蜜桃av| 成人三级做爰电影| 午夜激情av网站| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 人人妻人人看人人澡| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 免费观看人在逋| 欧美久久黑人一区二区| 国产av在哪里看| 最近最新免费中文字幕在线| 亚洲精品av麻豆狂野| 精华霜和精华液先用哪个| 久久九九热精品免费| 又黄又粗又硬又大视频| 黄片小视频在线播放| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 叶爱在线成人免费视频播放| 最新美女视频免费是黄的| 久久精品人妻少妇| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 欧美在线黄色| 欧美日韩一级在线毛片| 婷婷亚洲欧美| 长腿黑丝高跟| 婷婷丁香在线五月| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 国产99久久九九免费精品| 亚洲真实伦在线观看| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3 | 亚洲精品国产精品久久久不卡| 国产麻豆成人av免费视频| 看片在线看免费视频| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 真人做人爱边吃奶动态| 午夜福利欧美成人| 高清毛片免费观看视频网站| 中文字幕高清在线视频| 18禁黄网站禁片免费观看直播| 51午夜福利影视在线观看| 精品一区二区三区av网在线观看| 国产亚洲精品第一综合不卡| av超薄肉色丝袜交足视频| 日韩大尺度精品在线看网址| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 亚洲黑人精品在线| 一本精品99久久精品77| 亚洲真实伦在线观看| 这个男人来自地球电影免费观看| 熟女少妇亚洲综合色aaa.| 老司机福利观看| a在线观看视频网站| 最新在线观看一区二区三区| 国产一区二区三区视频了| 一区福利在线观看| 日日干狠狠操夜夜爽| www.www免费av| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| 日日摸夜夜添夜夜添小说| 欧美三级亚洲精品| 欧美激情极品国产一区二区三区| 久久久久九九精品影院| 免费在线观看日本一区| 国产免费男女视频| 此物有八面人人有两片| 视频区欧美日本亚洲| 国产色视频综合| 国产区一区二久久| 久久国产精品人妻蜜桃| 色老头精品视频在线观看| 丁香欧美五月| 亚洲成人国产一区在线观看| 男女视频在线观看网站免费 | 国产高清有码在线观看视频 | 波多野结衣av一区二区av| www.999成人在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲成a人片在线一区二区| 精品高清国产在线一区| 亚洲国产欧美网| 精品少妇一区二区三区视频日本电影| 91成年电影在线观看| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| 亚洲av第一区精品v没综合| 一本精品99久久精品77| 精品久久久久久,| 午夜精品在线福利| 欧美绝顶高潮抽搐喷水| 亚洲国产欧洲综合997久久, | 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 国产高清激情床上av| 免费在线观看黄色视频的| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 亚洲国产精品久久男人天堂| ponron亚洲| 亚洲av第一区精品v没综合| 成人美女网站在线观看视频| 欧美日韩在线观看h| 禁无遮挡网站| 国产午夜精品论理片| 国产成人91sexporn| 久久精品国产亚洲网站| 亚洲人成网站在线播放欧美日韩| 美女黄网站色视频| 国产精品久久久久久久久免| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| av在线亚洲专区| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 日韩av不卡免费在线播放| 午夜福利在线观看吧| 亚洲国产日韩欧美精品在线观看| 亚州av有码| 亚洲av不卡在线观看| 亚洲av中文av极速乱| 97热精品久久久久久| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 精品无人区乱码1区二区| 免费av不卡在线播放| 精品久久国产蜜桃| 老司机午夜福利在线观看视频| 国产高潮美女av| videossex国产| 色5月婷婷丁香| 99在线人妻在线中文字幕| 老司机福利观看| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 精品久久国产蜜桃| 老女人水多毛片| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 国产老妇女一区| 国产黄色小视频在线观看| 麻豆一二三区av精品| 久久精品国产清高在天天线| 免费看日本二区| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 99热精品在线国产| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区 | 国产精品永久免费网站| 午夜影院日韩av| 欧美色视频一区免费| 欧美日韩国产亚洲二区| 十八禁网站免费在线| 内地一区二区视频在线| 午夜福利18| 热99re8久久精品国产| 日本黄大片高清| 少妇猛男粗大的猛烈进出视频 | 波野结衣二区三区在线| 欧美日韩乱码在线| 人人妻人人看人人澡| 欧美精品国产亚洲| 亚洲第一电影网av| 欧美bdsm另类| 又爽又黄无遮挡网站| 97碰自拍视频| 简卡轻食公司| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费| 免费看光身美女| 久久久精品欧美日韩精品| 97超碰精品成人国产| 欧美另类亚洲清纯唯美| 男女啪啪激烈高潮av片| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 久久欧美精品欧美久久欧美| 国产日本99.免费观看| 又粗又爽又猛毛片免费看| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 麻豆精品久久久久久蜜桃| 2021天堂中文幕一二区在线观| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 美女大奶头视频| 成熟少妇高潮喷水视频| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 国产蜜桃级精品一区二区三区| 长腿黑丝高跟| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 久久久欧美国产精品| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 伦理电影大哥的女人| 亚洲五月天丁香| 亚洲成人av在线免费| 成人无遮挡网站| 亚洲成人av在线免费| 禁无遮挡网站| 成人毛片a级毛片在线播放| 51国产日韩欧美| 免费看a级黄色片| 成人鲁丝片一二三区免费| 美女免费视频网站| 久久精品国产亚洲av天美| 一进一出好大好爽视频| 国产成人a区在线观看| 国产成人福利小说| 亚洲成av人片在线播放无| 在线观看美女被高潮喷水网站| 成人高潮视频无遮挡免费网站| 男女视频在线观看网站免费| 国产熟女欧美一区二区| 男人和女人高潮做爰伦理| 亚洲中文字幕日韩| 麻豆国产av国片精品| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看 | 一级毛片aaaaaa免费看小| 亚洲18禁久久av| 免费一级毛片在线播放高清视频| 综合色av麻豆| 亚洲欧美日韩东京热| 六月丁香七月| 国产成人精品久久久久久| 国产人妻一区二区三区在| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 日本 av在线| 久久人妻av系列| 亚洲av成人av| 在线播放无遮挡| av在线播放精品| 欧美最新免费一区二区三区| 老司机影院成人| 亚洲精品亚洲一区二区| 国产精品伦人一区二区| 久久这里只有精品中国| 亚洲国产精品国产精品| 一a级毛片在线观看| 中文在线观看免费www的网站| 天堂√8在线中文| 91在线观看av| 嫩草影院入口| 12—13女人毛片做爰片一| 久久精品国产亚洲网站| 国内揄拍国产精品人妻在线| 久久人妻av系列| 有码 亚洲区| 伦精品一区二区三区| 久久韩国三级中文字幕| 麻豆久久精品国产亚洲av| 久久久久性生活片| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| a级毛片免费高清观看在线播放| 熟妇人妻久久中文字幕3abv| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 成人二区视频| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 嫩草影院精品99| 国内精品一区二区在线观看| 日本欧美国产在线视频| 亚洲精品在线观看二区| 高清毛片免费看| 久久人人爽人人爽人人片va| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 久久久午夜欧美精品| 欧美成人精品欧美一级黄| 色吧在线观看| 亚洲欧美成人精品一区二区| av卡一久久| 不卡一级毛片| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 啦啦啦观看免费观看视频高清| 18禁在线播放成人免费| .国产精品久久| 在线免费十八禁| 成人三级黄色视频| 乱码一卡2卡4卡精品| 一级毛片电影观看 | 亚洲美女搞黄在线观看 | 熟妇人妻久久中文字幕3abv| 俺也久久电影网| 男人舔奶头视频| 成年av动漫网址| 亚洲熟妇熟女久久| 欧美绝顶高潮抽搐喷水| 春色校园在线视频观看| 人人妻,人人澡人人爽秒播| 欧美另类亚洲清纯唯美| 亚洲内射少妇av| 日韩国内少妇激情av| 美女cb高潮喷水在线观看| 亚洲精品在线观看二区| 国产乱人偷精品视频| 久久久久久国产a免费观看| 看免费成人av毛片| 亚洲欧美日韩高清专用| 国产一区二区三区av在线 | 亚洲一区二区三区色噜噜| 美女 人体艺术 gogo| 亚洲成人中文字幕在线播放| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站| 亚洲人成网站在线播放欧美日韩| a级毛色黄片| 久久久久久伊人网av| 欧美高清成人免费视频www| 亚洲五月天丁香| 亚洲激情五月婷婷啪啪| 国产久久久一区二区三区| 国产精品三级大全| 国产黄片美女视频| 久久精品夜色国产| 日韩欧美一区二区三区在线观看| 久久久久久久久中文| 色播亚洲综合网| 两个人的视频大全免费| 欧美极品一区二区三区四区| АⅤ资源中文在线天堂| 国产精品乱码一区二三区的特点| 久久九九热精品免费| 深夜a级毛片| 观看免费一级毛片| 观看美女的网站| 亚洲欧美精品自产自拍| 如何舔出高潮| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 日韩 亚洲 欧美在线| 最新中文字幕久久久久| 成人精品一区二区免费| 国模一区二区三区四区视频| 最好的美女福利视频网| 国产精品一区二区免费欧美| 69人妻影院| 一区二区三区高清视频在线| 高清毛片免费看| 淫秽高清视频在线观看| 欧美日韩综合久久久久久| 亚洲成a人片在线一区二区| 在线免费观看的www视频| av在线亚洲专区| 给我免费播放毛片高清在线观看| 国产精品无大码| 午夜精品一区二区三区免费看| 狠狠狠狠99中文字幕| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 成年女人永久免费观看视频| 国语自产精品视频在线第100页| 美女 人体艺术 gogo| 亚洲av.av天堂| 久久久久免费精品人妻一区二区| 久久久久九九精品影院| 国产 一区精品| 国内精品久久久久精免费| 日本a在线网址| 精品一区二区三区视频在线观看免费| 蜜桃亚洲精品一区二区三区| 少妇的逼好多水| 国产精品1区2区在线观看.| 欧美色欧美亚洲另类二区| 国产成人91sexporn| 亚洲,欧美,日韩| 亚洲欧美日韩高清专用| 国内揄拍国产精品人妻在线| 国产亚洲精品综合一区在线观看| 国产精华一区二区三区| eeuss影院久久| 赤兔流量卡办理| 亚洲精品久久国产高清桃花| 亚洲自拍偷在线| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 亚洲欧美精品自产自拍| 99热这里只有精品一区| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 简卡轻食公司| 亚洲av.av天堂| 不卡视频在线观看欧美| 一进一出抽搐动态| 日日撸夜夜添| 日本熟妇午夜| 三级毛片av免费| 亚州av有码| 免费无遮挡裸体视频| 国产视频内射| 99在线人妻在线中文字幕| av天堂中文字幕网| 又爽又黄无遮挡网站| 国国产精品蜜臀av免费| 你懂的网址亚洲精品在线观看 | 日韩成人伦理影院| 1024手机看黄色片| 精品一区二区免费观看| 国产免费男女视频| 狂野欧美白嫩少妇大欣赏| 免费不卡的大黄色大毛片视频在线观看 | 不卡一级毛片| 日本三级黄在线观看| 日本免费a在线|