• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/Epoxy Composite Thermoelectric Films

    2019-07-09 00:23:52LIPengNIEXiaoLeiTIANYeFANGWenBingWEIPingZHUWanTingSUNZhiGangZHANGQingJieZHAOWenYu
    無機(jī)材料學(xué)報(bào) 2019年6期
    關(guān)鍵詞:厚膜武漢理工大學(xué)絲網(wǎng)

    LI Peng, NIE Xiao-Lei, TIAN Ye, FANG Wen-Bing, WEI Ping, ZHU Wan-Ting, SUN Zhi-Gang, ZHANG Qing-Jie, ZHAO Wen-Yu

    ?

    Fabrication and Planar Cooling Performance of Flexible Bi0.5Sb1.5Te3/Epoxy Composite Thermoelectric Films

    LI Peng, NIE Xiao-Lei, TIAN Ye, FANG Wen-Bing, WEI Ping, ZHU Wan-Ting, SUN Zhi-Gang, ZHANG Qing-Jie, ZHAO Wen-Yu

    (State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China)

    Flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric films were prepared on polyimide substrates by screen printing. Its electrical transport properties are enhanced by optimizing the content of Bi0.5Sb1.5Te3powder. The highest power factor of the optimized Bi0.5Sb1.5Te3/epoxy films reached 1.12 mW·m–1·K–2at 300 K, increased by 33% as compared with previous value. The anti-bending test results show that resistance of the thick films remains unchanged when the bending radius is over 20 mm and slightly increases within 3000 bending cycles when the bending radius is 20 mm, implying that the as-prepared films have potential application in flexible TE devices. The flexible thermoelectric leg could establish a temperature difference from 4.2 ℃to 7.8 ℃under working current from 0.01 A to 0.05 A, showing potential application in planar cooling field.

    flexible thermoelectric films; screen printing; Bi0.5Sb1.5Te3/epoxy composite films; electrical property; planar cooling field

    Development of microelectronic integrated technology resulted in increase in the heat flux density, which seriously affects the performance and service life of the electronic devices[1-2]. Therefore, how to effectively take away the harmful waste heat poses great challenges. Among various heat dissipation techniques[3], thermoelectric (TE) cooling based on Peltier effect of TE materials has attracted increasing attention due to a series of unique advantages such as no noise, no pollution, no moving parts, rapid cooling, simple operation, high reliability, and lightweight, which is expected to solve the problem of heat dissipation of electronic devices with high heat flux[4-6]. However, most of the commercial TE cooling devices adopt a vertical design, in which the heat flows along the longitudinal direction[7-9]. These TE cooling devices are composed of bulk P and N type thermoelectric legs connected electrically in series through metallic electrodes and then sandwiched between two electrically insulated and thermally conductive ceramic plates. Thus this structure has poor flexibility and is very difficult to realize dimensionally match between TE devices and electronic components[10]. However, the cooling performance deteriorated seriously when the device is downscaled to micro level. While for another type of TE cooling devices using planar design, in which the heat flow is parallel to the substrate, their relatively long TE legs can be fabricated from TE films which are beneficial to flexibility, miniaturization and relatively large temperature difference.

    Bi2Te3–based alloys (BiSb2–xTe3and Bi2Te3–xSe) are customarily regarded as the representative of V2VI3TE materials, and have been commercialized and widely used for refrigeration and energy conversion applications in the low-temperature range[11-12]. Although great progress was made in developing bulk Bi2Te3materials with high performance, performance of Bi2Te3–based films is still unsatisfactory. As a simple and efficient process to prepare TE films[13-16], the bottleneck of printing lies in the deterioration of electrical transport properties which results from low density and various structural defects such as holes and cracks[17]. Several strategies were employed to enhance the electrical transport properties of the printed TE films, such as cold isostatic pressing[18-19], addition of sintering aids[20], and high-temperature sintering to remove the insulating binders[21]. However, realization of high-performance flexible TE cooling devices is still frustrated by the poor electrical transport properties.

    In previous work[22], Bi0.5Sb1.5Te3/epoxy flexible thick films with (000) preferential orientation were prepared on polyimide substrates by combination of brush-printing and hot-pressing curing processes, which greatly improved the electrical transport properties of the composite thick films. However, brush-printing process is difficult to realize mass production due to its poor controllability. In this work, a series of Bi0.5Sb1.5Te3/epoxy composite flexible thermoelectric thick films were successfully prepared on polyimide substrates by screen printing, and the electrical transport properties of the thick films were further improved by optimizing the content of Bi0.5Sb1.5Te3powder.

    1 Experimental

    The preparation of thermoelectric slurries refers to the method reported in former work[22]. Thermoelectric slurry was prepared by using diglycidyl ether of bisphenol-F epoxy resin as adhesives, methylhexahydrophthalic anhydride as hardener, 2-ethyl-4-methylimidazole (2E4MI) as anhydride accelerator and Bi0.5Sb1.5Te3as thermoelectric component. Firstly, Bi0.5Sb1.5Te3ingots were crushed and pulverized with a planetary ball mill at a speed of 200 r/min for 24 h under the protection of argon, then dried in vacuum oven at 60 ℃ for 2 h to get thermoelectric powder. Secondly, epoxy resin, hardener, catalyst and diluent were mixed to form the epoxy system mixture.

    The obtained thermoelectric slurries were printed on the pre-cleaned polyimide (PI) substrates by screen printing to form thick films. The films were dried in vacuum at 100 ℃ for 60 min, and then cured at 300 ℃ for 4 h in hot-pressing apparatus. To further reveal the impact of the content of Bi0.5Sb1.5Te3on the electrical properties of the composite films, the slurries were prepared with different content of Bi0.5Sb1.5Te3powder (=6.5,=7,=8,=9 and=10) whererepresents the mass ratio of Bi0.5Sb1.5Te3to epoxy system (epoxy resin, hardener and catalyst).

    The phase constituents of all thick films were determined by X-ray diffraction (XRD, PANalyticalc’ Pert PRO) using Cu Kαradiation (=0.15418 nm). Microstructures were examined by a field emission scanning electron microscope (FESEM, Zeiss ULTRA-PLUS-43-13). The density of the thick films was measured with the Archimedes method. The Hall coefficient (H), carrier concentration (), mobility (H) and electrical conductivity () of the thick films were tested by the HL5500 Hall effect test system at room temperature. The in-plane electrical conductivity () and Seebeck coefficient () were measured with the standard four-probe method (Sinkuriko, ZEM-3) in He atmosphere. The measurement error forandis ±5%. The bending tests of the thick films were performed using a homemade bending test apparatus. The temperature distribution of the TE leg was measured under different applied currents () by visual infrared thermometer (FLUKE, TI 400).

    2 Results and discussion

    XRD patterns of these composite films are displayed in Fig. 1. All diffraction peaks can be indexed to the standard diffraction data of Bi0.5Sb1.5Te3(JCPDS 49- 1713), indicating that these films are composed of single- phase Bi0.5Sb1.5Te3.

    Fig. 2 shows the cross-sectional FESEM images of these composite films. The thicknesses of these films are approximate 20 μm. It is apparent that there are organic residues and pores in all the films. As the content of Bi0.5Sb1.5Te3powder increased from=6.5 to=8, the organic residues were reduced. However, withfurther increasing, the pores were obviously increased. Thus the film prepared with=8 has the most compact microstructure, which could be also identified from the variation of film densities (Table 1).

    The room-temperature electrical transport properties of these composite films are listed in Table 1. The positive Hall coefficientHindicated that most of carriers were holes. The p-type conduction character was consistent with the corresponding bulk materials[23]. Variation of carrier concentrationwithcan be explained by the difference of film density induced by evolution of microstructure. It is noteworthy that the Hall mobilityHof thick films increased by 30% from 45.15 cm2·V–1·s–1for=6.5 to 58.85 cm2·V–1·s–1for=8. The enhancement ofHis attributed to the improved electrical contact between Bi0.5Sb1.5Te3powders. However, withfurther increasing, the Hall mobility decreased. This is due to the loose microstructure caused by relatively low content of epoxy resin. The variation trend of electrical conductivityis consistent withH.

    Fig. 1 XRD patterns of the composite films prepared with different contents of Bi0.5Sb1.5Te3 powder

    Fig. 2 Cross-sectional FESEM images of the composite thick films prepared with different contents of Bi0.5Sb1.5Te3 powder

    (a, f)= 6.5; (b, g)= 7; (c, h)= 8; (d, i)= 9; (e, j)= 10

    Table 1 Densities and electrical properties of the composite films at room temperature

    Fig. 3 shows the temperature dependence of electrical conductivity, Seebeck coefficientand power factorασ of these composite films.decreased as the test temperature increases, similar with the metallic transport behavior of the bulk Bi0.5Sb1.5Te3materials[24]. It is worth noting thatincreased significantly with the content of Bi0.5Sb1.5Te3powder,increasing from 6.5 to 8 and then decreased as thewas further increased. The improvedcan be explained by the reduced organics and improved grain contact as shown in Fig. 2, which led to greater mobility. Whenfurther increases, the amount of epoxy resin is not enough to effectively adhere the grains, which leads to loose microstructure. Obviously, the deteriorated microstructure must cause decreasedHand. As shown in Fig. 3(b),almost remains constant withincreasing. Thus, the power factorασincreased significantly with the content of Bi0.5Sb1.5Te3powder,increasing from 6.5 to 8 and then decreased as thewas further increased. When=8, the optimized power factor of thick films reached 1.12 mW·m–1·K–2. Table 2 summarizes the electrical conductivityand power factor2of Bi2Te3-based composite films in this work and literature[10,14,17,20,22,25]. As shown in Table 2, the optimized electrical conductivity and power factor of the as-prepared composite films are much higher than all of the reported composite films, showing increments of 33% and 331% as compared with the power factor of our previous work[22]and Bi2Te3+1%Se/epoxy composite films[20], respectively.

    Fig. 3 Temperature dependence of (a) electrical conductivity σ, (b) Seebeck coefficient α and (c) power factor α2σ of the composite thick films prepared with different content of Bi0.5Sb1.5Te3 powder

    Table 2 Comparison of σ and α2σ of Bi2Te3-based composite films reported by different groups

    Fig. 4 shows the variation rates of resistance (?/0) for the TE leg prepared by the optimal content of Bi0.5Sb1.5Te3powder before and after anti-bending tests with different bending radius and bending cycles. As shown in Fig. 4(a), the resistance variation rates are almost 0 when the bending radius gradually decreases from 90 mm to 20 mm, and rapidly increases when the bending radius is less than 10 mm. As shown in Fig. 4(b), the resistance variation rates are less than 5% within 3000 bending cycles when the bending radius is 20 mm. The anti-bending test results indicate the as-prepared films have potential application in flexible TE devices.

    Fig. 5 shows the temperature distribution of the TE leg prepared by the optimal content of Bi0.5Sb1.5Te3powder. As shown in Fig. 5, the TE leg could establish a hot end and a cold end when applied different currents. The temperature difference (D) between the hot end (h) and cold end (c) increases from 4.2 ℃ to 7.8 ℃ with the current increasing from 0.01 A to 0.05 A, showing potential application in planar cooling field. However, both the temperatures of hot end and cold end gradually increases with the current increasing due to Joule heat effect induced by the internal resistance of the TE leg. According to the thermodynamic analysis of TE cooling device[26-27], there are several different effects for the thermal energy in the device, such as thermal energy from Peltier effect, thermal conduction energy from Fourier effect, and Joule thermal energy from the internal resistance of the device. When the thermal energy from Peltier effect is greater than those from Fourier effect and Joule heat effect,cdecreases. Thus, the research in next step will focus on decrease of the internal resistance of TE legs and the device structure design.

    Fig. 4 Anti-bending tests of flexible films: (a) bending radius and (b) bending cycles

    Fig. 5 Visual infrared images of the composite thick films measured with different currents (I)

    (a)=0.01 A; (b)=0.02 A; (c)=0.03 A; (d)=0.04 A; (e)=0.05 A

    3 Conclusions

    A series of flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric thick films were successfully prepared on polyimide substrates by screen printing. It is discovered that the content of Bi0.5Sb1.5Te3powder plays a vital role in improving the microstructure and electrical transport properties. The results indicate that as the content of Bi0.5Sb1.5Te3powder increases, the electrical conductivity firstly increases and then decreases with the Seebeck coefficient remaining almost constant, and the power factor follows the same trend as the electrical conductivity. The optimized power factor reaches 1.12 mW·K–2·m–1, increased by 33% as compared with our previous work. The anti-bending test indicates that the resistance of the thick films remains unchanged when the bending radius is over 20 mm and slightly increases within 3000 bending cycles when the bending radius is 20 mm, implying that the as-prepared films have potential application in flexible thermoelectric devices. The cooling performance of a single TE leg was evaluated by applying different current. A temperature difference from 4.2 to 7.8 ℃was observed under working current from 0.01 A to 0.05 A, showing potential application in planar cooling field.

    Acknowledgments

    XRD and FESEM experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The transport properties measurements were performed at State Key Lab of Advanced Technology for Materials Synthesis and Processing of Wuhan University of Technology.

    [1] SIMONS R E, EllSWORTH M J, CHU R C. An assessment of module cooling enhancement with thermoelectric coolers.., 2005, 127(1): 76–84.

    [2] ZHANG H Y, MUI Y C, TARIN M. Analysis of thermoelectric cooler performance for high power electronic package.., 2010, 30(6/7): 561–568.

    [3] AVRAM B C, IYENGAR M, KRAUS A D. Design of optimum plate-fin natural convective heat sinks., 2003, 125(2): 208–216.

    [4] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems., 2008, 321(5895): 1457–1461.

    [5] HARMAN T C, TAYLOR P J, WALSH M P,. Quantum dot superlattice thermoelectric materials and devices., 2002, 297(5590): 2229–2232.

    [6] CHOWDHURY I, PRASHER R, LOFGREE K,. On-chip cooling by superlattice-based thin-film thermoelectrics., 2009, 4(4): 235–238.

    [7] HAO F, QIU P F, TANG Y S,. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃., 2016, 9(10): 3120–3127.

    [8] DISALVO F J. Thermoelectric cooling and power generation., 1999, 285(5428): 703–706.

    [9] YANG J, STABLER F R. Automotive applications of thermoelectric materials., 2009, 38(7): 1245–1251.

    [10] LU Z, LAYANI M, ZHAO X,. Fabrication of flexible thermoelectric thin film devices by inkjet printing., 2014, 10(17): 3551–3554.

    [11] XU B, AGNE M T, FENG T L,. Nanocomposites from solution- synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K)., 2017, 29(10): 1605140–1–9.

    [12] ZHU T J, HU L P, ZHAO X B,. New insight into intrinsic point defects in V2VI3thermoelectric materials., 2016, 3(7): 1600004–1–16.

    [13] MADAN D, CHEN A, WRIGHT P K,. Dispenser printed composite thermoelectric thick films for thermoelectric generator application., 2011, 109(3): 034904–1–6.

    [14] MADAN D, WANG Z Q, CHEN A,. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3., 2014, 104(1): 013902–1–4.

    [15] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric., 2014, 7(6): 1959–1965.

    [16] VARGHESE T, HOLLAR C, RICHARDSON J,. High- performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals., 2016, 6(1): 33135–1–6.

    [17] WU H, LIU X, WEI P,. Fabrication and characterization of brush-printed p-type Bi0.5Sb1.5Te3thick films for thermoelectric cooling devices., 2016, 46(5): 2950–2957.

    [18] SHI J X, CHEN H L, JIA S H,. Rapid and low-cost fabrication of thermoelectric composite using low-pressure cold pressing and thermocuring methods., 2018, 212: 299–302.

    [19] CAO Z, KOUKHARENKO E, TUDOR M J,. Flexible screen printed thermoelectric generator with enhanced processes and materials., 2016, 238: 196–206.

    [20] MADAN D, WANG Z Q, CHEN A,. Enhanced performance of dispenser printed MA n-type Bi2Te3composite thermoelectric generator., 2012, 4(11): 6117–6124.

    [21] MADAN D, WANG Z Q, CHEN A,. High-performance dispenser printed MA p-type Bi0.5Sb1.5Te3flexible thermoelectric generators for powering wireless sensor networks., 2013, 5(22): 11872–11876.

    [22] HOU W K, NIE X L, ZHAO W Y,. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices., 2018, 50: 766–776.

    [23] GUO X, JIA X, QIN J,. Fast preparation and high thermoelectric performance of the stable Bi0.5Sb1.5Te3bulk materials for different synthesis pressures., 2014, 610: 204–208.

    [24] SUH D, LEE S, MUN H,. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded grapheme composites by simultaneous modulation of electronic and thermal carrier transport., 2015, 13: 67–76.

    [25] MADAN D, WANG Z Q, WRIGHT P K,. Printed flexible thermoelectric generators for use on low levels of waste heat., 2015, 156: 587–592.

    [26] CHEN J C, YAN Z J, WU L Q. Nonequilibrium thermodynamic analysis of a thermoelectric device., 1997, 22(10): 979–985.

    [27] CHEN L G, WU C, SUN F R. Heat transfer effect on the specific cooling load of refrigerators.., 1996, 16(12): 989–997.

    Bi0.5Sb1.5Te3/環(huán)氧樹脂柔性復(fù)合熱電厚膜的制備及其面內(nèi)制冷性能

    李鵬, 聶曉蕾, 田燁, 方文兵, 魏平, 朱婉婷, 孫志剛, 張清杰, 趙文俞

    (武漢理工大學(xué) 材料復(fù)合新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室, 武漢 430070)

    利用絲網(wǎng)印刷法在聚酰亞胺基板上制備了Bi0.5Sb1.5Te3/環(huán)氧樹脂柔性復(fù)合熱電厚膜, 通過優(yōu)化Bi0.5Sb1.5Te3粉末含量提高了其電輸運(yùn)性能。復(fù)合厚膜在300 K時(shí)的最優(yōu)功率因子達(dá)到1.12 mW·m-1·K-2, 較前期報(bào)道的數(shù)值提高了33%。抗彎測試表明復(fù)合厚膜的電阻在彎曲半徑大于20 mm時(shí)基本不變, 在彎曲半徑為20 mm, 彎曲次數(shù)小于3000次時(shí), 僅有輕微增大, 說明其在柔性熱電器件領(lǐng)域具有應(yīng)用潛力。紅外熱成像技術(shù)顯示, 在工作電流為0.01 A到0.05 A時(shí), 復(fù)合厚膜熱電臂兩端可以形成4.2 ℃到7.8 ℃的溫差, 表明了其在面內(nèi)制冷領(lǐng)域應(yīng)用的可能性。

    柔性熱電厚膜; 絲網(wǎng)印刷法; Bi0.5Sb1.5Te3/環(huán)氧樹脂復(fù)合厚膜; 電輸運(yùn)性能; 面內(nèi)制冷領(lǐng)域

    TQ174

    A

    2018-11-09;

    2019-01-24

    National Natural Science Foundation of China (11834012, 51620105014, 51572210, 51521001); National Key Research and Development Plan of China (2018YFB0703600)

    LI Peng (1995-), male, candidate of Master degree. E-mail: penglee@whut.edu.cn

    NIE Xiao-Lei, laboratory technician. E-mail: xiaoleinie@whut.edu.cn; ZHAO Wen-Yu, professor. E-mail: wyzhao@whut.edu.cn

    1000-324X(2019)06-0679-06

    10.15541/jim20180528

    猜你喜歡
    厚膜武漢理工大學(xué)絲網(wǎng)
    《最后一抹紅》
    《見證·壹》
    流行色(2019年8期)2019-11-04 07:17:12
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    星載厚膜混合集成SSPC故障分析與研究
    PZT厚膜的電霧化沉積與溶膠滲透研究*
    在這樣的地方使用絲網(wǎng)印刷——走進(jìn)日常生活的村上
    基于PLC的絲網(wǎng)印刷機(jī)控制系統(tǒng)的研究
    電子制作(2017年7期)2017-06-05 09:36:13
    厚膜電源助焊劑清洗工藝研究
    電子制作(2017年7期)2017-06-05 09:36:13
    厚膜導(dǎo)電細(xì)線印制的研究
    国产成人a∨麻豆精品| АⅤ资源中文在线天堂| 97在线视频观看| 嫩草影院新地址| 久久九九热精品免费| 亚洲成人久久爱视频| 给我免费播放毛片高清在线观看| 国产片特级美女逼逼视频| 可以在线观看的亚洲视频| 久久人人爽人人片av| 一级av片app| 国产av一区在线观看免费| 天堂网av新在线| 尾随美女入室| 亚洲精品一卡2卡三卡4卡5卡| 三级男女做爰猛烈吃奶摸视频| 精品不卡国产一区二区三区| 亚洲一区二区三区色噜噜| 日韩制服骚丝袜av| 久久久久九九精品影院| av黄色大香蕉| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 久久九九热精品免费| 国产 一区 欧美 日韩| 波野结衣二区三区在线| 精品人妻视频免费看| 色哟哟·www| 1024手机看黄色片| 欧美最黄视频在线播放免费| 亚洲欧美精品自产自拍| 搡老岳熟女国产| 在线天堂最新版资源| 搞女人的毛片| 少妇的逼水好多| 免费av不卡在线播放| 99久久久亚洲精品蜜臀av| 亚洲精品一卡2卡三卡4卡5卡| 22中文网久久字幕| 亚洲自偷自拍三级| 岛国在线免费视频观看| 99riav亚洲国产免费| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 成年女人看的毛片在线观看| 变态另类成人亚洲欧美熟女| 午夜福利高清视频| 男人舔女人下体高潮全视频| 九色成人免费人妻av| 天美传媒精品一区二区| 国模一区二区三区四区视频| 热99re8久久精品国产| 精品99又大又爽又粗少妇毛片| 国产探花在线观看一区二区| 天天一区二区日本电影三级| 日本黄大片高清| 五月伊人婷婷丁香| 天堂√8在线中文| 69人妻影院| 成人av在线播放网站| 免费黄网站久久成人精品| 日韩一区二区视频免费看| 久久久久国产精品人妻aⅴ院| 人妻夜夜爽99麻豆av| 97人妻精品一区二区三区麻豆| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 51国产日韩欧美| 久久精品国产亚洲av天美| 一级毛片aaaaaa免费看小| 看免费成人av毛片| 国产高潮美女av| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 中文字幕免费在线视频6| 日韩一区二区视频免费看| 欧美最新免费一区二区三区| 人人妻,人人澡人人爽秒播| 一进一出好大好爽视频| 偷拍熟女少妇极品色| 国产亚洲精品久久久com| 91精品国产九色| 99精品在免费线老司机午夜| 免费无遮挡裸体视频| 日日啪夜夜撸| 久久国产乱子免费精品| 国产在线精品亚洲第一网站| 免费av观看视频| 国产视频一区二区在线看| 色综合色国产| 九九爱精品视频在线观看| 99久久精品一区二区三区| 三级经典国产精品| 人人妻人人澡欧美一区二区| 国产成年人精品一区二区| 最近中文字幕高清免费大全6| 简卡轻食公司| 老师上课跳d突然被开到最大视频| 91狼人影院| 三级国产精品欧美在线观看| 男女下面进入的视频免费午夜| 国产一区二区三区在线臀色熟女| 最近手机中文字幕大全| 欧美成人精品欧美一级黄| 国产欧美日韩精品一区二区| 在线观看66精品国产| 午夜影院日韩av| 久久人人爽人人爽人人片va| 六月丁香七月| 久久久国产成人精品二区| 欧美潮喷喷水| 99视频精品全部免费 在线| 日韩欧美精品v在线| 国国产精品蜜臀av免费| 高清毛片免费观看视频网站| 国产精品久久久久久久久免| 少妇的逼水好多| 亚洲一区二区三区色噜噜| 丰满的人妻完整版| 两个人视频免费观看高清| 国产中年淑女户外野战色| 人妻丰满熟妇av一区二区三区| .国产精品久久| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 久久久久久久久久成人| 成人毛片a级毛片在线播放| 久久中文看片网| 99国产精品一区二区蜜桃av| 欧美色欧美亚洲另类二区| 精品久久久噜噜| .国产精品久久| 日韩中字成人| 一级毛片久久久久久久久女| 国产精品美女特级片免费视频播放器| 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 国产在线男女| 两个人的视频大全免费| 99久久中文字幕三级久久日本| 亚洲欧美日韩卡通动漫| 中文亚洲av片在线观看爽| 97碰自拍视频| 免费高清视频大片| 高清毛片免费观看视频网站| 亚洲图色成人| 99久久九九国产精品国产免费| 国产男靠女视频免费网站| 九色成人免费人妻av| 国内精品宾馆在线| 99久久成人亚洲精品观看| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 国产av不卡久久| 六月丁香七月| 成人鲁丝片一二三区免费| 国产av麻豆久久久久久久| 日本-黄色视频高清免费观看| 色综合亚洲欧美另类图片| 91久久精品国产一区二区成人| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区免费观看| 国产精品久久久久久av不卡| 校园春色视频在线观看| 国产成人freesex在线 | 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 在线国产一区二区在线| 国产精品综合久久久久久久免费| 日韩欧美三级三区| 高清毛片免费观看视频网站| 中文字幕人妻熟人妻熟丝袜美| 精品福利观看| 久久精品久久久久久噜噜老黄 | 蜜臀久久99精品久久宅男| 女生性感内裤真人,穿戴方法视频| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 女同久久另类99精品国产91| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频 | 午夜激情福利司机影院| av专区在线播放| 我的老师免费观看完整版| 亚洲av成人av| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 1000部很黄的大片| 欧美精品国产亚洲| 在线免费十八禁| 午夜免费男女啪啪视频观看 | 精品欧美国产一区二区三| 一本精品99久久精品77| 一个人看视频在线观看www免费| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| 亚洲国产色片| 国产av麻豆久久久久久久| 成人av一区二区三区在线看| 五月玫瑰六月丁香| 99久国产av精品国产电影| 国产成人a区在线观看| 亚洲第一区二区三区不卡| 日日撸夜夜添| 最后的刺客免费高清国语| 欧美日本视频| 男女下面进入的视频免费午夜| 1024手机看黄色片| 99视频精品全部免费 在线| 中国国产av一级| 久久久久精品国产欧美久久久| 日产精品乱码卡一卡2卡三| 99riav亚洲国产免费| 91狼人影院| 97人妻精品一区二区三区麻豆| 毛片一级片免费看久久久久| 我的老师免费观看完整版| 长腿黑丝高跟| 禁无遮挡网站| 联通29元200g的流量卡| 国产av在哪里看| 99九九线精品视频在线观看视频| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 黑人高潮一二区| 日韩高清综合在线| 国产精品伦人一区二区| 看黄色毛片网站| 日日啪夜夜撸| 免费观看人在逋| 夜夜夜夜夜久久久久| 不卡视频在线观看欧美| 91av网一区二区| 免费大片18禁| 性欧美人与动物交配| 亚洲国产精品合色在线| 国产不卡一卡二| 欧美成人a在线观看| 精品人妻一区二区三区麻豆 | 日韩av不卡免费在线播放| 午夜福利在线观看吧| 中国美白少妇内射xxxbb| 深夜精品福利| 亚洲国产精品国产精品| 久久精品国产自在天天线| 午夜爱爱视频在线播放| 身体一侧抽搐| 久久国内精品自在自线图片| 变态另类成人亚洲欧美熟女| 国产成人a∨麻豆精品| 国产亚洲精品av在线| 久久亚洲精品不卡| 色av中文字幕| www日本黄色视频网| 在线免费观看不下载黄p国产| av.在线天堂| 欧美激情在线99| 亚洲成av人片在线播放无| 亚洲18禁久久av| 色av中文字幕| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 精品国内亚洲2022精品成人| 欧美一区二区精品小视频在线| 日韩高清综合在线| 亚洲专区国产一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品综合一区在线观看| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 一进一出好大好爽视频| 亚洲第一电影网av| 热99在线观看视频| 亚洲av不卡在线观看| 人人妻,人人澡人人爽秒播| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 深爱激情五月婷婷| 亚洲国产精品久久男人天堂| 日韩国内少妇激情av| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 淫秽高清视频在线观看| 国产精品伦人一区二区| 成人高潮视频无遮挡免费网站| 婷婷六月久久综合丁香| 99久久精品国产国产毛片| 中文字幕av在线有码专区| 国产 一区精品| 六月丁香七月| 成人美女网站在线观看视频| 97碰自拍视频| 天美传媒精品一区二区| 欧美国产日韩亚洲一区| 亚洲欧美精品自产自拍| 国产一区二区在线av高清观看| 99热全是精品| 老熟妇乱子伦视频在线观看| 中国国产av一级| 美女被艹到高潮喷水动态| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 婷婷六月久久综合丁香| 久久精品国产鲁丝片午夜精品| 黄片wwwwww| 日本黄色片子视频| 神马国产精品三级电影在线观看| 中文字幕精品亚洲无线码一区| 亚洲成人久久性| 亚洲va在线va天堂va国产| 亚洲经典国产精华液单| 午夜福利在线观看吧| 欧美不卡视频在线免费观看| 日韩成人av中文字幕在线观看 | 国产一区亚洲一区在线观看| 丝袜喷水一区| 99热只有精品国产| 国产色爽女视频免费观看| 免费av毛片视频| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 国产黄色视频一区二区在线观看 | 中文亚洲av片在线观看爽| 亚洲婷婷狠狠爱综合网| 女同久久另类99精品国产91| 亚洲精品国产av成人精品 | 中文字幕精品亚洲无线码一区| 成人毛片a级毛片在线播放| 午夜精品在线福利| 一区二区三区高清视频在线| 亚洲人与动物交配视频| 嫩草影视91久久| 成人性生交大片免费视频hd| 午夜激情欧美在线| 两个人的视频大全免费| 久99久视频精品免费| 免费在线观看影片大全网站| 国产美女午夜福利| 日本五十路高清| aaaaa片日本免费| 亚洲精品在线观看二区| 热99re8久久精品国产| 久久精品人妻少妇| aaaaa片日本免费| 婷婷精品国产亚洲av在线| 中文字幕精品亚洲无线码一区| 天天躁夜夜躁狠狠久久av| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 国产精品伦人一区二区| 一a级毛片在线观看| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 日本在线视频免费播放| av免费在线看不卡| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 在线国产一区二区在线| 欧美日韩乱码在线| 久久久久国产网址| 毛片一级片免费看久久久久| 高清午夜精品一区二区三区 | 国产在线精品亚洲第一网站| 亚洲国产欧洲综合997久久,| 欧美潮喷喷水| 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| 国产精品女同一区二区软件| 少妇熟女aⅴ在线视频| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| ponron亚洲| 国产精品嫩草影院av在线观看| 亚洲成人久久性| 国产美女午夜福利| 国产精品无大码| 欧美成人免费av一区二区三区| 日韩精品有码人妻一区| 真实男女啪啪啪动态图| 麻豆国产97在线/欧美| 午夜视频国产福利| 18禁在线播放成人免费| 99久久九九国产精品国产免费| av卡一久久| 国产老妇女一区| 男插女下体视频免费在线播放| 亚洲第一区二区三区不卡| 麻豆国产av国片精品| 欧美bdsm另类| 国产精品伦人一区二区| 国产蜜桃级精品一区二区三区| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 黄色欧美视频在线观看| 激情 狠狠 欧美| 精品少妇黑人巨大在线播放 | 亚洲av一区综合| 看免费成人av毛片| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 日韩av不卡免费在线播放| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 成人亚洲精品av一区二区| 日本 av在线| 丝袜喷水一区| 亚洲无线在线观看| 又黄又爽又免费观看的视频| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 麻豆乱淫一区二区| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品国产欧美久久久| 五月玫瑰六月丁香| 日韩成人伦理影院| 卡戴珊不雅视频在线播放| 国产老妇女一区| 欧美色视频一区免费| 久久久午夜欧美精品| 中出人妻视频一区二区| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 综合色丁香网| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 亚洲成人中文字幕在线播放| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 又黄又爽又免费观看的视频| 亚洲最大成人手机在线| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| 草草在线视频免费看| 国产高清三级在线| 嫩草影院精品99| 久久鲁丝午夜福利片| 日韩高清综合在线| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app| 婷婷六月久久综合丁香| 亚洲丝袜综合中文字幕| 亚洲七黄色美女视频| 欧美区成人在线视频| 久99久视频精品免费| 在线国产一区二区在线| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 久久精品91蜜桃| 久久久久九九精品影院| 一个人看的www免费观看视频| 日本a在线网址| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站| 久久久国产成人精品二区| 亚洲综合色惰| a级一级毛片免费在线观看| 一夜夜www| 国产亚洲精品久久久久久毛片| 国产美女午夜福利| avwww免费| 日本一本二区三区精品| 欧美一区二区亚洲| 国产熟女欧美一区二区| 国产日本99.免费观看| 久久这里只有精品中国| 亚洲三级黄色毛片| а√天堂www在线а√下载| 在线天堂最新版资源| 国产麻豆成人av免费视频| 黄片wwwwww| 天堂网av新在线| 深爱激情五月婷婷| 中文亚洲av片在线观看爽| 久久人人爽人人片av| 男女做爰动态图高潮gif福利片| 免费人成在线观看视频色| 天美传媒精品一区二区| 永久网站在线| 欧美中文日本在线观看视频| 日韩三级伦理在线观看| 久久久久久久久久成人| 久久国内精品自在自线图片| 日韩欧美精品v在线| 最近最新中文字幕大全电影3| 国产一区二区三区在线臀色熟女| 三级男女做爰猛烈吃奶摸视频| 一进一出抽搐动态| 久久精品久久久久久噜噜老黄 | 国产av一区在线观看免费| 国产一区二区亚洲精品在线观看| 亚洲国产精品合色在线| 在线免费十八禁| 少妇被粗大猛烈的视频| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 国产精品综合久久久久久久免费| 中文字幕免费在线视频6| 国产成人福利小说| 亚洲色图av天堂| 一进一出抽搐动态| 国产蜜桃级精品一区二区三区| 小蜜桃在线观看免费完整版高清| 18禁在线无遮挡免费观看视频 | 99久国产av精品| 97超视频在线观看视频| 欧美+日韩+精品| 午夜免费激情av| 色在线成人网| 国内精品久久久久精免费| 狠狠狠狠99中文字幕| 国产女主播在线喷水免费视频网站 | 免费无遮挡裸体视频| 熟女人妻精品中文字幕| 九九久久精品国产亚洲av麻豆| 99久久精品一区二区三区| av卡一久久| 久久欧美精品欧美久久欧美| 国产在视频线在精品| 日韩强制内射视频| 全区人妻精品视频| 亚洲精品456在线播放app| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 国产精品美女特级片免费视频播放器| 国产高清激情床上av| 午夜日韩欧美国产| 久久久久国内视频| 无遮挡黄片免费观看| 欧美一级a爱片免费观看看| 两个人视频免费观看高清| 午夜福利高清视频| 在线播放国产精品三级| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线观看免费| 国产精品一区www在线观看| 午夜福利在线在线| 一区二区三区四区激情视频 | 少妇人妻精品综合一区二区 | 欧美一区二区精品小视频在线| 女人被狂操c到高潮| 国产成人91sexporn| 久久人妻av系列| 国产一区二区激情短视频| 国产探花极品一区二区| 国产精品久久视频播放| 久久久久久九九精品二区国产| 久久久久性生活片| 深夜a级毛片| 色尼玛亚洲综合影院| 日本精品一区二区三区蜜桃| 国产av麻豆久久久久久久| 免费看美女性在线毛片视频| 亚洲色图av天堂| 在现免费观看毛片| 亚洲精品亚洲一区二区| 中文字幕精品亚洲无线码一区| 午夜福利在线在线| 又爽又黄无遮挡网站| 热99在线观看视频| 99热这里只有是精品50| 国产一区二区激情短视频| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 亚洲乱码一区二区免费版| 亚洲精品乱码久久久v下载方式| 国产精品国产三级国产av玫瑰| 国产激情偷乱视频一区二区| 少妇裸体淫交视频免费看高清| 天堂网av新在线| 国产精品一区二区三区四区免费观看 | 午夜免费激情av| 男女啪啪激烈高潮av片| 欧美中文日本在线观看视频| 国产乱人视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人av| 日本熟妇午夜| 好男人在线观看高清免费视频| 久久人人精品亚洲av| 色尼玛亚洲综合影院| 成年女人永久免费观看视频| 日日摸夜夜添夜夜添av毛片| 六月丁香七月| 午夜福利高清视频| 特大巨黑吊av在线直播| 国产精品人妻久久久影院| 亚洲性久久影院| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 特大巨黑吊av在线直播| 亚州av有码|