楊學(xué)群
【摘要】在數(shù)學(xué)核心素養(yǎng)培養(yǎng)的過(guò)程中,教師需要立足于教學(xué)的本質(zhì),關(guān)注學(xué)生的實(shí)際需求.在當(dāng)前的初中數(shù)學(xué)教育中,教師需要明確核心素養(yǎng)的發(fā)展含義,并且發(fā)揮課堂教學(xué)的引導(dǎo)作用,這樣才能促進(jìn)學(xué)生能力和綜合素養(yǎng)的發(fā)展,這是實(shí)現(xiàn)教育目標(biāo)的根本辦法和重要舉措.數(shù)學(xué)教育目的在于培養(yǎng)學(xué)生的理性精神,讓學(xué)生利用數(shù)學(xué)思維解決多方面的問(wèn)題,同時(shí)為學(xué)生其他方面的學(xué)習(xí)奠定基礎(chǔ).
【關(guān)鍵詞】初中數(shù)學(xué);核心素養(yǎng);課堂
核心素養(yǎng)屬于學(xué)生必須具備的關(guān)鍵品質(zhì),屬于一種重要的學(xué)習(xí)目標(biāo)指向.想要達(dá)到預(yù)期的教育目標(biāo),教師需要落實(shí)先進(jìn)教育思想,關(guān)注學(xué)生的持續(xù)發(fā)展,重視教育的核心導(dǎo)向.
一、培養(yǎng)學(xué)生核心素養(yǎng)的意義
培養(yǎng)學(xué)生核心素養(yǎng)是當(dāng)前初中數(shù)學(xué)教師的重要任務(wù),教師需要發(fā)掘有效的培養(yǎng)資源,進(jìn)而從多方面實(shí)施教學(xué)策略.教師需要借助具體的教學(xué)內(nèi)容,培養(yǎng)學(xué)生多方面的核心素養(yǎng),其中包括數(shù)學(xué)抽象、邏輯推理、直觀想象、數(shù)學(xué)建模、數(shù)學(xué)運(yùn)算、數(shù)據(jù)分析等,這些都是學(xué)生必須具備的關(guān)鍵能力和品格.核心素養(yǎng)是學(xué)生發(fā)展必備的,也是學(xué)生走向社會(huì)之后需要持續(xù)提升的能力.數(shù)學(xué)抽象能力、邏輯推理能力、直觀想象能力、數(shù)學(xué)建模能力、數(shù)學(xué)運(yùn)算能力、數(shù)據(jù)分析能力都可以在多個(gè)方面進(jìn)行應(yīng)用,所以說(shuō),數(shù)學(xué)教育的思想和內(nèi)容是面向多個(gè)層面的,不僅僅是面向數(shù)學(xué)的.
二、基于核心素養(yǎng)發(fā)展的初中數(shù)學(xué)課堂
(一)培養(yǎng)學(xué)生的抽象能力
數(shù)學(xué)抽象屬于一種重要的能力,也是數(shù)學(xué)教學(xué)中的核心概念.抽象屬于把事物的物理屬性舍棄掉,而后進(jìn)行抽象的數(shù)學(xué)研究和思考.主要研究數(shù)量之間的關(guān)系,并且分析圖形之間的關(guān)系和具體概念,進(jìn)而完成抽象的過(guò)程.在培養(yǎng)抽象核心素養(yǎng)的過(guò)程中,教師需要關(guān)注其中的數(shù)學(xué)元素,并且概括性地理解和認(rèn)識(shí)數(shù)學(xué)本質(zhì),利用數(shù)學(xué)抽象思維,可以讓學(xué)生認(rèn)識(shí)到問(wèn)題的本質(zhì),進(jìn)而輕松解決問(wèn)題.例如,兩個(gè)人的直線距離是100千米,兩個(gè)人相向而行,第一個(gè)人的速度是每小時(shí)6千米,第二個(gè)人的速度是每小時(shí)4千米,第一個(gè)人出發(fā)的時(shí)候帶著一只小狗,小狗的速度是每小時(shí)12千米,小狗在碰到第二個(gè)人之后開(kāi)始掉頭走,并且在碰到第一個(gè)人之后又朝向第二個(gè)人走,直到兩個(gè)人最后相遇了,請(qǐng)問(wèn)這個(gè)過(guò)程中小狗走了多少路程?對(duì)這個(gè)問(wèn)題,如果僅僅從外在的表象來(lái)思考這個(gè)數(shù)學(xué)問(wèn)題,那么學(xué)生可能認(rèn)為小狗的運(yùn)動(dòng)軌跡比較復(fù)雜,其實(shí)利用數(shù)學(xué)抽象的方法可以簡(jiǎn)化這個(gè)問(wèn)題,從具體的問(wèn)題情境中抽象問(wèn)題的本質(zhì)內(nèi)容,也就是根據(jù)速度和時(shí)間求出最終的路程.可以利用過(guò)程的基本計(jì)算公式和概念進(jìn)行計(jì)算,路程等于速度乘時(shí)間,這樣就可以有效解題,求出小狗在這個(gè)行程中的實(shí)際運(yùn)動(dòng)路程,兩個(gè)人相遇的時(shí)間就是小狗運(yùn)動(dòng)的總時(shí)間,這種方式可以有效簡(jiǎn)化解題流程,降低問(wèn)題的難度.
(二)運(yùn)用自主思考發(fā)展學(xué)生邏輯推理能力
在培養(yǎng)學(xué)生邏輯推理能力的過(guò)程中,教師需要引導(dǎo)學(xué)生的自主思考,這樣才能更有效地促進(jìn)學(xué)生邏輯推理能力的發(fā)展,讓學(xué)生可以達(dá)成相關(guān)的三維目標(biāo).教師需要利用數(shù)學(xué)教學(xué)中的各個(gè)內(nèi)容,從多個(gè)角度來(lái)引導(dǎo)學(xué)生,提升教學(xué)效果.例如,在講解“三角形的判定”過(guò)程中,教師可以分析學(xué)生可能產(chǎn)生的主要問(wèn)題,也就是什么樣的三角形可以說(shuō)是全等的?如果教師可以明確這方面的內(nèi)容,就可以有效引導(dǎo)學(xué)生的自主思考和探究,讓學(xué)生利用自己的邏輯推理和素養(yǎng)來(lái)解決這個(gè)問(wèn)題,不僅可以培養(yǎng)學(xué)生的問(wèn)題意識(shí),還可以讓學(xué)生利用自己的數(shù)學(xué)語(yǔ)言來(lái)解決其中的難題,這對(duì)學(xué)生邏輯推理能力的進(jìn)步有著重要意義.
在判定三角形的全等過(guò)程中,教師可以引導(dǎo)學(xué)生思考主要判定條件,讓學(xué)生思考哪些條件是充分的,哪些條件并不是充分的.這樣可以激發(fā)學(xué)生的邏輯推理能力,讓學(xué)生利用邏輯推理來(lái)解決問(wèn)題.引導(dǎo)學(xué)生自主摸索,可以獲得顯著效果,但是教師必須給予必要的引導(dǎo),避免學(xué)生因?yàn)樽邚澛范速M(fèi)課堂探究時(shí)間.學(xué)生如果可以順利完成自主探究,就能體驗(yàn)完整的數(shù)學(xué)知識(shí)產(chǎn)生過(guò)程,這是學(xué)生邏輯推理能力發(fā)展的必備流程.在引導(dǎo)學(xué)生自主思考的過(guò)程中,教師需要關(guān)注學(xué)習(xí)任務(wù)的分層,讓學(xué)生自主選擇適合自己的題目種類(lèi),進(jìn)而完成符合自己能力的題目,這樣可以達(dá)到自己的發(fā)展要求,提升自己的綜合數(shù)學(xué)素養(yǎng)和能力,確保每名學(xué)生都可以在訓(xùn)練中提升自己的邏輯推理能力.例如,這三組題目:
對(duì)于這三組題目,可以讓學(xué)生自主選擇,第一個(gè)直接使用公式計(jì)算,第二個(gè)需要轉(zhuǎn)化公式,第三個(gè)需要綜合使用相關(guān)技巧,可以針對(duì)不同基礎(chǔ)的學(xué)生進(jìn)行訓(xùn)練,進(jìn)而達(dá)到分層訓(xùn)練和發(fā)展邏輯推理能力的目的,讓學(xué)生獲得核心素養(yǎng)方面的發(fā)展.
(三)利用直覺(jué)發(fā)展學(xué)生直觀想象能力
所謂直觀想象,指的是利用幾何直觀的思維,培養(yǎng)空間想象的方法感知事物的形態(tài),也可以感知事物的變化,利用對(duì)圖形的理解,解決實(shí)際數(shù)學(xué)問(wèn)題.這種直覺(jué)的基礎(chǔ)是想象能力,屬于核心素養(yǎng)的一種.直覺(jué)和猜想是有較大區(qū)別的,直覺(jué)是在豐富的解題基礎(chǔ)和知識(shí)前提下形成的關(guān)鍵核心素養(yǎng),這種能力的發(fā)展對(duì)解決數(shù)學(xué)問(wèn)題有著較大的幫助,可以顯著提升學(xué)生的問(wèn)題解決效率.例如,已知n滿足(n-2016)2+(2017-n)2=1,那么(2017-n)(n-2016)=?對(duì)于此問(wèn)題,學(xué)生并不需要借助推理來(lái)解決問(wèn)題.在調(diào)動(dòng)原有知識(shí)的基礎(chǔ)上,可以利用直覺(jué)思維感知(n-2016)2和(2017-n)2兩個(gè)數(shù)中,必然有一個(gè)是1,另一個(gè)是0,所以(n-2016)2+(2017-n)2相加會(huì)得出1的結(jié)果,進(jìn)一步可以推出(2017-n)(n-2016)=0.所以,在數(shù)學(xué)解題中,利用直覺(jué)思維可以提升解題效率.教師需要關(guān)注學(xué)生的直觀問(wèn)題經(jīng)驗(yàn)積累以及數(shù)學(xué)知識(shí)發(fā)展,這樣可以讓學(xué)生持續(xù)獲得直觀想象能力的提升.
(四)理論與實(shí)踐相互融合,培養(yǎng)學(xué)生數(shù)學(xué)建模能力
數(shù)學(xué)建模就是根據(jù)實(shí)際問(wèn)題來(lái)建立數(shù)學(xué)模型,對(duì)數(shù)學(xué)模型進(jìn)行求解,從而達(dá)到解決生活中的實(shí)際問(wèn)題.數(shù)學(xué)建模能力的培養(yǎng)對(duì)初中生而言,是數(shù)學(xué)學(xué)習(xí)的意義所在,用數(shù)學(xué)的思想去解決生活中的數(shù)學(xué)問(wèn)題,而“建?!眲t是將數(shù)學(xué)思想與方法同生活中的實(shí)際問(wèn)題相連,從而達(dá)到解決實(shí)際問(wèn)題的目的,是一種數(shù)學(xué)知識(shí)的生活化應(yīng)用,也是學(xué)習(xí)數(shù)學(xué)的直接目的,“解決問(wèn)題”.但是在具體的數(shù)學(xué)建模的學(xué)習(xí)中,要通過(guò)一定的假設(shè),才能尋找到亟待解決的問(wèn)題的數(shù)學(xué)模型,才能真正地求出問(wèn)題的解,這就需要教師經(jīng)過(guò)經(jīng)訓(xùn)練,讓學(xué)生能通過(guò)敏銳的眼光去發(fā)現(xiàn)與挖掘這個(gè)數(shù)學(xué)模型.
在復(fù)習(xí)“二元一次方程組”的數(shù)學(xué)知識(shí)時(shí),用二元一次方程組的思想去解決生活中的問(wèn)題,可以進(jìn)行數(shù)學(xué)模型的構(gòu)建,尋找到這個(gè)數(shù)學(xué)模型,能解決一系列相關(guān)的問(wèn)題,假設(shè)生活中的問(wèn)題:“去超市購(gòu)買(mǎi)洗發(fā)水,750 mL的洗發(fā)水80元,500 mL的洗發(fā)水60元,如果我想買(mǎi)1 000 mL的洗發(fā)水,應(yīng)該付款多少元呢?”這種生活中的類(lèi)似的問(wèn)題很多,我們也會(huì)經(jīng)常遇到,那究竟1 000 mL的洗發(fā)水售價(jià)多少?需要進(jìn)行探究,挖掘其中的數(shù)學(xué)思想與理論,從中進(jìn)行建模,尋找到一個(gè)公式能表示它們的容量與售價(jià)的公式,通過(guò)分析可以得出,借用待定系數(shù)法可以求出這個(gè)洗發(fā)水容量與價(jià)格之間的關(guān)系,建立數(shù)學(xué)模型,再運(yùn)用相關(guān)知識(shí)求出這個(gè)模型,這里我們可以設(shè)y=kx+b,用已知條件得出兩個(gè)等式750x+b=80,500x+b=60,解二元一次方程組求出x=0.08,b=20,從而可以求出滿足這一類(lèi)型的生活問(wèn)題,求出1000 mL的洗發(fā)水售價(jià)為100元.通過(guò)生活中的例子幫助學(xué)生理解建模的意義,促進(jìn)其建模思想能力的提升,從而達(dá)到培養(yǎng)數(shù)學(xué)建模核心素養(yǎng)的目標(biāo).
(五)注重訓(xùn)練,夯實(shí)基礎(chǔ),提升初中學(xué)生數(shù)學(xué)運(yùn)算能力
數(shù)學(xué)運(yùn)算核心素養(yǎng)是數(shù)學(xué)學(xué)科核心素養(yǎng)中的基礎(chǔ),是其他核心素養(yǎng)提升的基石,也是學(xué)生在數(shù)學(xué)學(xué)習(xí)過(guò)程中保障數(shù)學(xué)問(wèn)題得以解決的關(guān)鍵,數(shù)學(xué)計(jì)算能力是基礎(chǔ)更是保障.因此,數(shù)學(xué)教師要利用課內(nèi)外的學(xué)習(xí)時(shí)間充分訓(xùn)練學(xué)生的數(shù)學(xué)運(yùn)算能力,提高其運(yùn)算的質(zhì)量,更要促進(jìn)其理智運(yùn)算,高效運(yùn)算的方法,能用最少的時(shí)間最簡(jiǎn)短的步驟,將數(shù)學(xué)問(wèn)題得出正確的答案.
初中學(xué)生數(shù)學(xué)運(yùn)算核心素養(yǎng)的提升要從根本抓起,抓基礎(chǔ)知識(shí),抓基夯基,再想辦法促優(yōu)提優(yōu),保障初中生數(shù)學(xué)運(yùn)算核心素養(yǎng)的穩(wěn)步提升.比如,“已知條件1a-1b=4,求出a-2ab-b2a-2b+7ab的值.”按照一般的解法,需要知道a,b的值分別是多少,才能真正地求出后面式子的具體的值,但是僅僅根據(jù)1a-1b=4這一道式子肯定求不出a,b具體的值,可想而知,普通的方法是行不通的,因此,要引導(dǎo)學(xué)生一定要注意“整體思想”的運(yùn)用,這樣的情況下,肯定要構(gòu)建1a-1b=4這樣的模型,將這個(gè)式子以整體的形式進(jìn)行代入,才能求出最終的值.通過(guò)分析發(fā)現(xiàn)b-a=4ab,則a-2ab-b2a-2b+7ab的值也就迎刃而解了,從此題中可以看出,在進(jìn)行數(shù)學(xué)教學(xué)的過(guò)程中,夯實(shí)基礎(chǔ)知識(shí)之上還要考慮一些方法的運(yùn)用才能做到運(yùn)算的游刃有余,讓學(xué)生做到變式訓(xùn)練,提高運(yùn)算能力與素養(yǎng),促進(jìn)學(xué)生運(yùn)算能力核心素養(yǎng)的提升.
(六)學(xué)會(huì)判斷與分析,提高學(xué)生的數(shù)據(jù)分析能力
數(shù)據(jù)分析是指針對(duì)研究對(duì)象獲得相關(guān)數(shù)據(jù),運(yùn)用統(tǒng)計(jì)方法對(duì)數(shù)據(jù)中的有用信息進(jìn)行分析與判斷,形成知識(shí)的過(guò)程,該過(guò)程主要包括:收集數(shù)據(jù)、整理數(shù)據(jù)、提取信息、構(gòu)建模型對(duì)信息進(jìn)行分析,推斷,從而獲得結(jié)論,是初中生學(xué)習(xí)數(shù)學(xué)課程必須掌握的數(shù)學(xué)核心素養(yǎng),也是學(xué)生必須具備的數(shù)據(jù)敏感意識(shí),在某方面也是學(xué)生對(duì)數(shù)學(xué)知識(shí)的感知與直覺(jué)的能力.數(shù)據(jù)分析在初中數(shù)學(xué)學(xué)習(xí)中應(yīng)用很多,通過(guò)對(duì)問(wèn)題進(jìn)行分析,對(duì)數(shù)據(jù)進(jìn)行整理之后實(shí)現(xiàn)學(xué)生數(shù)據(jù)分析能力的提升.
數(shù)據(jù)分析能力的培養(yǎng),教師要做到循序漸進(jìn),要讓學(xué)生首先從收集正確的數(shù)據(jù)信息開(kāi)始,只有正確的數(shù)據(jù)信息才有后面數(shù)據(jù)的正確分析,才能保證數(shù)據(jù)分析的結(jié)果是正確的、合理的,在此基礎(chǔ)之上,進(jìn)行數(shù)據(jù)的整理,并從中提取有價(jià)值的信息,對(duì)解題有幫助的信息,讓學(xué)生能從眾多數(shù)據(jù)信息中概括出、挖掘出核心價(jià)值信息,并能成功實(shí)現(xiàn)建模,從已知的數(shù)據(jù)信息中開(kāi)展分析,推出正確的解題思路,達(dá)到結(jié)論的獲取.在一系列的數(shù)據(jù)分析的訓(xùn)練中,數(shù)據(jù)分析能力才能逐漸培養(yǎng),并達(dá)到鞏固與提升,真正地提升初中學(xué)生的數(shù)學(xué)學(xué)科核心素養(yǎng).
在當(dāng)前的初中數(shù)學(xué)教學(xué)中,教師需要著眼于學(xué)生的數(shù)學(xué)核心素養(yǎng)發(fā)展,而不是僅僅依靠大量的習(xí)題訓(xùn)練培養(yǎng)學(xué)生的能力.著眼于核心素養(yǎng)發(fā)展,可以顯著提升數(shù)學(xué)教學(xué)的實(shí)效性,讓學(xué)生可以掌握關(guān)鍵的思維方法,進(jìn)而舉一反三.
【參考文獻(xiàn)】
[1]汝海成.初中數(shù)學(xué)“共生”式教學(xué)實(shí)踐研究[D].上海:上海師范大學(xué),2015.