• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    2016-12-12 00:35:01LinaAbdullahALSHAHRANILIXiNANJunminTANJuanjuanGUFenglong
    關(guān)鍵詞:單壁玻碳碳納米管

    Lina Abdullah ALSHAHRANI, LI Xi, NAN Junmin, TAN Juanjuan, GU Fenglong*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    Lina Abdullah ALSHAHRANI1, LI Xi2, NAN Junmin1, TAN Juanjuan1, GU Fenglong1*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    [Cu(sal-β-Ala)(3,5-DMP2)] is modified on the surface of the single-walled carbon nanotubes (SWCNTs) of glass carbon electrode (GCE). The modified electrode shows impressive detection ability of dopamine (DA) and uric acid (UA). The modified electrode has a good electrocatalytic effect on DA and UA. The detection linear range of [Cu(sal-β-Ala)(3,5-DMP2)] to DA is 10.00 to 210 mmol/L and the detection limit is 7.29 μmol/L. While, the detection of [Cu(sal-β-Ala)(3,5-DMP2)] to UA has a good linear range from 1 to 86 mmol/L and the detection limit is 1.5 μmol/L. In this work Simultaneous Differential Pulse Voltammetric (DPV) is employed to determine DA and UA. The DPV method with [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has a good sensitivity and resolution rate.

    copper (II) Schiff base complex; single-walled carbon nanotubes; modified electrode; dopamine; uric acid; electrochemical detection

    Chinese library classification:O646 Document code:A Article ID: 1000-5463(2016)06-0099-07

    1 Introduction

    Dopamine (DA) is a neurotransmitter in the central nervous system, and has important functions in cardiovascular, kidney, hormones, and other important systems. The abnormal metabolism of DA in the nervous system would lead to a variety of diseases such as epilepsy, aging, dementia, and Parkinson’s[1-3]. In addition, uric acid (UA) is the metabolite of purine and exists in biological fluids such as blood and urine. Monitoring of the DA and UA concentrations in blood or urine is important because these concentrations can be used as an effective early warning sign for central nervous system or kidney diseases. Generally, the DA concentration is very low (0.01~1 μmol/L) in human blood, while UA concentrations are 100~1 000 times higher than that of DA[4]. Sensitive techniques are needed for the simultaneous determination of DA and UA mixture. The conventional detection methods of DA and UA include titration[5], HPLC,[6]and UV[7]etc. All these methods have their own advantages, but also associated with some disadvantages such as expensive equipment, complicated process, and low sensitivity. It’s necessary to develop a quick, simple, and effective method for detecting these compounds.

    Due to the predominance such as low cost, easiness, real-time field investigation and high selectivity, electrochemical detection exhibits an important approach for detecting biomolecules. However, the conventional electrodes have the disadvantages of low sensitivity, easy to be contaminated by the oxidation products of DA and UA. In order to improve the detection sensitivity, many materials were used to modify the electrode, for examples, metal complexes, nanoparticles, carbon nanotubes, graphene, conductive polymer[8-10]. Therefore, carbon nanotubes (CNTs) modified electrode has become a hot research topic because of their large specific surface area, excellent electrochemical properties, and high stability[11-13]. The potential applications of CNTs in fabricating electrochemical sensors have been previously applied[14-15], and CNTs also have been applied for selective detection of DA and UA[16-17]. At the same time, the Schiff base complex has a very stable amino (RCN) structure, it can easily coordinate with transition metal to display a number of features, such as interaction with DNA, antibacterial and anticancer activity, ability of catalyzing the hydroquinone, sulfur cytosine, and ascorbic acid. When the electrode is modified by the transition metal complexes, the electron transfer rate can be increased, the oxidation potential will be reduced, and the peak current will be increased, thus improving the detection sensitivity, and acting as a catalyst in the electrode surface[18-20]. As a transition metal complex, Cu(sal-β-Ala)(3,5-DMP2) possesses unique composition and structure, and can be expected as a promising modifier for electrode. In this paper, [Cu(sal-β-Ala)(3,5-DMP2)] and SWCNTs modified glass carbon electrode (GCE) are prepared, which exhibits impressive sensitivity for simultaneously determining DA and UA.

    2 Experiments

    2.1 Materials and chemical reagents

    DA, UA, and Cu(sal-β-Ala) (3,5-DMP2) were bought from the Sigma Company (St. Louis, MO,USA). Other chemical reagents are analytical grade and directly used without further purification. The acetate buffer solution (ABS, pH6.0, 0.1 mol/L) was prepared with NaAc and HAc. All solutions were prepared with double distilled water. Single-walled carbon nanotubes (SWCNTs) were purchased form Shenzhen Nanotech Port Co., Ltd (Shenzhen, China). According to the literature’s method, a certain amount of SWCNTs was added in the mixed acidV(H2SO4)∶V(HNO3)=3∶1 and refluxed for 2 h. Then, the concentrated hydrochloric acid was added and refluxed for another hour. After the reaction completed, the product was filtered, and dried in an oven at 80 ℃. The as-prepared SWCNTs (10 mg) was dispersed in 100 mL H2O, and then ultrasonic treated for 10 min, and sealed for use.

    2.2 Preparation of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE

    GCE was polished to a mirror on the surface of Al2O3of 1.0 and 0.3 μm, and then ultrasonic treatment in acetone and water for 2 min. To constitute a three-electrode system, the GCE was used as the working electrode, Pt wire electrode as the counter electrode, and a saturated calomel electrode as the reference electrode. The Cyclic Voltammetry (CV) test was in 0.5 mol/L H2SO4solution, and the potential was -0.35~1.50 V, scanning at 100 mV/s. After the CV curves become stable, the pretreatment of GCE was completed. The GCE was placed in a DMSO solution and mixed with Cu(sal-β-Ala)(3,5 -DMP2) and 0.1 mol/L NaNO3, and then treated with CV experiment between -0.8~1.2 V. The electrode was washed with water for several times, and the modified electrode was thus obtained, marked as [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE.

    2.3 Electrochemical measurements

    Electrochemical measurements were conducted using three-electrode system. The saturated calomel electrode was used as the reference electrode, a platinum electrode as the auxiliary electrode, and the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE as working electrode. All electrochemical experiments were carried out using the CHI660D Electrochemical workstation (Shanghai Chenhua China) electrochemical workstation. The electrochemical impedance spectroscopy (EIS) was carried in an equimolar amount of 5 mmol/L [Fe(CN)6]3-/ [Fe(CN)6]4-solution, using 0.1 mol/L KCl as supporting electrolyte, and the frequency sweep range is 0.01~103 kHz.

    3 Results and discussion

    3.1 Characterization of the modified electrode

    The surfaces of GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE were investigated by SEM (Figure 1). By the comparison of Figure 1A and 1B, it can be seen that the SWCNTs were distributed on the GC electrode. After Cu(sal-β-Ala) (3,5-DMP2) was electro-polymerized on the surface of SWCNTs/GCE, the image became cloudy because of the formation of [Cu(sal-β-Ala)(3,5-DMP2)] film (Figure 1C). It is indicated that the Cu(sal-β-Ala) (3,5-DMP2) film has been successfully grown on the electrode.

    Figure 1 SEM images of bare GCE (A), SWCNTs/GCE (B), and Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE (C)

    3.2 Electrochemical behavior and detection of DA

    The electrocatalysis of DA on bare GCE, SWCNTs/GCE, and Cu(sal-β-Ala)(3,5-DMP2)/SW CNTs/GCE was firstly investigated in a buffer solution at pH 7.0, The cyclic voltammogram of DA at bare GCE shows an irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. Whereas, with SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] on the GCE, DA exhibits obviously enhanced voltammetric response (Figure 2,scan rate=100 mV/s). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of DA. The effects of scan rate on the peak current of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE are shown in Figure 3. The anodic peak current of DA is proportional to the square root of scan rate in the range of 10~300 mV/s, which indicates that the electrocatalytic oxidation of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode isIpa(μA) = -50.958+19.731U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.998 (Figure 4).

    Figure 2 Cyclic voltammograms of 1 mmol/L DA at different electrodes in PBS solution (pH 7.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 3 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 7.0) containing 1 mmol/L DA

    Figure 4 Linear dependence of peak currents on the square root of the scan rate

    In the optimal experimental conditions, amperometric was used to determine the oxidation peak current and DA concentration relationship. A stirred solution of chronoamperometry contained 0.1 mol/L KCl in 0.2 mol/L of PBS (pH 7.0) was added to achieve different concentrations of DA, the voltage was fixed at 0.22 V, as shown in Figure 5.

    Figure 5 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration DA. Inseted: calibration curve of amperometric response I vs. DA concentration.

    Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to DA. The oxidation current increases very fast with the increase of DA concentration and reached the steady-state. The amperometric response is found to be linear to the DA over the range of 10 to 210 μmol/L with the correlation coefficient ofR2=0.999 92. Linear regression equation isIpa=0.086 3+0.006 4c(μmol/L). The limit of detection (LOD), defined as a signal-to-noise ratio of 3∶1 is found to be 7.29 μmol/L . The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA. On the other hand, this system is also optimized in the solution with some common ions and small biomolecules for DA determination interference. It was shown that the allowable error range of ±5%, 100 times K+, Na+, Cl-, ascorbic acid, citric acid, glucose, hardly interfere with the determination of DA, indicating that [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE determination of DA has high selectivity.

    3.3 Electrochemical behaviors and detection of UA

    Using the above optimal experimental conditions, the modified electrode was prepared and used to detect UA. The electrocatalysis of UA on bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE was also investigated in a buffer solution with pH 2.0. As shown in Figure 6~8, it can be seen that on bare GCE, the cyclic voltammogram of UA shows a irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. When SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] were modified on the GCE, UA exhibits obviously enhanced voltammetric response (Figure 6). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of UA. The effect of scan rate on the peak current of UA on the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has been investigated. The results are shown in Figure 7. The anodic peak current of UA is proportional to the square root of scan rate in the range of 30~300 mV/s, which indicates that the electrocatalytic oxidation of UA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode wasIpa(μA) = -22.533+12.585U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.996 (Figure 8).

    Figure 6 Cyclic voltammograms of 2 mmol/L UA at different electrodes in PBS solution (pH 2.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 7 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 2.0) containing 2 mmol/L UA

    Figure 8 Linear dependence of peak currents on the square root of the scan rate

    Similarly, amperometric was used to determine the oxidation peak current and UA concentration relationship. A stirred solution of chronoamperometry contained 2 mol/L KCl in 0.2 mol/L of PBS (pH 6.0) was added to achieve different concentrations of UA, the voltage was fixed at 0.22 V. Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to UA (Figure 9). The oxidation current is increased very rapidly with the increase of UA concentration and reached the steady-state. The amperometric response is found to be linear to the UA over the range of 10 to 86 μmol/L with the correlation coefficient ofIpa=0.8743+613.82c(μmol/L) andR2=0.999 7. The limit of detection (LOD) defined as a signal-to-noise ratio of 3∶1, is found to 1.5 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has a good accuracy for the determination of UA.

    Figure 9 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration UA. Inserted: calibration curve of amperometric response I vs.UA concentration

    3.4 Simultaneous determination of DA and UA

    In accordance with the best electrolyte analyses experimental conditions and instrument parameters, Differential Pulse voltammetry (DPV) experiments with different concentrations of DA and UA have be carried out.

    Figure 10 shows the typical CVs of DA and UA at the bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE. At the bare GCE, DA and UA show broader oxidation peaks and overlapped. At the SWCNTs/GCE, the oxidation of DA and UA appears at 0.26 V and 0.39 V, respectively. After electrodeposited [Cu(sal-β-Ala)(3,5-DMP2)] on the electrode, the oxidation peaks current increased, and peak separation between DA and UA is 0.13 V, indicating that the simultaneous determination of the two species is feasible.

    Figure 10 CVs in 0.2 mol/L PBS (pH 6.0) containing 1.0 mmol/L DA and 0.2 mmol/L UA in each case

    DPV using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode was used as a highly sensitive electrochemical method with very low detection limit to determine the trace of DA and UA. Figure 11 shows typical DPVs of different concentrations of DA in the existence of 0.1 mmol/L UA, using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode. The oxidation peak current of UA is positively proportional to its concentration (1.998~122.947 μmol/L), with theIpa(UA)=-0.006 8+0.038 9c(μmol/L) and the correlation coefficient ofR2=0.998. The limit of detection (LOD) is found to be 1.42 μmol/L (S/N=3), The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA.

    Figure 11 DPV view of DA at different concentrations in the existence of 0.1 μmol/L UA

    Figure 12 shows that the peak current of UA is increased with an increase in UA concentration, when the solution contained constant 0.05 mmol/L of DA, The oxidation peak current of UA is positively proportional to its concentration; while the oxidation peak current of DA does not change. It is found to be linear to the UA over the range of 10.00 to 122.95 μmol/L with the correlation coefficient ofR2=0.998,Ipa(UA)=0.67+0.017 8c(μmol/L). The LOD is found to be 3.7 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has good accuracy for the determination of UA.

    Figure 12 DPA response curues of UA at different concentrations

    4 Conclusion

    The Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE electrode was prepared and its electrochemical properties on DA and UA shows a good catalytic effect. The concentration of DA and UA and the peak current of oxidation are in linear relationship in some range. Its impressive catalytic properties indicate its potential use in the detection of DA and UA. The [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs modified electrode shows good catalytic effect on DA and UA for cyclic voltammetry comparison purposes. DPV method is used as the simultaneous determination of DA and UA. In a mixed solution, when changing the concentration of a substance, the oxidation peak current showed a linear relationship with its concentration over a wide range, these results demonstrate that the modified electrode has high sensitivity.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (51273155), the Fundamental Research Funds for the Central Universities of China (2012-Ia-022 and 2014-Ia-030), and the Science and Technology Planning Project of Guangdong Province (2013B051000074). Thanks also to the Ministry of Higher Education of Saudi Arabia for the financial support to L.A.A.

    [1] SHANKARAN D R,IIMURA K,KATO T. Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode[J]. Sensors & Actuators B Chemical,2003,94(1):73-80.

    [2] WANG R,HONG Q L,LI N B. Simultaneous voltammetric measurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J]. Biosensors & Bioelectronics,2006,21(7):1086-1092.

    [3] WIGHTMAN R M,MAY L J,MICHAEL A C. Detection of Dopamine Dynamics in the Brain[J]. Analytical Chemistry,1988,60(60):141-152.

    [4] MO J W,OGOREVC B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber[J]. Analytical Chemistry,2001,73(6):1196-1202.

    [5] DUTT V V,HA M. Determination of uric acid at the microgram level by a kinetic procedure based on a “pseudo-induction” period[J]. Analytical Chemistry,1974,46(12):1777-1781.

    [6] STAMFORD J A,JR J J. Probing brain chemistry[J]. Analytical Chemistry,1996,68(11):359A-363A.

    [7] KIRK S,SAWYER R. Pearson’s composition and analysis of foods[M]. Pearsons Composition & Analysis of Foods,Longman:Willey,1991:507-544.

    [8] WAGNER E S,LINDLEY B,COFFIN R D. High-performance liquid chromatographic determination of ascorbic acid in urine : Effect on urinary excretion profiles after oral and intravenous administration of vitamin C[J]. Journal of Chromatography A,1979,163(2):225-229.

    [9] KHAN A,KHAN M I,IQBAL Z,et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection[J]. Talanta,2011,84(3):789-801.

    [10]ZENG W,MARTINUZZI F,MACGREGOR A. Development and application of a novel UV method for the analysis of ascorbic acid[J]. Journal of Pharmaceutical & Biomedical Analysis,2005,36(5):1107-1111.

    [11]LI J,LIN X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode[J]. Sensors & Actuators B Chemical,2007,124(2):486-493.

    [12]SHAKKTHIVEL P,CHEN S M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode[J]. Biosensors & Bioelectronics,2007,22(8):1680-1687.

    [13]HABIBI B,POURNAGHI-AZAR M H. Simultaneous determination of ascorbic acid,dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry[J]. Electrochimica Acta,2010,55(19):5492-5498.

    [14]WANG J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis, 2005,17(1):7-14.

    [15]WANG M,ZHAO F,LIU Y,et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes[J]. Biosensors & Bioelectronics,2005,21(1):159-166.

    [16]BRITTO P J,SANTHANAM K S V,ANGEL R,et al. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Advanced Materials,1999,11(11):154-157.

    [17]KONG J,FRANKLIN N R,ZHOU C,et al. Nanotube molecular wires as chemical sensors[J]. Science,2000,287(5453):622-625.

    [18]SHAHROKHIAN S,ZARE-MEHRJARDI H R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid[J]. Electrochimica Acta,2007,52(22):6310-6317.

    [19]LIU X,PENG Y,QU X,et al. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid[J]. Journal of Electroanalytical Chemistry,2011,654(S1/S2):72-78.

    [20]AMIRI S S M. Voltammetric determination of thiocytosine based on its electrocatalytic oxidation on the surface of carbon-paste electrode modified with cobalt Schiff base complexes[J].Journal of Solid State Electrochemistry. 2007,11,1133-1138.

    【中文責編:成文 英文責編:李海航】

    2016-09-12 《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n

    國家自然科學(xué)基金項目(21273081);廣東高校國際合作創(chuàng)新平臺項目(2013gjha0005)

    修飾玻碳電極對多巴胺和尿酸的電化學(xué)檢測

    Lina Abdullah ALSHAHRANI1, 李 曦2, 南俊民1, 譚娟娟1, 顧鳳龍1*

    (1. 華南師范大學(xué)化學(xué)與環(huán)境學(xué)院, 理論化學(xué)與環(huán)境教育部重點實驗室, 廣州 510631;2. 武漢理工大學(xué)化工與生命科學(xué)學(xué)院, 武漢 430070)

    在單壁碳納米管(SWCNT)表面修飾[Cu(sal-β-Ala)(3,5-DMP2)]玻碳電極(GCE),該修飾電極不僅對多巴胺(DA)和尿酸(UA)具有很好的電化學(xué)催化效果,而且對它們有很強的檢測能力. [Cu(sal-β-Ala)(3,5-DMP2)] 修飾電極對DA的檢測線性范圍為10~210 mmol/L,檢測極限為7.29 μmol/L;而對UA的檢測線性范圍為從1~86 mmol/L,檢測極限為1.5 μmol/L. 同時,利用微分脈沖伏安法(DPV)來測定DA和UA,相比之下,[Cu(sal-β-Ala)(3,5-DMP2)] 與單壁碳納米管及修飾玻碳電極結(jié)合具有良好的靈敏度和分辨率.

    Cu(II)希夫堿配合物; 單壁碳納米管; 修飾電極; 多巴胺; 尿酸; 電化學(xué)檢測

    *通訊作者:顧鳳龍,教授,珠江學(xué)者,Email: gu@scnu.edu.cn.

    猜你喜歡
    單壁玻碳碳納米管
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    姜黃素在玻碳電極上的電化學(xué)行為研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    基于適配體的石墨烯修飾玻碳電極檢測卡那霉素
    玻碳修飾電極檢測食鹽中的碘含量
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    單壁碳納米管對微穿孔板吸聲體吸聲性能的影響
    同位鍍鉍/過氧化聚乙酰苯胺/玻碳電極溶出伏安法測定食用鹽中痕量鎘和鉛
    免费观看精品视频网站| 丰满的人妻完整版| 波多野结衣高清无吗| 欧美日韩一区二区视频在线观看视频在线 | 免费观看精品视频网站| 国产成人精品一,二区 | 六月丁香七月| 午夜精品国产一区二区电影 | 国产高清三级在线| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 好男人视频免费观看在线| 亚洲av不卡在线观看| 在线播放无遮挡| 国产免费一级a男人的天堂| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 青春草视频在线免费观看| av女优亚洲男人天堂| 丝袜喷水一区| 国产精品人妻久久久久久| 看十八女毛片水多多多| 中文字幕熟女人妻在线| 中文字幕熟女人妻在线| 精品久久久久久久久亚洲| 亚洲精品粉嫩美女一区| 一级黄片播放器| 丰满乱子伦码专区| 麻豆乱淫一区二区| 国产午夜精品论理片| 边亲边吃奶的免费视频| 国产精品爽爽va在线观看网站| 亚洲国产色片| 亚洲人成网站在线观看播放| 自拍偷自拍亚洲精品老妇| a级毛片免费高清观看在线播放| 1024手机看黄色片| 午夜免费男女啪啪视频观看| 最好的美女福利视频网| 舔av片在线| 午夜激情福利司机影院| 欧美日韩国产亚洲二区| 深夜a级毛片| 亚洲精品国产成人久久av| 亚洲高清免费不卡视频| 久久久久网色| 国产av一区在线观看免费| 亚洲成av人片在线播放无| 中文字幕av成人在线电影| 有码 亚洲区| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 99riav亚洲国产免费| 色视频www国产| 成人欧美大片| 日本与韩国留学比较| 国产精品精品国产色婷婷| 熟女人妻精品中文字幕| 国产久久久一区二区三区| 黄色配什么色好看| 欧美bdsm另类| a级毛片a级免费在线| 在线免费十八禁| 中文字幕久久专区| 男女啪啪激烈高潮av片| 中文字幕熟女人妻在线| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 亚洲av一区综合| 婷婷色av中文字幕| 国产精品.久久久| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 在现免费观看毛片| 18+在线观看网站| av天堂在线播放| 一级二级三级毛片免费看| 能在线免费观看的黄片| 亚洲图色成人| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 国产亚洲av嫩草精品影院| 午夜精品国产一区二区电影 | 久久精品国产亚洲av香蕉五月| 69av精品久久久久久| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区三区四区久久| 麻豆精品久久久久久蜜桃| 亚洲无线观看免费| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清| 亚洲一区高清亚洲精品| 伊人久久精品亚洲午夜| 国产精品久久久久久亚洲av鲁大| 一级二级三级毛片免费看| 一级av片app| 成人高潮视频无遮挡免费网站| 男人舔奶头视频| 国产伦精品一区二区三区视频9| 成年女人永久免费观看视频| 中国美女看黄片| 精品久久久久久成人av| 在线天堂最新版资源| 99热网站在线观看| 一进一出抽搐动态| 欧美不卡视频在线免费观看| 国产精品无大码| 深爱激情五月婷婷| 日韩欧美国产在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 欧美3d第一页| 成人特级黄色片久久久久久久| 亚洲av免费在线观看| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 午夜a级毛片| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 只有这里有精品99| 欧美成人a在线观看| 久久久a久久爽久久v久久| 中文亚洲av片在线观看爽| 日韩制服骚丝袜av| 97热精品久久久久久| 欧美一级a爱片免费观看看| 日韩人妻高清精品专区| 国产精品久久久久久av不卡| 少妇的逼水好多| 国产精品福利在线免费观看| 99国产精品一区二区蜜桃av| 久久久精品大字幕| 国产 一区精品| 男女视频在线观看网站免费| 99热全是精品| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 日韩亚洲欧美综合| 伦精品一区二区三区| 少妇人妻一区二区三区视频| 激情 狠狠 欧美| 精品日产1卡2卡| 美女cb高潮喷水在线观看| 国产av麻豆久久久久久久| 久久99蜜桃精品久久| av在线播放精品| 中文在线观看免费www的网站| 亚洲成人久久性| 青春草亚洲视频在线观看| 欧美成人精品欧美一级黄| 精品不卡国产一区二区三区| a级毛片a级免费在线| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 自拍偷自拍亚洲精品老妇| 男女视频在线观看网站免费| 国产色婷婷99| 最新中文字幕久久久久| 乱系列少妇在线播放| 欧美激情国产日韩精品一区| 国产精品人妻久久久影院| 麻豆乱淫一区二区| 国产老妇女一区| 成人特级av手机在线观看| 特大巨黑吊av在线直播| 欧美日韩一区二区视频在线观看视频在线 | 成人漫画全彩无遮挡| 久久久国产成人免费| 成人亚洲精品av一区二区| 国产午夜精品论理片| 国产三级在线视频| 国产一区二区激情短视频| 亚洲高清免费不卡视频| 亚洲成人久久爱视频| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 身体一侧抽搐| АⅤ资源中文在线天堂| 亚洲va在线va天堂va国产| 别揉我奶头 嗯啊视频| 亚洲国产精品合色在线| 亚洲激情五月婷婷啪啪| 亚洲av.av天堂| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 欧美人与善性xxx| 亚洲成人久久性| 精品国产三级普通话版| 午夜亚洲福利在线播放| 久久国内精品自在自线图片| 国产精品久久电影中文字幕| 国产精品99久久久久久久久| 日本五十路高清| 国产视频首页在线观看| 午夜激情福利司机影院| 欧美人与善性xxx| 我的女老师完整版在线观看| 一级av片app| 国产成人精品久久久久久| 久久综合国产亚洲精品| 国产探花在线观看一区二区| 丰满的人妻完整版| 男人狂女人下面高潮的视频| 麻豆久久精品国产亚洲av| 欧美日韩乱码在线| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 能在线免费观看的黄片| 亚洲电影在线观看av| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 一区福利在线观看| 色视频www国产| 国产午夜福利久久久久久| 一级毛片久久久久久久久女| 成人美女网站在线观看视频| 日韩欧美 国产精品| 亚洲国产欧美在线一区| 亚洲四区av| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| or卡值多少钱| 免费看av在线观看网站| 可以在线观看毛片的网站| 日本免费一区二区三区高清不卡| 国产精品国产三级国产av玫瑰| 国模一区二区三区四区视频| 国产v大片淫在线免费观看| 欧美日本视频| 久久久午夜欧美精品| 精品久久久久久久久av| 精品欧美国产一区二区三| 成人综合一区亚洲| 色哟哟哟哟哟哟| 深夜精品福利| 国产亚洲av嫩草精品影院| 国产精品麻豆人妻色哟哟久久 | 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看| 国产不卡一卡二| 亚洲国产精品成人综合色| 国产精品蜜桃在线观看 | 国产真实伦视频高清在线观看| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 夫妻性生交免费视频一级片| 国内揄拍国产精品人妻在线| 狠狠狠狠99中文字幕| 美女高潮的动态| 国产成人一区二区在线| 午夜福利高清视频| 99在线人妻在线中文字幕| 欧美xxxx性猛交bbbb| a级一级毛片免费在线观看| 99久久久亚洲精品蜜臀av| 九九热线精品视视频播放| 日韩一区二区三区影片| 亚洲最大成人中文| 国产高清激情床上av| 黄色视频,在线免费观看| 国产精品av视频在线免费观看| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色| 91狼人影院| av天堂在线播放| 亚洲av第一区精品v没综合| 久久精品国产鲁丝片午夜精品| .国产精品久久| 国产成人91sexporn| 麻豆国产av国片精品| a级一级毛片免费在线观看| 18禁黄网站禁片免费观看直播| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区 | 中文字幕精品亚洲无线码一区| 99热精品在线国产| 国产极品天堂在线| 亚洲av熟女| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 韩国av在线不卡| 成人毛片60女人毛片免费| 精品久久久久久久末码| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| 亚洲国产欧美在线一区| av黄色大香蕉| 精品一区二区免费观看| 国内久久婷婷六月综合欲色啪| 国产精品无大码| 美女 人体艺术 gogo| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 亚洲在线观看片| 最好的美女福利视频网| 性插视频无遮挡在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 两个人的视频大全免费| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 麻豆成人av视频| 午夜a级毛片| 春色校园在线视频观看| 成人综合一区亚洲| 波多野结衣高清无吗| 久久6这里有精品| 日韩欧美国产在线观看| 国产高潮美女av| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 小说图片视频综合网站| 国产亚洲91精品色在线| 久久99热6这里只有精品| 久久久久久久久久久免费av| 丰满的人妻完整版| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| 亚洲精品亚洲一区二区| 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 欧美成人一区二区免费高清观看| 国产精品不卡视频一区二区| 变态另类丝袜制服| 联通29元200g的流量卡| 国产成人福利小说| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 国产成人a区在线观看| 久久中文看片网| 日韩欧美国产在线观看| 99热只有精品国产| 日本一本二区三区精品| 国产成人精品婷婷| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 亚洲丝袜综合中文字幕| 欧美性猛交黑人性爽| 国产av麻豆久久久久久久| 变态另类丝袜制服| 欧美变态另类bdsm刘玥| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 亚洲一级一片aⅴ在线观看| 国产av一区在线观看免费| 日韩制服骚丝袜av| 国产 一区 欧美 日韩| av免费在线看不卡| 国产高清三级在线| 九色成人免费人妻av| 日韩大尺度精品在线看网址| 亚洲精品粉嫩美女一区| 午夜免费男女啪啪视频观看| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 少妇裸体淫交视频免费看高清| 亚洲性久久影院| 黄色视频,在线免费观看| 国产精品不卡视频一区二区| 日本免费a在线| 国产精品电影一区二区三区| 搡女人真爽免费视频火全软件| 在线免费观看不下载黄p国产| 一级黄色大片毛片| 18禁在线播放成人免费| 男女那种视频在线观看| 国产 一区精品| 熟女人妻精品中文字幕| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久久久| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 老司机影院成人| 国产精品1区2区在线观看.| 青青草视频在线视频观看| 国产欧美日韩精品一区二区| av免费在线看不卡| 成人亚洲精品av一区二区| 99国产极品粉嫩在线观看| 亚洲四区av| 夫妻性生交免费视频一级片| 我要搜黄色片| 国产在线男女| 亚洲一级一片aⅴ在线观看| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 久久久久网色| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 亚洲人成网站在线观看播放| 最新中文字幕久久久久| 亚洲人与动物交配视频| 高清午夜精品一区二区三区 | 久久久久免费精品人妻一区二区| 五月玫瑰六月丁香| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 在现免费观看毛片| 精品不卡国产一区二区三区| 观看美女的网站| 麻豆一二三区av精品| 国产高清视频在线观看网站| 亚洲人成网站在线播| 日韩精品青青久久久久久| 久久国内精品自在自线图片| 国产毛片a区久久久久| 久久久精品94久久精品| 老师上课跳d突然被开到最大视频| 国产 一区精品| 在线免费观看不下载黄p国产| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 久久国产乱子免费精品| 91久久精品国产一区二区成人| 久久久久久久亚洲中文字幕| eeuss影院久久| 亚洲精品久久国产高清桃花| 成人午夜精彩视频在线观看| 看非洲黑人一级黄片| 婷婷色av中文字幕| 国产三级中文精品| 国产片特级美女逼逼视频| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品成人久久久久久| 久久精品久久久久久久性| 波多野结衣高清无吗| 亚洲欧美中文字幕日韩二区| 丰满的人妻完整版| 婷婷色av中文字幕| 国内揄拍国产精品人妻在线| 精品久久久噜噜| 日韩强制内射视频| 亚洲最大成人中文| 男插女下体视频免费在线播放| 91久久精品电影网| 亚洲精品456在线播放app| 久久精品国产亚洲av香蕉五月| 国产成人精品一,二区 | av天堂中文字幕网| 成人无遮挡网站| 三级经典国产精品| 卡戴珊不雅视频在线播放| 精品少妇黑人巨大在线播放 | 久久久精品94久久精品| 99久久成人亚洲精品观看| 亚洲精品日韩av片在线观看| 午夜激情欧美在线| 国产女主播在线喷水免费视频网站 | 波多野结衣巨乳人妻| 波多野结衣高清作品| 中文在线观看免费www的网站| 国产高清激情床上av| 晚上一个人看的免费电影| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清专用| av.在线天堂| 最后的刺客免费高清国语| 国产老妇女一区| 国产真实乱freesex| 日韩欧美精品v在线| 亚洲国产精品国产精品| 国国产精品蜜臀av免费| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 亚洲av中文av极速乱| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩精品成人综合77777| 免费看光身美女| 一级毛片我不卡| 久久热精品热| 精品日产1卡2卡| av又黄又爽大尺度在线免费看 | av福利片在线观看| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 乱码一卡2卡4卡精品| 国产视频首页在线观看| 国产黄片美女视频| 简卡轻食公司| 少妇丰满av| 成人综合一区亚洲| 嫩草影院新地址| 亚洲国产高清在线一区二区三| 亚洲国产色片| 看非洲黑人一级黄片| 亚洲欧美日韩高清在线视频| 校园人妻丝袜中文字幕| 永久网站在线| 女人被狂操c到高潮| 亚洲av.av天堂| 在线国产一区二区在线| 欧美成人一区二区免费高清观看| 亚洲激情五月婷婷啪啪| 亚洲国产精品久久男人天堂| 丰满乱子伦码专区| 亚洲av二区三区四区| 成人性生交大片免费视频hd| 26uuu在线亚洲综合色| 大又大粗又爽又黄少妇毛片口| 在线观看美女被高潮喷水网站| 人体艺术视频欧美日本| 1024手机看黄色片| 亚洲精品乱码久久久久久按摩| 又爽又黄无遮挡网站| 美女黄网站色视频| 国产伦一二天堂av在线观看| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 久久人妻av系列| 免费大片18禁| 午夜福利在线观看免费完整高清在 | 欧美三级亚洲精品| 麻豆av噜噜一区二区三区| 国产精品免费一区二区三区在线| 日韩成人伦理影院| 亚洲欧美清纯卡通| 日韩欧美精品v在线| 亚洲在线自拍视频| 狠狠狠狠99中文字幕| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 国产一区二区激情短视频| 网址你懂的国产日韩在线| 日韩 亚洲 欧美在线| 搡女人真爽免费视频火全软件| 看片在线看免费视频| 免费搜索国产男女视频| 欧美+亚洲+日韩+国产| 99久久人妻综合| 九九热线精品视视频播放| 在线a可以看的网站| 青春草国产在线视频 | 成年av动漫网址| 色哟哟·www| 婷婷精品国产亚洲av| 热99re8久久精品国产| 国产成人91sexporn| 中国美白少妇内射xxxbb| 男插女下体视频免费在线播放| 亚洲自拍偷在线| 午夜精品一区二区三区免费看| 亚洲av熟女| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 久久久精品欧美日韩精品| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app| 变态另类丝袜制服| 人人妻人人澡人人爽人人夜夜 | 欧美一区二区亚洲| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 亚洲无线在线观看| 高清午夜精品一区二区三区 | 久久久久久久久久黄片| 日韩,欧美,国产一区二区三区 | 亚洲欧美成人精品一区二区| 男人的好看免费观看在线视频| 欧美日韩在线观看h| 国产 一区 欧美 日韩| 嫩草影院新地址| 日本免费一区二区三区高清不卡| 国产亚洲欧美98| 国产伦精品一区二区三区视频9| 国产日韩欧美在线精品| 九九热线精品视视频播放| 国产黄片美女视频| 夜夜夜夜夜久久久久| 长腿黑丝高跟| 波野结衣二区三区在线| 美女高潮的动态| 哪里可以看免费的av片| 三级男女做爰猛烈吃奶摸视频| 国产精品一二三区在线看| 欧美精品国产亚洲| 黄色日韩在线| 久久精品国产99精品国产亚洲性色| 少妇的逼好多水| 国产老妇女一区| 晚上一个人看的免费电影| 久久久精品94久久精品| 久久精品91蜜桃| 精品久久久久久成人av| 国产一区二区亚洲精品在线观看| 国产探花极品一区二区| 一本一本综合久久| 久久这里只有精品中国| 久久久久久久久久成人| 国产精品一区www在线观看| 日韩欧美一区二区三区在线观看| 国产免费男女视频| 亚洲人与动物交配视频| 黑人高潮一二区| 亚洲经典国产精华液单| 色视频www国产|