• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    2016-12-12 00:35:01LinaAbdullahALSHAHRANILIXiNANJunminTANJuanjuanGUFenglong
    關(guān)鍵詞:單壁玻碳碳納米管

    Lina Abdullah ALSHAHRANI, LI Xi, NAN Junmin, TAN Juanjuan, GU Fenglong*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    Lina Abdullah ALSHAHRANI1, LI Xi2, NAN Junmin1, TAN Juanjuan1, GU Fenglong1*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    [Cu(sal-β-Ala)(3,5-DMP2)] is modified on the surface of the single-walled carbon nanotubes (SWCNTs) of glass carbon electrode (GCE). The modified electrode shows impressive detection ability of dopamine (DA) and uric acid (UA). The modified electrode has a good electrocatalytic effect on DA and UA. The detection linear range of [Cu(sal-β-Ala)(3,5-DMP2)] to DA is 10.00 to 210 mmol/L and the detection limit is 7.29 μmol/L. While, the detection of [Cu(sal-β-Ala)(3,5-DMP2)] to UA has a good linear range from 1 to 86 mmol/L and the detection limit is 1.5 μmol/L. In this work Simultaneous Differential Pulse Voltammetric (DPV) is employed to determine DA and UA. The DPV method with [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has a good sensitivity and resolution rate.

    copper (II) Schiff base complex; single-walled carbon nanotubes; modified electrode; dopamine; uric acid; electrochemical detection

    Chinese library classification:O646 Document code:A Article ID: 1000-5463(2016)06-0099-07

    1 Introduction

    Dopamine (DA) is a neurotransmitter in the central nervous system, and has important functions in cardiovascular, kidney, hormones, and other important systems. The abnormal metabolism of DA in the nervous system would lead to a variety of diseases such as epilepsy, aging, dementia, and Parkinson’s[1-3]. In addition, uric acid (UA) is the metabolite of purine and exists in biological fluids such as blood and urine. Monitoring of the DA and UA concentrations in blood or urine is important because these concentrations can be used as an effective early warning sign for central nervous system or kidney diseases. Generally, the DA concentration is very low (0.01~1 μmol/L) in human blood, while UA concentrations are 100~1 000 times higher than that of DA[4]. Sensitive techniques are needed for the simultaneous determination of DA and UA mixture. The conventional detection methods of DA and UA include titration[5], HPLC,[6]and UV[7]etc. All these methods have their own advantages, but also associated with some disadvantages such as expensive equipment, complicated process, and low sensitivity. It’s necessary to develop a quick, simple, and effective method for detecting these compounds.

    Due to the predominance such as low cost, easiness, real-time field investigation and high selectivity, electrochemical detection exhibits an important approach for detecting biomolecules. However, the conventional electrodes have the disadvantages of low sensitivity, easy to be contaminated by the oxidation products of DA and UA. In order to improve the detection sensitivity, many materials were used to modify the electrode, for examples, metal complexes, nanoparticles, carbon nanotubes, graphene, conductive polymer[8-10]. Therefore, carbon nanotubes (CNTs) modified electrode has become a hot research topic because of their large specific surface area, excellent electrochemical properties, and high stability[11-13]. The potential applications of CNTs in fabricating electrochemical sensors have been previously applied[14-15], and CNTs also have been applied for selective detection of DA and UA[16-17]. At the same time, the Schiff base complex has a very stable amino (RCN) structure, it can easily coordinate with transition metal to display a number of features, such as interaction with DNA, antibacterial and anticancer activity, ability of catalyzing the hydroquinone, sulfur cytosine, and ascorbic acid. When the electrode is modified by the transition metal complexes, the electron transfer rate can be increased, the oxidation potential will be reduced, and the peak current will be increased, thus improving the detection sensitivity, and acting as a catalyst in the electrode surface[18-20]. As a transition metal complex, Cu(sal-β-Ala)(3,5-DMP2) possesses unique composition and structure, and can be expected as a promising modifier for electrode. In this paper, [Cu(sal-β-Ala)(3,5-DMP2)] and SWCNTs modified glass carbon electrode (GCE) are prepared, which exhibits impressive sensitivity for simultaneously determining DA and UA.

    2 Experiments

    2.1 Materials and chemical reagents

    DA, UA, and Cu(sal-β-Ala) (3,5-DMP2) were bought from the Sigma Company (St. Louis, MO,USA). Other chemical reagents are analytical grade and directly used without further purification. The acetate buffer solution (ABS, pH6.0, 0.1 mol/L) was prepared with NaAc and HAc. All solutions were prepared with double distilled water. Single-walled carbon nanotubes (SWCNTs) were purchased form Shenzhen Nanotech Port Co., Ltd (Shenzhen, China). According to the literature’s method, a certain amount of SWCNTs was added in the mixed acidV(H2SO4)∶V(HNO3)=3∶1 and refluxed for 2 h. Then, the concentrated hydrochloric acid was added and refluxed for another hour. After the reaction completed, the product was filtered, and dried in an oven at 80 ℃. The as-prepared SWCNTs (10 mg) was dispersed in 100 mL H2O, and then ultrasonic treated for 10 min, and sealed for use.

    2.2 Preparation of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE

    GCE was polished to a mirror on the surface of Al2O3of 1.0 and 0.3 μm, and then ultrasonic treatment in acetone and water for 2 min. To constitute a three-electrode system, the GCE was used as the working electrode, Pt wire electrode as the counter electrode, and a saturated calomel electrode as the reference electrode. The Cyclic Voltammetry (CV) test was in 0.5 mol/L H2SO4solution, and the potential was -0.35~1.50 V, scanning at 100 mV/s. After the CV curves become stable, the pretreatment of GCE was completed. The GCE was placed in a DMSO solution and mixed with Cu(sal-β-Ala)(3,5 -DMP2) and 0.1 mol/L NaNO3, and then treated with CV experiment between -0.8~1.2 V. The electrode was washed with water for several times, and the modified electrode was thus obtained, marked as [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE.

    2.3 Electrochemical measurements

    Electrochemical measurements were conducted using three-electrode system. The saturated calomel electrode was used as the reference electrode, a platinum electrode as the auxiliary electrode, and the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE as working electrode. All electrochemical experiments were carried out using the CHI660D Electrochemical workstation (Shanghai Chenhua China) electrochemical workstation. The electrochemical impedance spectroscopy (EIS) was carried in an equimolar amount of 5 mmol/L [Fe(CN)6]3-/ [Fe(CN)6]4-solution, using 0.1 mol/L KCl as supporting electrolyte, and the frequency sweep range is 0.01~103 kHz.

    3 Results and discussion

    3.1 Characterization of the modified electrode

    The surfaces of GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE were investigated by SEM (Figure 1). By the comparison of Figure 1A and 1B, it can be seen that the SWCNTs were distributed on the GC electrode. After Cu(sal-β-Ala) (3,5-DMP2) was electro-polymerized on the surface of SWCNTs/GCE, the image became cloudy because of the formation of [Cu(sal-β-Ala)(3,5-DMP2)] film (Figure 1C). It is indicated that the Cu(sal-β-Ala) (3,5-DMP2) film has been successfully grown on the electrode.

    Figure 1 SEM images of bare GCE (A), SWCNTs/GCE (B), and Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE (C)

    3.2 Electrochemical behavior and detection of DA

    The electrocatalysis of DA on bare GCE, SWCNTs/GCE, and Cu(sal-β-Ala)(3,5-DMP2)/SW CNTs/GCE was firstly investigated in a buffer solution at pH 7.0, The cyclic voltammogram of DA at bare GCE shows an irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. Whereas, with SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] on the GCE, DA exhibits obviously enhanced voltammetric response (Figure 2,scan rate=100 mV/s). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of DA. The effects of scan rate on the peak current of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE are shown in Figure 3. The anodic peak current of DA is proportional to the square root of scan rate in the range of 10~300 mV/s, which indicates that the electrocatalytic oxidation of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode isIpa(μA) = -50.958+19.731U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.998 (Figure 4).

    Figure 2 Cyclic voltammograms of 1 mmol/L DA at different electrodes in PBS solution (pH 7.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 3 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 7.0) containing 1 mmol/L DA

    Figure 4 Linear dependence of peak currents on the square root of the scan rate

    In the optimal experimental conditions, amperometric was used to determine the oxidation peak current and DA concentration relationship. A stirred solution of chronoamperometry contained 0.1 mol/L KCl in 0.2 mol/L of PBS (pH 7.0) was added to achieve different concentrations of DA, the voltage was fixed at 0.22 V, as shown in Figure 5.

    Figure 5 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration DA. Inseted: calibration curve of amperometric response I vs. DA concentration.

    Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to DA. The oxidation current increases very fast with the increase of DA concentration and reached the steady-state. The amperometric response is found to be linear to the DA over the range of 10 to 210 μmol/L with the correlation coefficient ofR2=0.999 92. Linear regression equation isIpa=0.086 3+0.006 4c(μmol/L). The limit of detection (LOD), defined as a signal-to-noise ratio of 3∶1 is found to be 7.29 μmol/L . The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA. On the other hand, this system is also optimized in the solution with some common ions and small biomolecules for DA determination interference. It was shown that the allowable error range of ±5%, 100 times K+, Na+, Cl-, ascorbic acid, citric acid, glucose, hardly interfere with the determination of DA, indicating that [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE determination of DA has high selectivity.

    3.3 Electrochemical behaviors and detection of UA

    Using the above optimal experimental conditions, the modified electrode was prepared and used to detect UA. The electrocatalysis of UA on bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE was also investigated in a buffer solution with pH 2.0. As shown in Figure 6~8, it can be seen that on bare GCE, the cyclic voltammogram of UA shows a irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. When SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] were modified on the GCE, UA exhibits obviously enhanced voltammetric response (Figure 6). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of UA. The effect of scan rate on the peak current of UA on the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has been investigated. The results are shown in Figure 7. The anodic peak current of UA is proportional to the square root of scan rate in the range of 30~300 mV/s, which indicates that the electrocatalytic oxidation of UA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode wasIpa(μA) = -22.533+12.585U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.996 (Figure 8).

    Figure 6 Cyclic voltammograms of 2 mmol/L UA at different electrodes in PBS solution (pH 2.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 7 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 2.0) containing 2 mmol/L UA

    Figure 8 Linear dependence of peak currents on the square root of the scan rate

    Similarly, amperometric was used to determine the oxidation peak current and UA concentration relationship. A stirred solution of chronoamperometry contained 2 mol/L KCl in 0.2 mol/L of PBS (pH 6.0) was added to achieve different concentrations of UA, the voltage was fixed at 0.22 V. Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to UA (Figure 9). The oxidation current is increased very rapidly with the increase of UA concentration and reached the steady-state. The amperometric response is found to be linear to the UA over the range of 10 to 86 μmol/L with the correlation coefficient ofIpa=0.8743+613.82c(μmol/L) andR2=0.999 7. The limit of detection (LOD) defined as a signal-to-noise ratio of 3∶1, is found to 1.5 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has a good accuracy for the determination of UA.

    Figure 9 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration UA. Inserted: calibration curve of amperometric response I vs.UA concentration

    3.4 Simultaneous determination of DA and UA

    In accordance with the best electrolyte analyses experimental conditions and instrument parameters, Differential Pulse voltammetry (DPV) experiments with different concentrations of DA and UA have be carried out.

    Figure 10 shows the typical CVs of DA and UA at the bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE. At the bare GCE, DA and UA show broader oxidation peaks and overlapped. At the SWCNTs/GCE, the oxidation of DA and UA appears at 0.26 V and 0.39 V, respectively. After electrodeposited [Cu(sal-β-Ala)(3,5-DMP2)] on the electrode, the oxidation peaks current increased, and peak separation between DA and UA is 0.13 V, indicating that the simultaneous determination of the two species is feasible.

    Figure 10 CVs in 0.2 mol/L PBS (pH 6.0) containing 1.0 mmol/L DA and 0.2 mmol/L UA in each case

    DPV using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode was used as a highly sensitive electrochemical method with very low detection limit to determine the trace of DA and UA. Figure 11 shows typical DPVs of different concentrations of DA in the existence of 0.1 mmol/L UA, using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode. The oxidation peak current of UA is positively proportional to its concentration (1.998~122.947 μmol/L), with theIpa(UA)=-0.006 8+0.038 9c(μmol/L) and the correlation coefficient ofR2=0.998. The limit of detection (LOD) is found to be 1.42 μmol/L (S/N=3), The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA.

    Figure 11 DPV view of DA at different concentrations in the existence of 0.1 μmol/L UA

    Figure 12 shows that the peak current of UA is increased with an increase in UA concentration, when the solution contained constant 0.05 mmol/L of DA, The oxidation peak current of UA is positively proportional to its concentration; while the oxidation peak current of DA does not change. It is found to be linear to the UA over the range of 10.00 to 122.95 μmol/L with the correlation coefficient ofR2=0.998,Ipa(UA)=0.67+0.017 8c(μmol/L). The LOD is found to be 3.7 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has good accuracy for the determination of UA.

    Figure 12 DPA response curues of UA at different concentrations

    4 Conclusion

    The Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE electrode was prepared and its electrochemical properties on DA and UA shows a good catalytic effect. The concentration of DA and UA and the peak current of oxidation are in linear relationship in some range. Its impressive catalytic properties indicate its potential use in the detection of DA and UA. The [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs modified electrode shows good catalytic effect on DA and UA for cyclic voltammetry comparison purposes. DPV method is used as the simultaneous determination of DA and UA. In a mixed solution, when changing the concentration of a substance, the oxidation peak current showed a linear relationship with its concentration over a wide range, these results demonstrate that the modified electrode has high sensitivity.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (51273155), the Fundamental Research Funds for the Central Universities of China (2012-Ia-022 and 2014-Ia-030), and the Science and Technology Planning Project of Guangdong Province (2013B051000074). Thanks also to the Ministry of Higher Education of Saudi Arabia for the financial support to L.A.A.

    [1] SHANKARAN D R,IIMURA K,KATO T. Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode[J]. Sensors & Actuators B Chemical,2003,94(1):73-80.

    [2] WANG R,HONG Q L,LI N B. Simultaneous voltammetric measurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J]. Biosensors & Bioelectronics,2006,21(7):1086-1092.

    [3] WIGHTMAN R M,MAY L J,MICHAEL A C. Detection of Dopamine Dynamics in the Brain[J]. Analytical Chemistry,1988,60(60):141-152.

    [4] MO J W,OGOREVC B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber[J]. Analytical Chemistry,2001,73(6):1196-1202.

    [5] DUTT V V,HA M. Determination of uric acid at the microgram level by a kinetic procedure based on a “pseudo-induction” period[J]. Analytical Chemistry,1974,46(12):1777-1781.

    [6] STAMFORD J A,JR J J. Probing brain chemistry[J]. Analytical Chemistry,1996,68(11):359A-363A.

    [7] KIRK S,SAWYER R. Pearson’s composition and analysis of foods[M]. Pearsons Composition & Analysis of Foods,Longman:Willey,1991:507-544.

    [8] WAGNER E S,LINDLEY B,COFFIN R D. High-performance liquid chromatographic determination of ascorbic acid in urine : Effect on urinary excretion profiles after oral and intravenous administration of vitamin C[J]. Journal of Chromatography A,1979,163(2):225-229.

    [9] KHAN A,KHAN M I,IQBAL Z,et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection[J]. Talanta,2011,84(3):789-801.

    [10]ZENG W,MARTINUZZI F,MACGREGOR A. Development and application of a novel UV method for the analysis of ascorbic acid[J]. Journal of Pharmaceutical & Biomedical Analysis,2005,36(5):1107-1111.

    [11]LI J,LIN X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode[J]. Sensors & Actuators B Chemical,2007,124(2):486-493.

    [12]SHAKKTHIVEL P,CHEN S M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode[J]. Biosensors & Bioelectronics,2007,22(8):1680-1687.

    [13]HABIBI B,POURNAGHI-AZAR M H. Simultaneous determination of ascorbic acid,dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry[J]. Electrochimica Acta,2010,55(19):5492-5498.

    [14]WANG J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis, 2005,17(1):7-14.

    [15]WANG M,ZHAO F,LIU Y,et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes[J]. Biosensors & Bioelectronics,2005,21(1):159-166.

    [16]BRITTO P J,SANTHANAM K S V,ANGEL R,et al. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Advanced Materials,1999,11(11):154-157.

    [17]KONG J,FRANKLIN N R,ZHOU C,et al. Nanotube molecular wires as chemical sensors[J]. Science,2000,287(5453):622-625.

    [18]SHAHROKHIAN S,ZARE-MEHRJARDI H R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid[J]. Electrochimica Acta,2007,52(22):6310-6317.

    [19]LIU X,PENG Y,QU X,et al. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid[J]. Journal of Electroanalytical Chemistry,2011,654(S1/S2):72-78.

    [20]AMIRI S S M. Voltammetric determination of thiocytosine based on its electrocatalytic oxidation on the surface of carbon-paste electrode modified with cobalt Schiff base complexes[J].Journal of Solid State Electrochemistry. 2007,11,1133-1138.

    【中文責編:成文 英文責編:李海航】

    2016-09-12 《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n

    國家自然科學(xué)基金項目(21273081);廣東高校國際合作創(chuàng)新平臺項目(2013gjha0005)

    修飾玻碳電極對多巴胺和尿酸的電化學(xué)檢測

    Lina Abdullah ALSHAHRANI1, 李 曦2, 南俊民1, 譚娟娟1, 顧鳳龍1*

    (1. 華南師范大學(xué)化學(xué)與環(huán)境學(xué)院, 理論化學(xué)與環(huán)境教育部重點實驗室, 廣州 510631;2. 武漢理工大學(xué)化工與生命科學(xué)學(xué)院, 武漢 430070)

    在單壁碳納米管(SWCNT)表面修飾[Cu(sal-β-Ala)(3,5-DMP2)]玻碳電極(GCE),該修飾電極不僅對多巴胺(DA)和尿酸(UA)具有很好的電化學(xué)催化效果,而且對它們有很強的檢測能力. [Cu(sal-β-Ala)(3,5-DMP2)] 修飾電極對DA的檢測線性范圍為10~210 mmol/L,檢測極限為7.29 μmol/L;而對UA的檢測線性范圍為從1~86 mmol/L,檢測極限為1.5 μmol/L. 同時,利用微分脈沖伏安法(DPV)來測定DA和UA,相比之下,[Cu(sal-β-Ala)(3,5-DMP2)] 與單壁碳納米管及修飾玻碳電極結(jié)合具有良好的靈敏度和分辨率.

    Cu(II)希夫堿配合物; 單壁碳納米管; 修飾電極; 多巴胺; 尿酸; 電化學(xué)檢測

    *通訊作者:顧鳳龍,教授,珠江學(xué)者,Email: gu@scnu.edu.cn.

    猜你喜歡
    單壁玻碳碳納米管
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    姜黃素在玻碳電極上的電化學(xué)行為研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    基于適配體的石墨烯修飾玻碳電極檢測卡那霉素
    玻碳修飾電極檢測食鹽中的碘含量
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    單壁碳納米管對微穿孔板吸聲體吸聲性能的影響
    同位鍍鉍/過氧化聚乙酰苯胺/玻碳電極溶出伏安法測定食用鹽中痕量鎘和鉛
    久久国产精品男人的天堂亚洲| 亚洲av国产av综合av卡| 69精品国产乱码久久久| 欧美另类一区| 一二三四在线观看免费中文在| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 精品久久蜜臀av无| 国产成+人综合+亚洲专区| 久久久久久久大尺度免费视频| 国产精品久久久人人做人人爽| 在线看a的网站| 亚洲av男天堂| 在线观看免费高清a一片| 麻豆乱淫一区二区| 蜜桃在线观看..| 母亲3免费完整高清在线观看| 日韩中文字幕视频在线看片| 在线十欧美十亚洲十日本专区| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 首页视频小说图片口味搜索| 一本综合久久免费| 午夜免费成人在线视频| 美女高潮到喷水免费观看| 中文字幕另类日韩欧美亚洲嫩草| 男女边摸边吃奶| 亚洲精华国产精华精| 两性夫妻黄色片| 国产精品成人在线| 亚洲精品中文字幕一二三四区 | 午夜福利免费观看在线| 久久人妻熟女aⅴ| 香蕉国产在线看| 国产成人免费观看mmmm| 日本猛色少妇xxxxx猛交久久| 久久久久久亚洲精品国产蜜桃av| 一区二区av电影网| 久久这里只有精品19| 99香蕉大伊视频| 精品久久久久久电影网| 老熟妇乱子伦视频在线观看 | 欧美日韩精品网址| 美女国产高潮福利片在线看| 亚洲精品第二区| 国产精品一区二区精品视频观看| 久久精品亚洲熟妇少妇任你| 水蜜桃什么品种好| 91九色精品人成在线观看| 亚洲 欧美一区二区三区| 国产精品一区二区在线不卡| 黄色片一级片一级黄色片| 最近最新中文字幕大全免费视频| 国产欧美亚洲国产| 久热这里只有精品99| 国产深夜福利视频在线观看| 色老头精品视频在线观看| 久久影院123| 国产区一区二久久| av福利片在线| 桃红色精品国产亚洲av| 日韩欧美免费精品| 叶爱在线成人免费视频播放| 日本黄色日本黄色录像| 国产精品二区激情视频| 美女高潮喷水抽搐中文字幕| 久热这里只有精品99| 久久人人97超碰香蕉20202| 每晚都被弄得嗷嗷叫到高潮| 一本久久精品| 亚洲情色 制服丝袜| 首页视频小说图片口味搜索| 亚洲av欧美aⅴ国产| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美在线一区二区| 久久亚洲精品不卡| 国产深夜福利视频在线观看| 成人国产一区最新在线观看| 国产在线观看jvid| 午夜免费观看性视频| 青春草视频在线免费观看| 国产精品香港三级国产av潘金莲| 欧美精品高潮呻吟av久久| 午夜精品国产一区二区电影| 免费黄频网站在线观看国产| 午夜两性在线视频| 黄网站色视频无遮挡免费观看| 国产精品99久久99久久久不卡| 侵犯人妻中文字幕一二三四区| 老司机影院成人| av在线播放精品| 欧美精品av麻豆av| 欧美一级毛片孕妇| 三级毛片av免费| 大香蕉久久成人网| 香蕉国产在线看| 亚洲一码二码三码区别大吗| 美女高潮到喷水免费观看| 欧美老熟妇乱子伦牲交| 免费少妇av软件| 日韩欧美国产一区二区入口| 午夜两性在线视频| 欧美精品亚洲一区二区| 亚洲欧美清纯卡通| 亚洲中文日韩欧美视频| 久久久久精品国产欧美久久久 | 高清av免费在线| 久久这里只有精品19| 欧美成狂野欧美在线观看| 亚洲人成电影观看| 在线观看免费日韩欧美大片| 最新的欧美精品一区二区| 亚洲五月婷婷丁香| 桃红色精品国产亚洲av| 欧美精品一区二区免费开放| bbb黄色大片| 操美女的视频在线观看| 国产黄色免费在线视频| 成年人黄色毛片网站| 十八禁人妻一区二区| 最近最新中文字幕大全免费视频| 久久久久久久久久久久大奶| 视频在线观看一区二区三区| 免费观看av网站的网址| 人成视频在线观看免费观看| 免费观看人在逋| 国产真人三级小视频在线观看| 日韩欧美国产一区二区入口| 99国产极品粉嫩在线观看| 亚洲精品成人av观看孕妇| 免费在线观看视频国产中文字幕亚洲 | 中文字幕高清在线视频| 高潮久久久久久久久久久不卡| 精品国产乱码久久久久久小说| 国产精品一区二区在线观看99| 亚洲久久久国产精品| 一区二区日韩欧美中文字幕| 国产精品麻豆人妻色哟哟久久| 少妇被粗大的猛进出69影院| 他把我摸到了高潮在线观看 | 亚洲国产成人一精品久久久| 男人舔女人的私密视频| 亚洲熟女毛片儿| 久久国产精品影院| 黑人巨大精品欧美一区二区mp4| 欧美人与性动交α欧美软件| 午夜激情av网站| 12—13女人毛片做爰片一| 丝瓜视频免费看黄片| 老熟妇仑乱视频hdxx| 亚洲午夜精品一区,二区,三区| 国精品久久久久久国模美| 天堂8中文在线网| 国产av国产精品国产| 久久国产精品人妻蜜桃| av在线播放精品| 国产精品久久久久久精品电影小说| 欧美日韩亚洲高清精品| 亚洲伊人色综图| 在线观看人妻少妇| 成年动漫av网址| 国产主播在线观看一区二区| av在线老鸭窝| 国产精品久久久av美女十八| 啦啦啦免费观看视频1| 在线永久观看黄色视频| 人人妻人人爽人人添夜夜欢视频| 黄片小视频在线播放| 日本黄色日本黄色录像| 十八禁网站网址无遮挡| 国产三级黄色录像| 亚洲中文av在线| 成人免费观看视频高清| 国产亚洲精品久久久久5区| 日本a在线网址| 久久99一区二区三区| 电影成人av| 欧美日韩成人在线一区二区| 亚洲一区二区三区欧美精品| 国产成人影院久久av| 中文字幕色久视频| 久久午夜综合久久蜜桃| 久久精品亚洲熟妇少妇任你| 欧美人与性动交α欧美软件| 一级黄色大片毛片| 不卡一级毛片| 人妻 亚洲 视频| 亚洲av日韩精品久久久久久密| 亚洲精品美女久久av网站| 免费观看av网站的网址| 国产黄频视频在线观看| 免费在线观看黄色视频的| 亚洲国产欧美在线一区| 黄片播放在线免费| 久久久久网色| 老熟妇仑乱视频hdxx| 国产真人三级小视频在线观看| 少妇被粗大的猛进出69影院| 啦啦啦 在线观看视频| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 国产精品亚洲av一区麻豆| av一本久久久久| 日日爽夜夜爽网站| 搡老熟女国产l中国老女人| www日本在线高清视频| 热re99久久精品国产66热6| 亚洲少妇的诱惑av| 久久av网站| 日韩视频一区二区在线观看| videosex国产| 狠狠婷婷综合久久久久久88av| 嫁个100分男人电影在线观看| 黄色片一级片一级黄色片| 亚洲第一欧美日韩一区二区三区 | 欧美精品高潮呻吟av久久| 久久久久精品人妻al黑| 久久精品成人免费网站| 精品一区二区三区四区五区乱码| 国产高清国产精品国产三级| xxxhd国产人妻xxx| 亚洲精品一卡2卡三卡4卡5卡 | 国产主播在线观看一区二区| 最近中文字幕2019免费版| 男女免费视频国产| 汤姆久久久久久久影院中文字幕| 精品久久蜜臀av无| 国产成人精品久久二区二区免费| 自线自在国产av| 国产免费现黄频在线看| 一进一出抽搐动态| 国产片内射在线| 99九九在线精品视频| 999精品在线视频| 精品视频人人做人人爽| 老鸭窝网址在线观看| 国产一区二区三区av在线| 国产日韩欧美在线精品| 18禁观看日本| 国产免费av片在线观看野外av| 亚洲av欧美aⅴ国产| 首页视频小说图片口味搜索| 国产免费视频播放在线视频| 国产一级毛片在线| 男女床上黄色一级片免费看| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 午夜两性在线视频| 亚洲成av片中文字幕在线观看| 亚洲天堂av无毛| 色视频在线一区二区三区| 午夜视频精品福利| 精品久久久久久久毛片微露脸 | 久久青草综合色| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密| 菩萨蛮人人尽说江南好唐韦庄| 一本久久精品| 国产xxxxx性猛交| 亚洲欧美精品自产自拍| 亚洲精品国产一区二区精华液| a级毛片黄视频| 国产又色又爽无遮挡免| 欧美在线一区亚洲| 可以免费在线观看a视频的电影网站| 久久青草综合色| 亚洲少妇的诱惑av| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 一本一本久久a久久精品综合妖精| 亚洲一区二区三区欧美精品| 一级片'在线观看视频| 搡老熟女国产l中国老女人| 国产一级毛片在线| 国产免费av片在线观看野外av| 老鸭窝网址在线观看| 高清在线国产一区| 精品少妇一区二区三区视频日本电影| 一区福利在线观看| 久久精品人人爽人人爽视色| 欧美亚洲 丝袜 人妻 在线| 亚洲免费av在线视频| 正在播放国产对白刺激| 又黄又粗又硬又大视频| 国产高清视频在线播放一区 | 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲国产一区二区在线观看 | 日本av免费视频播放| 老司机福利观看| 国产成人精品久久二区二区免费| 丝袜在线中文字幕| 国产在线免费精品| 亚洲人成电影免费在线| 亚洲国产欧美在线一区| svipshipincom国产片| 久久精品国产综合久久久| 精品国产超薄肉色丝袜足j| 午夜免费观看性视频| 俄罗斯特黄特色一大片| av福利片在线| 国产高清国产精品国产三级| 成年人午夜在线观看视频| 亚洲 国产 在线| 宅男免费午夜| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久小说| 欧美大码av| 欧美精品啪啪一区二区三区 | 深夜精品福利| 啪啪无遮挡十八禁网站| 在线av久久热| 国产免费一区二区三区四区乱码| 999久久久精品免费观看国产| 一本一本久久a久久精品综合妖精| 18在线观看网站| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 99国产极品粉嫩在线观看| 欧美激情极品国产一区二区三区| tocl精华| 久久热在线av| 欧美成人午夜精品| 久久久精品免费免费高清| 亚洲国产精品一区二区三区在线| 热99re8久久精品国产| 国精品久久久久久国模美| 12—13女人毛片做爰片一| 亚洲,欧美精品.| 免费看十八禁软件| 久久久精品94久久精品| 丝袜脚勾引网站| 国产又爽黄色视频| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 女人精品久久久久毛片| 在线观看舔阴道视频| 在线观看一区二区三区激情| cao死你这个sao货| 久久午夜综合久久蜜桃| 一级a爱视频在线免费观看| 欧美老熟妇乱子伦牲交| tocl精华| 老司机亚洲免费影院| 99re6热这里在线精品视频| 日本一区二区免费在线视频| 啦啦啦在线免费观看视频4| 国产成人欧美| 美女高潮到喷水免费观看| 国产麻豆69| 午夜日韩欧美国产| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 夫妻午夜视频| 飞空精品影院首页| 老司机影院毛片| 国产成人啪精品午夜网站| 999久久久精品免费观看国产| 一级毛片电影观看| 久久国产亚洲av麻豆专区| 国产深夜福利视频在线观看| 啦啦啦 在线观看视频| 中文字幕人妻熟女乱码| 精品少妇内射三级| 91成人精品电影| 亚洲国产精品一区二区三区在线| 伦理电影免费视频| 亚洲欧美精品综合一区二区三区| 久久毛片免费看一区二区三区| 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 中国美女看黄片| 一区二区三区四区激情视频| 18禁观看日本| 久久精品人人爽人人爽视色| 夜夜夜夜夜久久久久| 欧美国产精品va在线观看不卡| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| 青春草亚洲视频在线观看| 午夜激情av网站| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 丝袜美足系列| av在线老鸭窝| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 51午夜福利影视在线观看| 欧美中文综合在线视频| 蜜桃国产av成人99| 久久国产精品大桥未久av| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 人妻 亚洲 视频| 久久性视频一级片| 亚洲 欧美一区二区三区| 91字幕亚洲| 国产男女超爽视频在线观看| 欧美黄色淫秽网站| 日日夜夜操网爽| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 国产精品熟女久久久久浪| www.av在线官网国产| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 后天国语完整版免费观看| av不卡在线播放| 99re6热这里在线精品视频| 国产97色在线日韩免费| 国产精品国产三级国产专区5o| 国产免费现黄频在线看| 国产男女内射视频| 亚洲成人免费电影在线观看| 精品国产乱码久久久久久男人| 丁香六月欧美| 精品人妻熟女毛片av久久网站| 中文精品一卡2卡3卡4更新| 亚洲专区中文字幕在线| 久久99一区二区三区| 免费一级毛片在线播放高清视频 | 国产精品99久久99久久久不卡| 成在线人永久免费视频| 女人精品久久久久毛片| 老汉色∧v一级毛片| 日本a在线网址| 黄色怎么调成土黄色| 一个人免费看片子| 一区在线观看完整版| 亚洲av日韩精品久久久久久密| 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 国产片内射在线| 97精品久久久久久久久久精品| 久久久精品免费免费高清| 美女主播在线视频| 大片免费播放器 马上看| 亚洲精品一区蜜桃| 高清黄色对白视频在线免费看| www.精华液| 国产精品一二三区在线看| 国产一区二区三区综合在线观看| 久久精品久久久久久噜噜老黄| 曰老女人黄片| 亚洲精品粉嫩美女一区| 免费av中文字幕在线| 三上悠亚av全集在线观看| 大型av网站在线播放| 色播在线永久视频| 国产精品国产av在线观看| 性少妇av在线| 国产一级毛片在线| 最新的欧美精品一区二区| 欧美精品啪啪一区二区三区 | 国产成人精品久久二区二区91| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 午夜视频精品福利| 成年美女黄网站色视频大全免费| av一本久久久久| 国产精品1区2区在线观看. | 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面 | a 毛片基地| 亚洲av美国av| 婷婷丁香在线五月| 久久精品国产a三级三级三级| 免费高清在线观看视频在线观看| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 久久久久久久精品精品| 亚洲,欧美精品.| 亚洲国产欧美在线一区| 精品人妻一区二区三区麻豆| 男人操女人黄网站| 少妇 在线观看| 国产成人精品无人区| 亚洲精品国产av成人精品| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 国产成人精品久久二区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 国产精品一区二区在线观看99| 脱女人内裤的视频| 精品一品国产午夜福利视频| 18禁裸乳无遮挡动漫免费视频| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 咕卡用的链子| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 国产又色又爽无遮挡免| 美女扒开内裤让男人捅视频| 国产一区有黄有色的免费视频| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 美女大奶头黄色视频| 超碰成人久久| 国产精品.久久久| 黄色毛片三级朝国网站| 80岁老熟妇乱子伦牲交| 99热网站在线观看| 性色av一级| 麻豆av在线久日| 亚洲专区字幕在线| 大香蕉久久网| 啦啦啦在线免费观看视频4| 啦啦啦 在线观看视频| 99久久综合免费| 人人妻人人澡人人爽人人夜夜| 国产1区2区3区精品| 国产精品九九99| 国产精品一区二区免费欧美 | 别揉我奶头~嗯~啊~动态视频 | 操出白浆在线播放| 国产一级毛片在线| 汤姆久久久久久久影院中文字幕| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 美女视频免费永久观看网站| 视频区图区小说| 97在线人人人人妻| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 国产极品粉嫩免费观看在线| 在线亚洲精品国产二区图片欧美| 如日韩欧美国产精品一区二区三区| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 一本久久精品| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 一二三四社区在线视频社区8| 免费在线观看日本一区| www.999成人在线观看| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 亚洲精品国产一区二区精华液| 久久亚洲精品不卡| 欧美少妇被猛烈插入视频| 1024香蕉在线观看| 久久影院123| 成人免费观看视频高清| 午夜91福利影院| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 人成视频在线观看免费观看| 国产精品久久久久成人av| 精品免费久久久久久久清纯 | 午夜福利免费观看在线| 一级毛片精品| www.999成人在线观看| 中文字幕高清在线视频| 久热这里只有精品99| 一级毛片电影观看| 精品一品国产午夜福利视频| 国产区一区二久久| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 亚洲全国av大片| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 亚洲伊人久久精品综合| 999久久久精品免费观看国产| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 免费女性裸体啪啪无遮挡网站| 一区二区三区乱码不卡18| 亚洲性夜色夜夜综合| 亚洲av片天天在线观看| 国产伦人伦偷精品视频| 九色亚洲精品在线播放| 最近最新免费中文字幕在线| 久久国产精品影院| 最新的欧美精品一区二区| 悠悠久久av| 免费不卡黄色视频| 日韩电影二区| 伦理电影免费视频| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| 国产在线免费精品| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 91九色精品人成在线观看| 国内毛片毛片毛片毛片毛片| 夜夜骑夜夜射夜夜干| 男女之事视频高清在线观看| 女性被躁到高潮视频| 中文字幕人妻丝袜制服| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 手机成人av网站| 久久免费观看电影| 黑人巨大精品欧美一区二区mp4| 汤姆久久久久久久影院中文字幕| 建设人人有责人人尽责人人享有的| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 亚洲人成电影免费在线| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 国产真人三级小视频在线观看| 亚洲国产中文字幕在线视频| av视频免费观看在线观看|